首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
TCR signals drive thymocyte development, but it remains controversial what impact, if any, the intensity of those signals have on T cell differentiation in the thymus. In this study, we assess the impact of CD8 coreceptor signal strength on positive selection and CD4/CD8 lineage choice using novel gene knockin mice in which the endogenous CD8alpha gene has been re-engineered to encode the stronger signaling cytoplasmic tail of CD4, with the re-engineered CD8alpha gene referred to as CD8.4. We found that stronger signaling CD8.4 coreceptors specifically improved the efficiency of CD8-dependent positive selection and quantitatively increased the number of MHC class I (MHC-I)-specific thymocytes signaled to differentiate into CD8+ T cells, even for thymocytes expressing a single, transgenic TCR. Importantly, however, stronger signaling CD8.4 coreceptors did not alter the CD8 lineage choice of any MHC-I-specific thymocytes, even MHC-I-specific thymocytes expressing the high-affinity F5 transgenic TCR. This study documents in a physiologic in vivo model that coreceptor signal strength alters TCR-signaling thresholds for positive selection and so is a major determinant of the CD4:CD8 ratio, but it does not influence CD4/CD8 lineage choice.  相似文献   

2.
3.
The mechanism by which CD4/CD8 lineage choice is coordinated with TCR specificity during positive selection remains an unresolved problem in immunology. The stochastic/selection model proposes that CD4/CD8 lineage choice in TCR-signaled CD4(+)CD8(+) thymocytes occurs randomly and therefore is highly error-prone. This perspective is strongly supported by "coreceptor rescue" experiments in which transgenic CD4 coreceptors were ectopically expressed on thymocytes throughout their development and caused significant numbers of cells bearing MHC-II-specific TCR to differentiate into mature, CD8 lineage T cells. However, it is not known if forced coreceptor expression actually rescued positively selected thymocytes making an incorrect lineage choice or if it influenced developing thymocytes into making an incorrect lineage choice. We have now reassessed coreceptor rescue and the concept that lineage choice is highly error-prone with a novel CD4 transgene (referred to as E8(I)-CD4) that targets expression of transgenic CD4 coreceptors specifically to thymocytes that have already undergone positive selection and adopted a CD8 lineage fate. Unlike previous CD4 transgenes, the E8(I)-CD4 transgene has no effect on early thymocyte development and cannot itself influence CD4/CD8 lineage choice. We report that the E8(I)-CD4 transgene did in fact induce expression of functional CD4 coreceptor proteins on newly arising CD8 lineage thymocytes precisely at the point in thymic development that transgenic CD4 coreceptors would putatively rescue MHC-II-specific thymocytes that incorrectly adopted the CD8 lineage. However, the E8(I)-CD4 transgene did not reveal any MHC-II-selected thymocytes that adopted the CD8 lineage fate. These results demonstrate that CD4/CD8 lineage choice is neither error-prone nor stochastic.  相似文献   

4.
Specificity of T cell receptor (TCR) and its interaction with coreceptor molecules play decisive role in successful passing of T lymphocytes via check-points during their development and finally determine the efficiency of adaptive immunity. Genes encoding alpha- and beta-chains of TCR hybridoma 1D1 have been cloned. The hybridoma 1D1 was established by the fusion of BWZ.36CD8alpha cell line with CD8+ memory cells specific to MHC class I H-2Kb molecule. Exploiting retroviral transduction of thymoma 4G4 cells with TCR genes and coreceptors CD4 and CD8, variants of this cell line expressing on the surface CD3/TCR complex and coreceptors, separately or simultaneously have been obtained. The main function of CD4 is stabilization of interaction between TCR and MHC class II molecule. Nevertheless, we have found that CD4 could successfully participate in the activation of transfectants via TCR specific to MHC class I molecule H-2Kb. Moreover, coreceptor CD4 dominates CDS, because the response of transfectants CD4+CD8+ is blocked by antibodies to CD4 and MHC Class II Ab molecule but not to coreceptor CD8. The response of CD4+ cells was not due to cross-reaction between TCR 1D1 with MHC class II molecules, because transfectants do not respond to splenocytes of H-2b knockouted mice with impaired assembly of TCR/beta2-microglobulin/peptide complexes resulting in their absence on the cell surphace. The effect of domination was not due to sequestration of kinase p56lck, because truncated CD4 with the loss of binding motif for p56lck remained functional in 4G4 cells. Results obtained can explain the number of features of intrathymic selection and represent experimental basis for development of new methods of cancer gene therapy.  相似文献   

