首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Proteoglycans mediate malaria sporozoite targeting to the liver   总被引:9,自引:0,他引:9  
Malaria sporozoites are rapidly targeted to the liver where they pass through Kupffer cells and infect hepatocytes, their initial site of replication in the mammalian host. We show that sporozoites, as well as their major surface proteins, the CS protein and TRAP, recognize distinct cell type-specific surface proteoglycans from primary Kupffer cells, hepatocytes and stellate cells, but not from sinusoidal endothelia. Recombinant Plasmodium falciparum CS protein and TRAP bind to heparan sulphate on hepatocytes and both heparan and chondroitin sulphate proteoglycans on stellate cells. On Kupffer cells, CS protein predominantly recognizes chondroitin sulphate, whereas TRAP binding is glycosaminoglycan independent. Plasmodium berghei sporozoites attach to heparan sulphate on hepatocytes and stellate cells, whereas Kupffer cell recognition involves both chondroitin sulphate and heparan sulphate proteoglycans. CS protein also interacts with secreted proteoglycans from stellate cells, the major producers of extracellular matrix in the liver. In situ binding studies using frozen liver sections indicate that the majority of the CS protein binding sites are associated with these matrix proteoglycans. Our data suggest that sporozoites are first arrested in the sinusoid by binding to extracellular matrix proteoglycans and then recognize proteoglycans on the surface of Kupffer cells, which they use to traverse the sinusoidal cell barrier.  相似文献   

2.
Proteoglycans were isolated from extracellular matrix of L6J1 rat myoblasts and their influence on myoblast adhesion was studied. Proteoglycan digestion with chondroitinase AC and heparinase III degrading the polysaccharide moieties revealed that chondroitin sulfate proteoglycans are the main class of myoblast extracellular matrix proteoglycans. Electrophoresis of enzymatically processed proteoglycans was used to examine their core proteins. Myoblast adhesion was suppressed by proteoglycans or the mixture of proteoglycans and fibronectin/extracellular matrix. When being processed with chondroitinase AC the combined substrate of fibronectin and proteoglycans lost the capability of myoblast adhesion suppression. Thus, as a result of presented work the proteoglycans of L6J1 rat myoblast extracellular matrix were isolated and purified. The main class of proteoglycans was chondroitin sulphate proteoglycans. Isolated proteoglycans suppressed myoblast adhesion and this effect was mediated by polysaccharide moieties of proteoglycans.  相似文献   

3.
Tendons are collagenous tissues made of mainly Type I collagen and it has been shown that the major proteoglycans of tendons are decorin and versican. Little is still known about the catabolism of these proteoglycans in tendon. Therefore, the aim of the study was to characterise the proteoglycans including their catabolic products present in uncultured bovine tendon and in the explant cultures of tendon. In this study, the proteoglycans were extracted from the tensile region of deep flexor tendon and isolated by ion-exchange chromatography and after deglycosylation analysed by SDS-polyacrylamide electrophoresis, Western blotting and amino-terminal amino acid sequence analysis. Based on amino acid sequence analysis, approximately 80% of the total proteoglycan core proteins in fresh tendon was decorin. Other species that were detected were biglycan and the large proteoglycans versican (splice variants V(0) and/or V(1)) and aggrecan. Approximately 35% of decorin present in the matrix showed carboxyl-terminal proteolytic processing at a number of specific sites. The analysis of small proteoglycans lost to the medium of tendon explants showed the presence of biglycan and decorin with the intact core protein as well as decorin fragments that contained the amino terminus of the core protein. In addition, two core protein peptides of decorin starting at residues K(171) and D(180) were observed in the matrix and one core protein with an amino-terminal sequence commencing at G(189) was isolated from the culture medium. The majority of the large proteoglycans present in the matrix of tendon were degraded and did not contain the G1 globular domain. Furthermore the aggrecan catabolites present in fresh tendon and lost to the medium of explants were derived from aggrecanase cleavage of the core protein at residues E(373)-A(374), E(1480)-G(1481) and E(1771)-A(1772). The analysis of versican catabolites (splice variants V(0) and/or V(1)) also showed evidence of degradation of the core protein by aggrecanase within the GAG-beta subdomain, as well as cleavage by other proteinase(s) within the GAG-alpha and GAG-beta subdomains of versican (variants V(0) and/or V(2)). Degradation products from the amino terminal region of type XII collagen were also detected in the matrix and medium of tendon explants. This work suggests a prominent role for aggrecanase enzymes in the degradation of aggrecan and to a lesser extent versican. Other unidentified proteinases are also involved in the degradation of versican and small leucine-rich proteoglycans.  相似文献   

