首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
An improved mutant was isolated from the cellulolytic fungus Stachybotrys sp. after nitrous acid mutagenesis. It was fed-batch cultivated on cellulose and its extracellular cellulases (mainly the endoglucanases and β-glucosidases) were analyzed. One β-glucosidase was purified to homogeneity after two steps, MonoQ and gel filtration and shown to be a dimeric protein. The molecular weight of each monomer is 85 kDa. Besides its aryl β-glucosidase activity towards salicin, methyl-umbellypheryl-β-d-glucoside (MUG) and p-nitrophenyl-β-d-glucoside (pNPG), it showed a true β-glucosidase activity since it splits cellobiose into two glucose monomers. The Vmax and the Km kinetics parameters with pNPG as substrate were 78 U/mg and 0.27 mM, respectively. The enzyme shows more affinity to pNPG than cellobiose and salicin whose apparent values of Km were, respectively, 2.22 and 37.14 mM. This enzyme exhibits its optimal activity at pH 5 and at 50 °C. Interestingly, this activity is not affected by denaturing gel conditions (SDS and β-mercaptoethanol) as long as it is not pre-heated. The N-terminal sequence of the purified enzyme showed a significant homology with the family 1 β-glucosidases of Trichoderma reesei and Humicola isolens even though these two enzymes are much smaller in size.  相似文献   

2.
3.
4.
A flocculent Saccharomyces cerevisiae strain secreting Aspergillus niger beta-galactosidase activity was constructed by transforming S. cerevisiae NCYC869-A3 strain with plasmid pVK1.1 harboring the A. niger beta-galactosidase gene, lacA, under the control of the ADH1 promoter and terminator. Compared to other recombinant S. cerevisiae strains, this recombinant yeast has higher levels of extracellular beta-galactosidase activity. In shake-flask cultures, the beta-galactosidase activity detected in the supernatant was 20 times higher than that obtained with previously constructed strains (Domingues et al. 2000a). In bioreactor culture, with cheese-whey permeate as substrate, a yield of 878.0 nkat/gsubstrate was obtained. The recombinant strain is an attractive alternative to other fungal beta-galactosidase production systems as the enzyme is produced in a rather pure form. Moreover, the use of flocculating yeast cells allows for enzyme production with high productivity in continuous fermentation systems with facilitated downstream processing.  相似文献   

5.
An extracellular α-glucosidase produced by Aspergillus niveus was purified using DEAE-Fractogel ion-exchange chromatography and Sephacryl S-200 gel filtration. The purified protein migrated as a single band in 5% PAGE and 10% SDS–PAGE. The enzyme presented 29% of glycosylation, an isoelectric point of 6.8 and a molecular weight of 56 and 52 kDa as estimated by SDS-PAGE and Bio-Sil-Sec-400 gel filtration column, respectively. The enzyme showed typical α-glucosidase activity, hydrolyzing p-nitrophenyl α-d-glucopyranoside and presented an optimum temperature and pH of 65°C and 6.0, respectively. In the absence of substrate the purified α-glucosidase was stable for 60 min at 60°C, presenting t 50 of 90 min at 65°C. Hydrolysis of polysaccharide substrates by α-glucosidase decreased in the order of glycogen, amylose, starch and amylopectin. Among malto-oligosaccharides the enzyme preferentially hydrolyzed malto-oligosaccharide (G10), maltopentaose, maltotetraose, maltotriose and maltose. Isomaltose, trehalose and β-ciclodextrin were poor substrates, and sucrose and α-ciclodextrin were not hydrolyzed. After 2 h incubation, the products of starch hydrolysis measured by HPLC and thin layer chromatography showed only glucose. Mass spectrometry of tryptic peptides revealed peptide sequences similar to glucan 1,4-alpha-glucosidases from Aspergillus fumigatus, and Hypocrea jecorina. Analysis of the circular dichroism spectrum predicted an α-helical content of 31% and a β-sheet content of 16%, which is in agreement with values derived from analysis of the crystal structure of the H. jecorina enzyme.  相似文献   