5.
During thymic development, T cell progenitors undergo positive selection based on the ability of their T cell Ag receptors (TCR) to bind MHC ligands on thymic epithelial cells. Positive selection determines T cell fate, in that thymocytes whose TCR bind MHC class I (MHC-I) develop as CD8-lineage T cells, whereas those that bind MHC class II (MHC-II) develop as CD4 T cells. Positive selection also induces migration from the cortex to the medulla driven by the chemokine receptor CCR7. In this study, we show that CCR7 is up-regulated in a larger proportion of CD4(+)CD8(+) thymocytes undergoing positive selection on MHC-I compared with MHC-II. Mice bearing a mutation of Th-POK, a key CD4/CD8-lineage regulator, display increased expression of CCR7 among MHC-II-specific CD4(+)CD8(+) thymocytes. In addition, overexpression of CCR7 results in increased development of CD8 T cells bearing MHC-II-specific TCR. These findings suggest that the timing of CCR7 expression relative to coreceptor down-regulation is regulated by lineage commitment signals.  相似文献   

6.
Immature thymocytes, which coexpress CD4 and CD8, give rise to mature CD4+CD8- and CD4-CD8+ T cells. Only those T cells that recognize self-MHC are selected to mature, a process known as positive selection. The specificity of the T cell antigen receptor (TCR) for class I or class II MHC influences the commitment to a CD4 or CD8 lineage. This may occur by a directed mechanism or by stochastic commitment followed by a selection step that allows only CD8+, class I-specific and CD4+, class II-specific cells to survive. We have generated a mouse line expressing a CD8 transgene under the control of the T cell-specific CD2 regulatory sequences. Although constitutive CD8 expression does not affect thymic selection of CD4+ cells, selection of a class I-specific TCR in the CD8 subset is substantially improved. This outcome is consistent with a model for positive selection in which selection occurs at a developmental stage in which both CD4 and CD8 are expressed, and positive selection by class I MHC generates an instructive signal that directs differentiation to a CD8 lineage.  相似文献   

7.
The development of T cells results in a concordance between the specificity of the TCR for MHC class I and class II molecules and the expression of CD8 and CD4 coreceptors. Based on analogy to simple metazoan models of organ development and lineage commitment, we sought to determine whether extracellular signal-related kinase (Erk) mitogen-activated protein (MAP) kinase pathway signaling acts as an inductive signal for the CD4 lineage. Here, we show that, by altering the intracellular signaling involving the Erk/MAP kinase pathway, T cells with specificity for MHC class I can be diverted to express CD4, and, conversely, T cells with specificity for MHC class II can be diverted to express CD8. Furthermore, we find that activation of the src-family tyrosine kinase, p56lck is an upstream mediator of lineage commitment. These results suggest a simple mechanism for lineage commitment in T cell development.  相似文献   

8.
In this paper, we address the question whether CD4 and MHC class II expression are necessary for the development of the T helper lineage during thymocyte maturation and for activation-induced Th2 responses. To bypass the CD4-MHC class II interaction requirements for positive selection and activation, we used mice that are doubly transgenic for CD8 and for the MHC class I-restricted TCR F5. This transgene combination leads to MHC class I-dependent maturation of CD4 lineage cells. Upon activation, these CD4 lineage T cells secrete IL-4 and give help to B cells but show no cytotoxic activity. Remarkably, neither MHC class II nor CD4 expression are necessary for the generation and helper functions of these cells. This suggests that under normal conditions, coreceptor-MHC interactions are necessary to ensure the canonical combinations of coreceptor and function in developing thymocytes, but that they do not determine functional commitment. Our results also imply that expression of the CD4 gene does not influence, but is merely associated with the decision to establish the T helper program. In addition, we show that activation through TCR-MHC class I interactions can induce Th2 responses independently of CD4 and MHC class II expression.  相似文献   