4.
Summary The mechanisms of synthesis and intracellular routing of the various cartilage matrix macromolecules are still unclear. We have studied this problem in cultured chondroblasts at the ultrastructural level using (i) monospecific antibodies against the core protein of the keratan sulfate/chondroitin sulfate-rich cartilage proteoglycan (KS:CS-PG) or Type II procollagen, and (ii) cuprolinic blue, a cationic dye that binds to the glycosaminoglycan chains of proteoglycans. Intracellularly, the proteoglycan antibodies localized KS:CS-PG and its precursors primarily in the Golgi complex and secretory vesicles. In contrast, the bulk of Type II procollagen was found within the rough endoplasmic reticulum (ER). While devoid of collagen, the extracellular matrix was rich in KS:CS-PG molecules some of which studded the chondroblast plasmalemma. Cuprolinic blue staining indicated that the proteoglycans present in the Golgi complex fell into a predominant class of large proteoglycans, probably representing KS:CS-PG, and a minor class of smaller proteoglycans. Groups of these divergent proteoglycans often occupied distinct Golgi subcompartments; moreover, single large proteoglycans appeared to align along the luminal surface of Golgi cisternae and secretory vesicles. These results suggest that in cultured chondroblasts KS:CS-PG and Type II procollagen are differentially distributed both in organelles and in the extracellular matrix, and that different proteoglycan types may occupy distinct subcompartments in trans Golgi.  相似文献   

5.
Proteoglycans were isolated from the extracellular matrix (ECM) of L6J1 rat myoblasts; their influence on myoblast adhesion has been studied. Proteoglycan digestion with chondroitinase AC and heparinase III, which degrade polysaccharide moieties, has revealed that chondroitin sulfate proteoglycans are a major class of myoblast extracellular matrix proteoglycans. Electrophoresis of enzymatically processed proteoglycans was used to examine their core proteins. Myoblast adhesion was suppressed by proteoglycans or a mixture of proteoglycans and a fibronectin-extracellular matrix. Myoblast adhesion to a substrate composed of fibronectin and proteoglycans is restored after the substrate was treated with chondroitinase AC. In conclusion, proteoglycans of L6J1 rat myoblast ECMs were isolated and purified. Chondroitin sulfate proteoglycans are a major class of proteoglycans. Isolated proteoglycans suppressed myoblast adhesion; the effect was mediated by polysaccharide moieties of proteoglycans.  相似文献   

6.
The mechanisms of synthesis and intracellular routing of the various cartilage matrix macromolecules are still unclear. We have studied this problem in cultured chondroblasts at the ultrastructural level using monospecific antibodies against the core protein of the keratan sulfate/chondroitin sulfate-rich cartilage proteoglycan (KS:CS-PG) or Type II procollagen, and cuprolinic blue, a cationic dye that binds to the glycosaminoglycan chains of proteoglycans. Intracellularly, the proteoglycan antibodies localized KS:CS-PG and its precursors primarily in the Golgi complex and secretory vesicles. In contrast, the bulk of Type II procollagen was found within the rough endoplasmic reticulum (ER). While devoid of collagen, the extracellular matrix was rich in KS:CS-PG molecules some of which studded the chondroblast plasmalemma. Cuprolinic blue staining indicated that the proteoglycans present in the Golgi complex fell into a predominant class of large proteoglycans, probably representing KS:CS-PG, and a minor class of smaller proteoglycans. Groups of these divergent proteoglycans often occupied distinct Golgi subcompartments; moreover, single large proteoglycans appeared to align along the luminal surface of Golgi cisternae and secretory vesicles. These results suggest that in cultured chondroblasts KS:CS-PG and Type II procollagen are differentially distributed both in organelles and in the extracellular matrix, and that different proteoglycan types may occupy distinct subcompartments in trans Golgi.  相似文献   