6.
A putative endo-1,4-β-d-xylanohydrolase gene xyl10 from Aspergillus niger, encoding a 308-residue mature xylanase belonging to glycosyl hydrolase family 10, was constitutively expressed in Pichia pastoris. The recombinant Xyl10 exhibited optimal activity at pH 5.0 and 60 °C with more than 50 % of the maximum activity from 40 to 70 °C. It retained more than 90 % of the original activity after incubation at 60 °C (pH 5.0) for 30 min and more than 74 % after incubation at pH 3.0–13.0 for 2 h (25 °C). The specific activity, K m and V max values for purified Xyl10 were, respectively, 3.2 × 103 U mg?1, 3.6 mg ml?1 and 5.4 × 103 μmol min?1 mg?1 towards beechwood xylan. The enzyme degraded xylan to a series of xylooligosaccharides and xylose. The recombinant enzyme with these properties has the potential for various industrial applications.  相似文献   

7.
The filamentous fungus Aspergillus terreus secretes both invertase and β-glucosidase when grown under submerged fermentation containing rye flour as the carbon source. The aim of this study was to characterize the co-purified fraction, especially the invertase activity. An invertase and a β-glucosidase were co-purified by two chromatographic steps, and the isolated enzymatic fraction was 139-fold enriched in invertase activity. SDS-PAGE analysis of the co-purified enzymes suggests that the protein fraction with invertase activity was heterodimeric, with subunits of 47 and 27 kDa. Maximal invertase activity, which was determined by response surface methodology, occurred in pH and temperature ranges of 4.0–6.0 and 55–65 °C, respectively. The invertase in co-purified enzymes was stable for 1 h at pH 3.0–10.0 and maintained full activity for up to 1 h at 55 °C when diluted in water. Invertase activity was stimulated by 1 mM concentrations of Mn2+ (161 %), Co2+ (68 %) and Mg2+ (61 %) and was inhibited by Al3+, Ag+, Fe2+ and Fe3+. In addition to sucrose, the co-purified enzymes hydrolyzed cellobiose, inulin and raffinose, and the apparent affinities for sucrose and cellobiose were quite similar (KM = 22 mM). However, in the presence of Mn2+, the apparent affinity and Vmax for sucrose hydrolysis increased approximately 2- and 2.9-fold, respectively, while for cellobiose, a 2.6-fold increase in Vmax was observed, but the apparent affinity decreased 5.5-fold. Thus, it is possible to propose an application of this multifunctional extract containing both invertase and β-glucosidase to degrade plant biomass, thus increasing the concentration of monosaccharides obtained from sucrose and cellobiose.  相似文献   

8.
9.
One way of improving heterologous protein production is to use high cell density systems, one of the most attractive being the flocculating yeast production system. Also, lactose is available in large amounts as a waste product from cheese production processes. The construction of flocculent and non-flocculent brewer's yeast strains secreting β-galactosidase and growing on lactose is presented. A plasmid was constructed coding for an extracellular β-galactosidase of Aspergillus niger and having, as selective marker, the yeast CUP1 gene conferring resistance to copper. This selective marker allows for the transformation of wild-type yeasts. This work represents an important step towards the study of heterologous protein secretion by flocculent cells. Received: 13 January 2000 / Accepted: 23 January 2000  相似文献   

10.
11.
To evaluate the effect of salinity on the catalyzing ability of β-glucosidase in the marine fungus Aspergillus niger, the thermodynamic parameters of the β-glucosidase were investigated at different salinities. At the optimum salinity of 6% NaCl (w/v) solution, the optimum temperature and pH of the β-glucosidase activity was 66 °C and 5.0, respectively. Under these conditions, the β-glucosidase activity increased 1.46 fold. The half-life of denaturation in 6% NaCl (w/v) solution was approximately twice as long as that in NaCl free solution. The Gibb's free energy for denaturation, ΔG, was 2 kJ/mol higher in 6% NaCl (w/v) solution than in NaCl free solution. The melting point (68.51 °C) in 6% NaCl (w/v) solution was 1.71 °C higher than that (66.80 °C) in NaCl free solution. Similarly, the activity and thermostability of the pure β-glucosidase increased remarkably at high salinity. The thermostable β-glucosidase, of which the activity and the thermostability are remarkably enhanced at high salinity, is valuable for industrial hydrolyzation of cellulose in high salinity environments.  相似文献   

