首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We present the genome sequences of a new clinical isolate of the important human pathogen, Aspergillus fumigatus, A1163, and two closely related but rarely pathogenic species, Neosartorya fischeri NRRL181 and Aspergillus clavatus NRRL1. Comparative genomic analysis of A1163 with the recently sequenced A. fumigatus isolate Af293 has identified core, variable and up to 2% unique genes in each genome. While the core genes are 99.8% identical at the nucleotide level, identity for variable genes can be as low 40%. The most divergent loci appear to contain heterokaryon incompatibility (het) genes associated with fungal programmed cell death such as developmental regulator rosA. Cross-species comparison has revealed that 8.5%, 13.5% and 12.6%, respectively, of A. fumigatus, N. fischeri and A. clavatus genes are species-specific. These genes are significantly smaller in size than core genes, contain fewer exons and exhibit a subtelomeric bias. Most of them cluster together in 13 chromosomal islands, which are enriched for pseudogenes, transposons and other repetitive elements. At least 20% of A. fumigatus-specific genes appear to be functional and involved in carbohydrate and chitin catabolism, transport, detoxification, secondary metabolism and other functions that may facilitate the adaptation to heterogeneous environments such as soil or a mammalian host. Contrary to what was suggested previously, their origin cannot be attributed to horizontal gene transfer (HGT), but instead is likely to involve duplication, diversification and differential gene loss (DDL). The role of duplication in the origin of lineage-specific genes is further underlined by the discovery of genomic islands that seem to function as designated "gene dumps" and, perhaps, simultaneously, as "gene factories".  相似文献   

3.
Biomass production by Aspergillus fumigatus was greatest at 40–45°C and was associated with an increase in concentration of the diamine putrescine and activity of its biosynthetic enzyme ornithine decarboxylase. Concentrations of the other amines, cadaverine, spermidine and spermine were considerably lower than putrescine concentration and did not change significantly over the temperature range 20–50°C. This is surprising in view of the greatly increased flux of label from ornithine through to spermidine at 45 and 50°C, indicating an increased formation of this triamine. It is suggested that there was increased formation of spermidine derivatives at these temperatures. Interestingly, there was greatly increased formation of the higher homologues of cadaverine, aminopropylcadaverine and N,N′-bis(3-aminopropyl)cadaverine, in A. fumigatus at 45 and 50°C.  相似文献   

4.
Aspergillus fumigatus is an important pathogen of the immunocompromised host. Previously, it was shown that the polyketide synthase encoded by the pksP (alb1) gene represents a virulence determinant. pksP is part of a gene cluster involved in dihydroxynaphthalene (DHN)-like melanin biosynthesis. Because a putative laccase-encoding gene (abr2) is also part of the cluster and a laccase was found to represent a virulence factor in Cryptococcus neoformans, here, the Abr2 laccase was characterised. Deletion of the abr2 gene changed the gray-green conidial pigment to a brown color and the ornamentation of conidia was reduced compared with wild-type conidia. In contrast to the white pksP mutant, the susceptibility of the Δabr2 mutant against reactive oxygen species (ROS) was not increased, suggesting that the intermediate of DHN-like melanin produced up to the step catalysed by Abr2 already possesses ROS scavenging activity. In an intranasal mouse infection model, the Δabr2 mutant strain showed no reduction in virulence compared with the wild type. In the Δabr2 mutant, overall laccase activity was reduced only during sporulation, but not during vegetative growth. An abr2p-lacZ gene fusion was expressed during sporulation, but not during vegetative growth confirming the pattern of laccase activity due to Abr2.  相似文献   

5.
Gliotoxin is a secondary metabolite produced by several fungi including the opportunistic animal pathogen Aspergillus fumigatus. It is a member of the epipolythiodioxopiperazine (ETP) class of toxins characterised by a disulphide bridged cyclic dipeptide. A putative cluster of 12 genes involved in gliotoxin biosynthesis has been identified in A. fumigatus by a comparative genomics approach based on homology to genes from the sirodesmin (another ETP) biosynthetic gene cluster of Leptosphaeria maculans. The physical limits of the cluster in A. fumigatus have been defined by bioinformatics and by identifying the genes that are co-regulated and whose timing of expression correlates with the production of gliotoxin in culture.  相似文献   

6.
7.
Five new diketopiperazines, prenylcyclotryprostatin B (1), 20-hydroxycyclotryprostatin B (2), 9-hydroxyfumitremorgin C (3), 6-hydroxytryprostatin B (4), and spirogliotoxin (5), were isolated from the marine-derived fungus Aspergillus fumigatus YK-7, along with nine known compounds, 6-14. Their structures were elucidated by spectroscopic methods, and their antiproliferative effects on human leukemic monocyte lymphoma U937 and human prostate cancer PC-3 cell lines were assessed in vitro. Compounds 10, 12, and 13 exhibited significant cell growth-inhibitory activities against U937 cell line, with the IC(50) values of 1.8, 0.2, and 0.5 μM, respectively.  相似文献   