7.
PURPOSE OF REVIEW: Nonesterified fatty acids change the expression and properties of the extracellular matrix proteoglycans of arterial and hepatic cells. We review how this may contribute to arterial disease in insulin resistance and type 2 diabetes. RECENT FINDINGS: Elevated nonesterified fatty acids characterize the dyslipidemia of insulin resistance and type 2 diabetes. In hepatocytes high levels of fatty acids cause changes in proteoglycans leading to a matrix with decreased affinity for VLDL remnants. Furthermore, liver proteoglycans from insulin resistant hyperlipidemic Zucker rats showed alterations also associated with decreased remnant affinity. In arterial smooth muscle cells overexposure to fatty acids augmented expression of matrix proteoglycans for which LDL showed increased affinity. Fatty acids appeared to compromise insulin signaling by protein kinase C activation. The observed fatty acid-induced changes in matrix proteoglycans in liver and arteries can be an important component of the atherogenicity of the dyslipidemia of insulin resistance and type 2 diabetes. SUMMARY: Overexposure to fatty acids can contribute to generate a remnant-rich dyslipidemia and to precondition the arterial intima for lipoprotein deposition via changes in expression of matrix proteoglycans. Normalizing fatty acid should be a key target in treatment of the atherogenic dyslipidemia of insulin resistance.  相似文献   

8.
Summary The type and distribution of mineral binding and collagenous matrix-associated chondroitin sulphate and dermatan sulphate proteoglycans in rabbit alveolar bone were studied biochemically and immunocytochemically, using three monoclonal antibodies (mAb 2B6, 3B3, and 1B5). The antibodies specifically recognize oligosaccharide stubs that remain attached to the core protein after enzymatic digestion of proteoglycans and identify epitopes in chondroitin 4-sulphate and dermatan sulphate; chondroitin 6-sulphate and unsulphated chondroitin; and unsulphated chondroitin, respectively. In addition, mAb 2B6 detects chondroitin 4-sulphate with chondroitinase ACII pre-treatment, and dermatan sulphate with chondroitinase B pre-treatment. Bone proteins were extracted from fresh specimens with a three-step extraction procedure: 4m guanidine HCl (G-1 extract), 0.4m EDTA (E-extract), followed by guanidine HCl (G-2 extract), to characterize mineral binding and collagenous matrix associated proteoglycans in E- and G2-extracts, respectively. Biochemical results using Western blot analysis of SDS-polyacrylamide gel electrophoresis of E- and G2-extracts demonstrated that mineral binding proteoglycans contain chondroitin 4-sulphate, chondroitin 6-sulphate, and dermatan sulphate, whereas collagenous matrix associated proteoglycans showed a predominance of dermatan sulphate with a trace of chondroitin 4-sulphate and no detectable chondroitin 6-sulphate or unsulphated chondroitin. Immunocytochemistry showed that staining associated with the mineral phase was limited to the walls of osteocytic lacunae and bone canaliculi, whereas staining associated with the matrix phase was seen on and between collagen fibrils in the remainder of the bone matrix. These results indicate that mineral binding proteoglycans having chondroitin 4-sulphate, dermatan sulphate, and chondroitin 6-sulphate were localized preferentially in the walls of the lacunocanalicular system, whereas collagenous associated dermatan sulphate proteoglycans were distributed over the remainder of the bone matrix.  相似文献   

9.
The interaction of proteoglycans with other matrix proteins via thiol-disulphide interchange was explored. Chick sternal cartilage was extracted with 4 M guanidine hydrochloride in the presence and absence of N-ethylmaleimide and the proteoglycans from the centrifugation A2 fractions were isolated. Those from extracts without N-ethylmaleimide were linked with reducible bonds with 10-15 proteins-glycoproteins including the link proteins, the 148 kDa and 36 kDa proteins. The same was observed with extracts of pig laryngeal and sheep nasal cartilage. The linked proteoglycans from sheep amounted to 2-3% of the extractable uronic acid and belonged to two populations. The major fraction was included by Sepharose 6B (Mr 110 000) had twice as long chondroitin sulphate chains, higher 4-sulphated residues and a high content of aspartic acid and leucine-rich protein. The larger proteoglycans had a size and composition similar to those of aggregating proteoglycans.  相似文献   