9.
T cells bearing the alpha beta T cell receptor (TCR) can be divided into CD4+8- and CD4-8+ subsets which develop in the thymus from CD4+8+ precursors. The commitment to the CD4 and CD8 lineage depends on the binding of the alpha beta TCR to thymic major histocompatibility complex (MHC) coded class II and class I molecules, respectively. In an instructive model of lineage commitment, the binding of the alpha beta TCR, for instance to class I MHC molecules, would generate a specific signal instructing the CD4+8+ precursors to switch off the expression of the CD4 gene. In a selective model, the initial commitment, i.e. switching off the expression of either the CD4 or the CD8 gene would be a stochastic event which is then followed by a selective step rescuing only CD4+ class II and CD8+ class I specific T cells while CD4+ class I and CD8+ class II specific cells would have a very short lifespan. The selective model predicts that a CD8 transgene which is expressed in all immature and mature T cells should rescue CD4+ class I MHC specific T cells from cell death. We have performed experiments in CD8 transgenic mice which fail to support a selective model and we present data which show that the binding of the alpha beta TCR to thymic class I MHC molecules results in up-regulation of the TCR in the CD4+8+ population. Therefore, these experiments are consistent with an instructive model of lineage commitment.  相似文献   

10.
T lymphocytes recognize peptides presented in the context of major histocompatibility complex (MHC) molecules on the surface of antigen presenting cells. Recognition specificity is determined by the alphabeta T cell receptor (TCR). The T lymphocyte surface glycoproteins CD8 and CD4 enhance T cell antigen recognition by binding to MHC class I and class II molecules, respectively. Biophysical measurements have determined that equilibrium binding of the TCR with natural agonist peptide-MHC (pMHC) complexes occurs with KD values of 1-50 microm. The pMHCI/CD8 and pMHCII/CD4 interactions are significantly weaker than this (KD >100 microm), and the relative roles of TCR/pMHC and pMHC/coreceptor affinity in T cell activation remain controversial. Here, we engineer mutations in the MHCI heavy chain and beta2-microglobulin that further reduce or abolish the pMHCI/CD8 interaction to probe the significance of pMHC/coreceptor affinity in T cell activation. We demonstrate that the pMHCI/CD8 coreceptor interaction retains the vast majority of its biological activity at affinities that are reduced by over 15-fold (KD > 2 mm). In contrast to previous reports, we observe that the weak interaction between HLA A68 and CD8, which falls within this spectrum of reduced affinities, retains substantial functional activity. These findings are discussed in the context of current concepts of coreceptor dependence and the mechanism by which TCR coreceptors facilitate T cell activation.  相似文献   

11.
p56(lck) is a protein tyrosine kinase expressed throughout T cell development. It associates noncovalently with the cytoplasmic domains of the CD4 and CD8 coreceptor molecules and has been implicated in TCR signaling in mature T cells. Its role in early thymocyte differentiation has been demonstrated in vivo, both by targeted gene disruption and by transgene expression. Previously, we showed that expression of a dominant-negative form of p56(lck) in double-positive thymocytes inhibits positive selection. We now demonstrate that expression of constitutively activated p56(lck) (p56(lck)F505) accelerates the transition from the double-positive to the single-positive stage. Importantly, p56(lck)F505 drives survival and lineage commitment of thymocytes in the absence of TCR engagement by appropriate MHC molecules. These results indicate that activation of p56(lck) constitutes an early step in conveying maturational signals after TCR ligation by a positively selecting ligand. Our study provides direct in vivo evidence for the role of p56(lck) in regulating TCR signaling.  相似文献   