8.
Two-component signaling systems are widespread in bacteria, but also found in fungi. In this study, we have characterized TcsC, the only Group III two-component sensor kinase of Aspergillus fumigatus. TcsC is required for growth under hyperosmotic stress, but dispensable for normal growth, sporulation and conidial viability. A characteristic feature of the ΔtcsC mutant is its resistance to certain fungicides, like fludioxonil. Both hyperosmotic stress and treatment with fludioxonil result in a TcsC-dependent phosphorylation of SakA, the final MAP kinase in the high osmolarity glycerol (HOG) pathway, confirming a role for TcsC in this signaling pathway. In wild type cells fludioxonil induces a TcsC-dependent swelling and a complete, but reversible block of growth and cytokinesis. Several types of stress, such as hypoxia, exposure to farnesol or elevated concentrations of certain divalent cations, trigger a differentiation in A. fumigatus toward a "fluffy" growth phenotype resulting in white, dome-shaped colonies. The ΔtcsC mutant is clearly more susceptible to these morphogenetic changes suggesting that TcsC normally antagonizes this process. Although TcsC plays a role in the adaptation of A. fumigatus to hypoxia, it seems to be dispensable for virulence.  相似文献   

9.
The sequencing of Aspergillus genomes has revealed that the products of a large number of secondary metabolism pathways have not yet been identified. This is probably because many secondary metabolite gene clusters are not expressed under normal laboratory culture conditions. It is, therefore, important to discover conditions or regulatory factors that can induce the expression of these genes. We report that the deletion of sumO, the gene that encodes the small ubiquitin-like protein SUMO in A. nidulans, caused a dramatic increase in the production of the secondary metabolite asperthecin and a decrease in the synthesis of austinol/dehydroaustinol and sterigmatocystin. The overproduction of asperthecin in the sumO deletion mutant has allowed us, through a series of targeted deletions, to identify the genes required for asperthecin synthesis. The asperthecin biosynthesis genes are clustered and include genes encoding an iterative type I polyketide synthase, a hydrolase, and a monooxygenase. The identification of these genes allows us to propose a biosynthetic pathway for asperthecin.  相似文献   

10.
Microbes and other organisms smaller than one to a few millimeters in size are hypothesized to have global populations, in contrast to the geographically restricted ranges of larger organisms. However, fungi, which routinely have reproductive propagules no larger than 10 micrometers, challenge the generality of this hypothesis because recent studies have shown that globally distributed morphological species embrace two or more geographically restricted phylogenetic species. We used the concordance of gene genealogies to recognize phylogenetic species in the globally distributed opportunistic human pathogenic fungus, Aspergillus fumigatus. Based on DNA sequence data of five loci for each of 63 individuals collected from five continents, we have delineated two phylogenetic species in this single morphological species. Unlike all other fungi examined to date, both genetically isolated groups showed a global distribution with no evidence of a correlation between genotype and geographic location. Sexual reproduction has never been observed in A. fumigatus, but when the same data were used to explore the association of alleles at the five loci for one of the phylogenetic species, evidence was found to support recombination. The discovery of a cryptic species is medically relevant because different species are likely to differ in virulence or drug resistance. The discovery of a globally distributed A. fumigatus species clade highlights the need for ecological studies of the fungus to either document global dispersal or propose alternative mechanisms by which it persists as single, global phylogenetic population.  相似文献   

11.
Ergot alkaloids are mycotoxins that interact with several monoamine receptors, negatively affecting cardiovascular, nervous, reproductive, and immune systems of exposed humans and animals. Aspergillus fumigatus, a common airborne fungus and opportunistic human pathogen, can produce ergot alkaloids in broth culture. The objectives of this study were to determine if A. fumigatus accumulates ergot alkaloids in a respirable form in or on its conidia, to quantify ergot alkaloids associated with conidia produced on several different substrates, and to measure relevant physical properties of the conidia. We found at least four ergot alkaloids, fumigaclavine C, festuclavine, fumigaclavine A, and fumigaclavine B (in order of abundance), associated with conidia of A. fumigatus. Under environmentally relevant conditions, the total mass of ergot alkaloids often constituted >1% of the mass of the conidium. Ergot alkaloids were extracted from conidia produced on all media tested, and the greatest quantities were observed when the fungus was cultured on latex paint or cultured maize seedlings. The values for physical properties of conidia likely to affect their respirability (i.e., diameter, mass, and specific gravity) were significantly lower for A. fumigatus than for Aspergillus nidulans, Aspergillus niger, and Stachybotrys chartarum. The demonstration of relatively high concentrations of ergot alkaloids associated with conidia of A. fumigatus presents opportunities for investigations of potential contributions of the toxins to adverse health effects associated with the fungus and to aspects of the biology of the fungus that contribute to its success.  相似文献   