10.
The hypothesis is widely held that, in growth plate during endochondral ossification, proteoglycans in the extracellular matrix of the lower hypertrophic zone are degraded by proteases and removed before mineralization, and that this is the mechanism by which a noncalcifiable matrix is transformed into a calcifiable matrix. We have evaluated this hypothesis by examining the immunofluorescent localization and concentrations of proteoglycan monomer core protein and link protein, and the concentrations of glycosaminoglycans demonstrated by safranin 0 staining, in the different zones of the bovine fetal cartilage growth plate. Monospecific antibodies were prepared to proteoglycan monomer core protein and to link protein. The immunofluorescent localization of these species was examined in decalcified and undecalcified sections containing the zones of proliferating and hypertrophic chondrocytes and in sections containing the zones of proliferating and hypertrophic chondrocytes and the metaphysis, decalcified in 0.5 M EDTA, pH 7.5, in the presence of protease inhibitors. Proteoglycan monomer core protein and link protein are demonstrable without detectable loss throughout the extracellular matrix of the longitudinal septa of the hypertrophic zone and in the calcified cartilage of the metaphysis. In fact, increased staining is observed in the calcifying cartilage. Contrary to the prevailing hypothesis, our results indicate that there is no net loss of proteoglycans during mineralization and that the proteoglycans become entombed in the calcified cartilage which provides a scaffolding on which osteoid and bone are formed. Proteoglycans appear to persist unaltered in the calcified cartilage core of the trabeculae, until at last the entire trabeculae are eroded from their surfaces and removed by osteoclasts, when the primary spongiosa is replaced by the secondary spongiosa.  相似文献   

11.
Mineral-binding proteoglycans of fetal porcine calvarial bone   总被引:1,自引:0,他引:1  
To provide a more definitive characterization of the hydroxylapatite-associated proteoglycans (HAPG) of bone, proteins were extracted from the mineralized matrix of fetal porcine calvaria with 0.5 M EDTA in the absence of guanidine HCl. The small proteoglycans obtained in the extract were fractionated by gel filtration on Sepharose CL-6B, purified by ion-exchange chromatography on Polyanion matrix (fast protein liquid chromatography), and then separated into three major populations of chondroitin sulfate proteoglycans by chromatography on hydroxylapatite, all in the presence of 7 M urea. Based on immunological and chemical properties, two classes of bone proteoglycan were resolved. In one class (HAPG1), the proteoglycan and specific CNBr-derived peptides cross-reacted with three monoclonal antibodies that recognize different epitopes of the protein core of bovine skin proteodermatan sulfate. The other class of proteoglycan included two species (HAPG2, HAPG3) which were not recognized by these antibodies. In addition, these proteoglycans did not stain with Coomassie Blue R-250 nor with silver stain nor did they bind to nitrocellulose membranes used in Western blots. However, the cationic dye Stains-all stained both HAPG2 and HAPG3; the protein cores of these proteoglycans were stained a characteristic turquoise blue, whereas the protein core of HAPG1 was stained pink. The average Mr values of the bone proteoglycans, from gradient sodium dodecyl sulfate-polyacrylamide gel electrophoresis were: HAPG1, 120,000, with a protein core (chondroitinase AC-digested) of 45,000; HAPG2 and HAPG3, 110,000, with protein cores of 37,000-38,000. On 15% polyacrylamide gel electrophoresis, the protein cores of HAPG2 and HAPG3 migrated with an Mr 30,000, while HAPG1 protein core was unchanged (Mr 45,000). Based on amino acid analysis, the protein chains of HAPG2 and HAPG3 appear to be identical, although minor differences in the relative amount of glucosamine were evident. In contrast, the composition of HAPG1 was quite different, with higher relative amounts of hydrophobic and aromatic residues and lower amounts of Asx and Glx. The presence of 360 residues/1,000 of Asx and Glx in HAPG2 and HAPG3 may in part explain the characteristic staining and immunotransfer properties of these proteoglycans. The unique amino-terminal sequence of HAPG2 (Asn-Pro-Val-Ala-Arg-Tyr-Gln), together with the immunological and chemical properties, would indicate that HAPG2 and HAPG3 are novel proteoglycans and, unlike HAPG1, could be unique to mineralized tissues.  相似文献   