12.
Wu M  Tang C  Li J  Zhang H  Guo J 《Carbohydrate research》2011,(14):2149-2155
A parent strain Aspergillus niger LW-1 was mutated by the compound mutagenesis of vacuum microwave (VMW) and ethyl methane sulfonate (EMS). A mutant strain, designated as A. niger E-30, with high- and stable-yield β-mannanase was obtained through a series of screening. The β-mannanase activity of the mutant strain E-30, cultivated on the basic fermentation medium at 32 °C for 96 h, reached 36,675 U/g dried koji, being 1.98-fold higher than that (18,501 U/g dried koji) of the parent strain LW-1. The purified E-30 β-mannanase, a glycoprotein with a carbohydrate content of 19.6%, had an apparent molecular weight of about 42.0 kDa by SDS–PAGE. Its optimal pH and temperature were 3.5 and 65 °C, respectively. It was highly stable at a pH range of 3.5–7.0 and at a temperature of 60 °C and below. The kinetic parameters Km and Vmax, toward locust bean gum and at pH 4.8 and 50 °C, were 3.68 mg/mL and 1067.5 U/mg, respectively. The β-mannanase activity was not significantly affected by an array of metal ions and EDTA, but strongly inhibited by Ag+ and Hg2+. In addition, the hydrolytic conditions of konjak glucomannan using the purified E-30 β-mannanase were optimized as follows: konjak gum solution 240 g/L (dissolved in deionized water), hydrolytic temperature 50 °C, β-mannanase dosage 120 U/g konjak gum, and hydrolytic time 8 h.  相似文献   

13.
Aspergillus niger IFO 8541 was found to be an efficient biocatalyst for the biotransformation of -ionone into hydroxy and oxo derivatives. The reaction had to be carried out with an inoculum made of about 4 × 107 fresh spores/l and with a preliminary growth period giving at least 3 g/l biomass. The fungus developed in the form of pellets when cultivated as free mycelium; entrapment of the microorganism in calcium alginate beads was an efficient way to mimic this feature in an aerated, stirred bioreactor. The biotransformation was carried out using a fed-batch mode of operation involving sequential precursor addition. -Ionone stopped the fungal growth and was converted into metabolites only when the carbon source remained present in the medium; it was fully oxidized after sucrose exhaustion. These conditions allowed recovery of about 2.5 g/l aroma compounds after 230 h cultivation with a molar yield close to 100%.  相似文献   

14.
Industrial concentrates from Aspergillus niger culture filtrates were fractionated by ion-exchange and adsorption chromatography. Several other types of hydrolases were completely removed. Eight partially purified components were obtained. Using specific activity as an estimate of purification, one aryl-β-glucosidase was purified 35-fold. Another component showed 147-fold purification using a viscosimetric assay with carboxymethylcellulose as substrate. The aryl-β-glucosidase was distinctly more thermolabile than the carboxymethylcellulase.  相似文献   

15.
BackgroundMannoside phosphorylases are frequently found in bacteria and play an important role in carbohydrate processing. These enzymes catalyze the reversible conversion of β-1,2- or β-1,4-mannosides to mannose and mannose-1-phosphate in the presence of inorganic phosphate.MethodsThe biochemical parameters of this recombinantly expressed novel mannose phosphorylase were obtained. Furthermore purified reaction products were subjected to ESI- and MALDI-TOF mass spectrometry and detailed NMR analysis to verify this novel type of β-1,3-mannose linkage.ResultsWe describe the first example of a phosphorylase specifically targeting β-1,3-mannoside linkages. In addition to mannose, this phosphorylase originating from the bacterium Zobellia galactanivorans could add β-1,3-linked mannose to various other monosaccharides and anomerically modified 5-bromo-4-chloro-3-indolyl-glycosides (X-sugars).ConclusionsAn unique bacterial phosphorylase specifically targeting β-1,3-mannoside linkages was discovered.General significanceFunctional extension of glycoside hydrolase family 130.  相似文献   

16.
This study aimed to develop an economically viable enzyme for the optimal production of steviol (S) from stevioside (ST). Of 9 commercially available glycosidases tested, S-producing β-glucosidase (SPGase) was selected and purified 74-fold from Penicillium decumbens naringinase by a three-step column chromatography procedure. The 121-kDa protein was stable at pH 2.3–6.0 and at 40–60 °C. Hydrolysis of ST by SPGase produced rubusoside (R), steviolbioside (SteB), steviol mono-glucoside (SMG), and S, as determined by HPLC, HPLC-MS, and 1H- and 13C-nuclear magnetic resonance. SPGase showed higher activity toward steviol mono-glucosyl ester, ST, R, and SMG than other β-linked glucobioses. The optimal conditions for S production (30 mM, 64 % yield) were 47 mM ST and 43 μl of SPGase at pH 4.0 and 55 °C. This is the first report detailing the production of S from ST hydrolysis by a novel β-glucosidase, which may be useful for the pharmaceutical and agricultural areas.  相似文献   