12.
Aspergillus fumigatus is an opportunistic pathogenic fungus which causes fatal invasive aspergillosis among immunocompromised patients. To obtain a better understanding of the key elements involved in A. fumigatus virulence and to identify possible drug targets, it is necessary to be able to generate gene-deletion strains. Unfortunately, the molecular techniques available do not include a rapid method to disrupt and identify essential genes. RNA interference, a process in which the presence of double-stranded RNA homologous to a gene of interest results in specific degradation of the corresponding message, has been successfully tested on A. fumigatus. We have shown that expression of double stranded RNA corresponding to portions of the ALB1/PKSP and FKS1 genes results in reduced mRNA levels for those genes, with phenotypic consequences similar to that of gene disruption. The two genes could also be subjected to simultaneous interference through expression of chimeric double-stranded RNA. Use of RNA interference in Aspergillus will allow easier examination of the phenotypic consequences of reducing expression of a gene of interest, especially for essential genes.  相似文献   

13.
Abstract The rpmF-plsX-fabH gene cluster of Rhodobacter capsulatus homologous to that of Escherichia coli was identified. rpmF encodes ribosomal protein L32, plsX plays an undefined role in membrane lipid synthesis, and fabH encodes β-ketoacyl-acyl carrier protein synthase III. The R. capsulatus plsX gene complemented a defect in an E. coli strain with the plsX50 mutation. Overproduction of the fabH gene product of R. capsulatus in E. coli resulted in dramatically increased β-ketoacyl-acyl carrier protein synthase III activity. These results indicate that plsX and fabH apparently function the same in R. capsulatus as in E. coli .  相似文献   

14.
The phospholipase B family (PLB) are enzymes sharing phospholipase (PL), lysophospholipase (LPL) and lysophospholipase-transacylase (LPTA) activities. They have been shown to be important virulence factors in several human fungal pathogens including Candida albicans and Cryptococcus neoformans. Aspergillus fumigatus, a human opportunistic fungal pathogen leading to a high rate of mortality in immunosuppressed patients is known to possess an extracellular phospholipase B activity. In this paper, we report the molecular characterisation of three PLB genes from A. fumigatus (afplb) using degenerate primers in PCR amplification and data from the A. fumigatus genome project. They are expressed at 37 degrees C, and two of them (afplb1 and afplb3) are induced by lecithin. They encode proteins of 633, 588 and 630 amino acids, respectively, presenting together a T-Coffee score of 81. They also possess the amino acid triad responsible for enzymatic activity in the mammalian cytosolic PLA2 and other fungal PLBs. AfPLB1 and afPLB3 are secreted with a cleaved signal peptide. The complete cDNA sequences were obtained by RACE-PCR for the two secreted afPLBs and probably account for the extracellular phospholipase activity previously reported in the culture media of A. fumigatus.  相似文献   

15.
16.
17.
18.
Cytochalasins are a group of fungal secondary metabolites with diverse structures and bioactivities, including cytochalasin E produced by Aspergillus clavatus, which is a potent anti-angiogenic agent. Here, we report the identification and characterization of the cytochalasin gene cluster from A. clavatus NRRL 1. As a producer of cytochalasin E and K, the genome of A. clavatus was analyzed and the ∼30 kb ccs gene cluster was identified based on the presence of a polyketide synthase–nonribosomal peptide synthetases (PKS–NRPS) and a putative Baeyer–Villiger monooxygenase (BVMO). Deletion of the central PKS–NRPS gene, ccsA, abolished the production of cytochalasin E and K, confirming the association between the natural products and the gene cluster. Based on bioinformatic analysis, a putative biosynthetic pathway is proposed. Furthermore, overexpression of the pathway specific regulator ccsR elevated the titer of cytochalasin E from 25 mg/L to 175 mg/L. Our results not only shed light on the biosynthesis of cytochalasins, but also provided genetic tools for increasing and engineering the production.  相似文献   

19.
Aspergillus fumigatus grows optimally from 37 to 42 degrees C but can grow at temperatures up to 55 degrees C. To study the genetic basis of thermotolerance and its role in virulence of A. fumigatus, temperature sensitive mutants were isolated. One of the mutants that grew at 42 degrees C but not at 48 degrees C was complemented and the gene, THTA, was identified. Deletion of THTA showed the same temperature sensitivity as the original mutant. THTA encodes a putative protein of 141 kDa with unknown function and the HA-tagged ThtAp accumulated to similar levels in cultures grown at either 37 or 48 degrees C. Southern blot analysis and database searches revealed the presence of THTA-related sequences in several other ascomycetous fungi. No difference in virulence was observed between the deltathtA and wild-type strains. Thus, THTA is essential for growth of A. fumigatus at high temperatures but does not contribute to the pathogenicity of the species.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号