12.
13.
Peptide/MHC complexes capable of inducing positive selection in mouse fetal thymic organ cultures fail to do so in suspension culture. Furthermore, this type of culture does not promote initial stages of differentiation, such as coreceptor down-modulation, unless peptides used for stimulation have (at least) weak agonist activity. We show in this study that signals provided in suspension culture by nonagonist peptide/MHC complexes on the surface of macrophages, even though apparently silent, are sufficient to promote complete phenotypic differentiation when CD4+CD8+ thymocytes are subsequently placed in a proper anatomical setting. Furthermore, the synergistic actions of suboptimal concentrations of phorbol esters and nonagonist peptide/MHC complexes can make the initial stages of positive selection visible, without converting maturation into negative selection. Thus, the correlation between efficiency of positive selection and the degree of coreceptor down-modulation on CD4+CD8+ thymocytes is not linear. Furthermore, these results suggest that the unique role of thymic stromal cells in positive selection is related not to presentation of self-peptide/MHC complexes, but most likely to another ligand.  相似文献   

14.
During thymic development the recognition of MHC proteins by developing thymocytes influences their lineage commitment, such that recognition of class I MHC leads to CD8 T cell development, whereas recognition of class II MHC leads to CD4 T cell development. The coreceptors CD8 and CD4 may contribute to these different outcomes through interactions with class I and class II MHC, respectively, and through interactions with the tyrosine kinase p56lck (Lck) via their cytoplasmic domains. In this paper we provide evidence that an alternatively spliced form of CD8 that cannot interact with Lck (CD8 alpha') can influence the CD4 vs CD8 lineage decision. Constitutive expression of a CD8 minigene transgene that encodes both CD8 alpha and CD8 alpha' restores CD8 T cell development in CD8 alpha mutant mice, but fails to permit the development of mismatched CD4 T cells bearing class I-specific TCRs. These results indicate that CD8 alpha' favors the development of CD8-lineage T cells, perhaps by reducing Lck activity upon class I MHC recognition in the thymus.  相似文献   

15.
Genetic variation in the major histocompatibility complex (MHC) affects CD4∶CD8 lineage commitment and MHC expression. However, the contribution of specific genes in this gene-dense region has not yet been resolved. Nor has it been established whether the same genes regulate MHC expression and T cell selection. Here, we assessed the impact of natural genetic variation on MHC expression and CD4∶CD8 lineage commitment using two genetic models in the rat. First, we mapped Quantitative Trait Loci (QTLs) associated with variation in MHC class I and II protein expression and the CD4∶CD8 T cell ratio in outbred Heterogeneous Stock rats. We identified 10 QTLs across the genome and found that QTLs for the individual traits colocalized within a region spanning the MHC. To identify the genes underlying these overlapping QTLs, we generated a large panel of MHC-recombinant congenic strains, and refined the QTLs to two adjacent intervals of ∼0.25 Mb in the MHC-I and II regions, respectively. An interaction between these intervals affected MHC class I expression as well as negative selection and lineage commitment of CD8 single-positive (SP) thymocytes. We mapped this effect to the transporter associated with antigen processing 2 (Tap2) in the MHC-II region and the classical MHC class I gene(s) (RT1-A) in the MHC-I region. This interaction was revealed by a recombination between RT1-A and Tap2, which occurred in 0.2% of the rats. Variants of Tap2 have previously been shown to influence the antigenicity of MHC class I molecules by altering the MHC class I ligandome. Our results show that a restricted peptide repertoire on MHC class I molecules leads to reduced negative selection of CD8SP cells. To our knowledge, this is the first study showing how a recombination between natural alleles of genes in the MHC influences lineage commitment of T cells.  相似文献   