17.
A β-xylosidase (β-d-xyloside xylohydrolase, EC 3.2.1.37) and β-glucosidase (β-d-glucoside glucohydrolase, EC 3.2.1.21) extracted from a wheat bran culture of Aspergillus fumigatus were purified up to 90-fold and 131-fold, respectively, by ammonium sulfate precipitation, gel filtration, ion exchange chromatography, and hydroxylapatite chromatography. Molecular weights of the β-xylosidase and β-glucosidase were 360,000 and 380,000, respectively, each consisting of four identical subunits. The isoelectric points of β-xylosidase and β-glucosidase were at pH 5.4 and 4.5, respectively. The optimum temperature for the β-xylosidase was 75°C, being stable up to 65°C for 20 min and for the β-glucosidase was 65°C, being stable up to 60°C for 20 min. The optimum pH for both enzymes was about 4.5, being stable between 2 and 8 at 50°C for 20 min. Both enzymes were inhibited by Fe3+, Cu2+, Hg2+, SDS, and p-chloromercuribenzoate. The apparent Michaelis constants of the β-xylosidase were 2.0 and 23.8 mM for p-nitrophenyl-β-xyloside and xylobiose, respectively, and those of the β-glucosidase were 1.4, 11.4, and 24.8 mM for p-nitrophenyl-β-glucoside, gentiobiose, and cellobiose, respectively. To produce xylose from crude xylooligosac-charides prepared by steam-explosion of cotton seed waste (DP ≤10, 53%, total sugars = 150 g/ liter), the crude enzyme from A. fumigatus (β-xylosidase activity = 14.7 units/ml, xylanase activity = 20 units/ml) could hydrolyze the substrate at 55°C and pH 4.5 resulting in almost complete conversion to xylose (160 g/liter).  相似文献   

18.
Eight highly purified β-glucosidases from Aspergillus niger were compared enzymatically, chemically, and immunologically. Ultraviolet spectra, pH-activity responses, substrate specificities, thermal stabilities, kinetic changes in the viscosity of substrate, Michaelis-Menten parameters, adsorption characteristics on cellulose, and exclusion characteristics on dextran gels were determined. The data indicate that the several components represent distinctly different enzymes in terms of mode of attack on substrate. The concept of partial denaturation of a single enzyme precursor is unable to explain the heterogeneity observed. Comparison of the effect of pH on hydrolysis of carboxymethylcellulose and cellohexaose suggests that a negative charge center on the substrate has a pronounced inhibitory effect on the enzymes.  相似文献   

19.
The newly discovered fungal species Aspergillus saccharolyticus was found to produce a culture broth rich in β-glucosidase activity. In this present work, the main β-glucosidase of A.?saccharolyticus responsible for the efficient hydrolytic activity was identified, isolated, and characterized. Ion exchange chromatography was used to fractionate the culture broth, yielding fractions with high β-glucosidase activity and only 1 visible band on an SDS-PAGE gel. Mass spectrometry analysis of this band gave peptide matches to β-glucosidases from aspergilli. Through a polymerase chain reaction approach using degenerate primers and genome walking, a 2919 bp sequence encoding the 860 amino acid BGL1 polypeptide was determined. BGL1 of A.?saccharolyticus has 91% and 82% identity with BGL1 from Aspergillus aculeatus and BGL1 from Aspergillus niger , respectively, both belonging to Glycoside Hydrolase family 3. Homology modeling studies suggested β-glucosidase activity with preserved retaining mechanism and a wider catalytic pocket compared with other β-glucosidases. The bgl1 gene was heterologously expressed in Trichoderma reesei QM6a, purified, and characterized by enzyme kinetics studies. The enzyme can hydrolyze cellobiose, p-nitrophenyl-β-d-glucoside, and cellodextrins. The enzyme showed good thermostability, was stable at 50?°C, and at 60?°C it had a half-life of approximately 6?h.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号