16.
17.
In the thymus, phenotypically and functionally mature single positive cells are generated from immature CD4+8+ precursors by a process known as positive selection. Although this event is known to involve alphabetaTCR ligation by peptide/MHC complexes expressed on thymic stromal cells, it is clear that positive selection is a multistage process involving transition through an intermediate CD4+8+69+ phase as well as subsequent postselection phases. By analyzing the development of preselection CD4+8+69- and intermediate CD4+8+69+ thymocytes in the presence of MHC class I-deficient, MHC class II-deficient, and MHC double-deficient thymic stromal cells, we investigated the role of MHC molecules at three distinct points during positive selection. Although the initiation of positive selection is critically dependent upon MHC interactions, we find the that later stages of maturation, involving the differentiation of CD4+8- and CD4-8+ cells from CD4+8+69+ thymocytes, occur in the absence of MHC molecules. Moreover, an analysis of the postselection proliferation of newly generated CD4+8- and CD4-8+ thymocytes shows that this also occurs independently of MHC molecules. Thus, our data provide direct evidence that, although positive selection is a multistage process initiated by TCR-MHC interactions, continuation of this process and subsequent postselection events are independent of ongoing engagement of the TCR.  相似文献   

18.
In an effective immune response, CD8+ T cell recognition of virally derived Ag, bound to MHC class I, results in killing of infected cells. The CD8alphabeta heterodimer acts as a coreceptor with the TCR, to enhance sensitivity of the T cells to peptide/MHC class I, and is two orders of magnitude more efficient as a coreceptor than the CD8alphaalpha. To understand the important interaction between CD8alphabeta and MHC class I, we created a panel of CD8beta mutants and identified mutations in the CDR1, CDR2, and CDR3 loops that decreased binding to MHC class I tetramers as well as mutations that enhanced binding. We tested the coreceptor function of a subset of reducing and enhancing mutants using a T cell hybridoma and found similar reducing and enhancing effects. CD8beta-enhancing mutants could be useful for immunotherapy by transduction into T cells to enhance T cell responses against weak Ags such as those expressed by tumors. We also addressed the question of the orientation of CD8alphabeta with MHC class I using CD8alpha mutants expressed as a heterodimer with wild-type CD8alpha or CD8beta. The partial rescuing of binding with wild-type CD8beta compared with wild-type CD8alpha is consistent with models in which either the topology of CD8alphaalpha and CD8alphabeta binding to MHC class I is different or CD8alphabeta is capable of binding in both the T cell membrane proximal and distal positions.  相似文献   

19.
During their development, immature CD4CD8 double positive thymocytes become committed to either the CD4 or CD8 lineage. The final size of the peripheral CD4 and CD8 T cell compartments depends on thymic output and on the differential survival and proliferation of the respective T cell subsets in the periphery. Our results reveal that the development of the distinct peripheral CD4/CD8 T cell ratio between Lewis and Brown Norway rats originates in the thymus and, as shown by the use of radiation bone marrow chimeras, is determined by selection on radio-resistant stromal cells. Furthermore, this difference is strictly correlated with the MHC haplotype and is the result of a reduction in the absolute number of CD8 T cells in Brown Norway rats. These data suggest that the distinct CD4/CD8 T cell ratio between these two rat strains is the consequence of differential interactions of the TCR/CD8 coreceptor complex with the respective MHC class I haplotypes during selection in the thymus.  相似文献   

20.
Development of autoreactive CD4 T cells contributing to type 1 diabetes (T1D) in both humans and nonobese diabetic (NOD) mice is either promoted or dominantly inhibited by particular MHC class II variants. In addition, it is now clear that when co-expressed with other susceptibility genes, some common MHC class I variants aberrantly mediate autoreactive CD8 T cell responses also essential to T1D development. However, it was unknown whether the development of diabetogenic CD8 T cells could also be dominantly inhibited by particular MHC variants. We addressed this issue by crossing NOD mice transgenically expressing the TCR from the diabetogenic CD8 T cell clone AI4 with NOD stocks congenic for MHC haplotypes that dominantly inhibit T1D. High numbers of functional AI4 T cells only developed in controls homozygously expressing NOD-derived H2(g7) molecules. In contrast, heterozygous expression of some MHC haplotypes conferring T1D resistance anergized AI4 T cells through decreased TCR (H2(b)) or CD8 expression (H2(q)). Most interestingly, while AI4 T cells exert a class I-restricted effector function, H2(nb1) MHC class II molecules can contribute to their negative selection. These findings provide insights to how particular MHC class I and class II variants interactively regulate the development of diabetogenic T cells and the TCR promiscuity of such autoreactive effectors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号