12.
Evidence suggests that endothelial cell layer heparan sulfate proteoglycans include a variety of different sized molecules which most likely contain different protein cores. In the present report, approximately half of endothelial cell surface associated heparan sulfate proteoglycan is shown to be releasable with soluble heparin. The remaining cell surface heparan sulfate proteoglycan, as well as extracellular matrix heparan sulfate proteoglycan, cannot be removed from the cells with heparin. The heparin nonreleasable cell surface proteoglycan can be released by membrane disrupting agents and is able to intercalate into liposomes. When the heparin releasable and nonreleasable cell surface heparan sulfate proteoglycans are compared, differences in proteoglycan size are also evident. Furthermore, the intact heparin releasable heparan sulfate proteoglycan is closer in size to proteoglycans isolated from the extracellular matrix and from growth medium than to that which is heparin nonreleasable. These data indicate that cultured porcine aortic endothelial cells contain at least two distinct types of cell surface heparan sulfate proteoglycans, one of which appears to be associated with the cells through its glycosaminoglycan chains. The other (which is more tightly associated) is probably linked via a membrane intercalated protein core.Abbreviations ECM extracellular matrix - HSPG heparan sulfate proteoglycan - PAE porcine aortic endothelial - PBS phosphate buffered saline  相似文献   

13.
Antibodies were raised against a small high-density and a large low-density form of heparan sulfate proteoglycan from a basement membrane-producing mouse tumor and were characterized by radioimmunoassays, immunoprecipitation and immunohistological methods. Antigenicity was due to the protein cores and included epitopes unique to the low density form as well as some shared by both proteoglycans. The antibodies did not cross-react with other basement membrane proteins or with chondroitin sulfate proteoglycans from interstitial connective tissues. The heparan sulfate proteoglycans occurred ubiquitously in embryonic and adult basement membranes and could be initially detected at the 2-4 cell stage of mouse embryonic development. Low levels were also found in serum. Biosynthetic studies demonstrated identical or similar proteoglycans in cultures of normal and carcinoembryonic cells and in organ cultures of fetal tissues. They could be distinguished from liver cell membrane heparan sulfate proteoglycan, indicating that the basement membrane types of proteoglycans represent a unique class of extracellular matrix proteins.  相似文献   

14.
In the mechanically active environment of the artery, cells sense mechanical stimuli and regulate extracellular matrix structure. In this study, we explored the changes in synthesis of proteoglycans by vascular smooth muscle cells in response to precisely controlled mechanical strains. Strain increased mRNA for versican (3.2-fold), biglycan (2.0-fold), and perlecan (2.0-fold), whereas decorin mRNA levels decreased to a third of control levels. Strain also increased versican, biglycan, and perlecan core proteins, with a concomitant decrease in decorin core protein. Deformation did not alter the hydrodynamic size of proteoglycans as evidenced by molecular sieve chromatography but increased sulfate incorporation in both chondroitin/dermatan sulfate proteoglycans and heparan sulfate proteoglycans (p < 0.05 for both). Using DNA microarrays, we also identified the gene for the hyaluronan-linking protein TSG6 as mechanically induced in smooth muscle cells. Northern analysis confirmed a 4.0-fold increase in steady state mRNA for TSG6 following deformation. Size exclusion chromatography under associative conditions showed that versican-hyaluronan aggregation was enhanced following deformation. These data demonstrate that mechanical deformation increases specific vascular smooth muscle cell proteoglycan synthesis and aggregation, indicating a highly coordinated extracellular matrix response to biomechanical stimulation.  相似文献   

15.
By using an e.l.i.s.a. method it was demonstrated that the majority of proteoglycans released into the medium of both control and retinoic acid-treated explant cultures of bovine articular cartilage did not contain a hyaluronate-binding region. This supports our previous findings [Campbell & Handley (1987) Arch. Biochem. Biophys. 258, 143-155] that proteoglycans released into the medium of both cultures were of smaller hydrodynamic size, more polydisperse and unable to form aggregates with hyaluronate. Analysis of 35S-labelled core proteins associated with proteoglycans released into the medium of both cultures by using SDS/polyacrylamide-gel electrophoresis and fluorography indicated the presence of a series of core-protein bands (Mr approx. 300,000, 230,000, 215,000, 200,000, 180,000, 140,000, 135,000, 105,000, 85,000 and 60,000) compared with three core proteins derived from the proteoglycans remaining in the matrix (Mr 300,000, 230,000 and 215,000). Further analysis of the core proteins released into the medium indicated that the larger core proteins associated with medium proteoglycans contain both chondroitin sulphate and keratan sulphate glycosaminoglycans whereas the smaller core proteins contain only chondroitin sulphate chains. These experiments provide definitive evidence that the loss of proteoglycans from the matrix involves proteolytic cleavage at various sites along the proteoglycan core protein.  相似文献   

16.
We have studied the affinity between fibroblast proteoheparan sulfate (medium- and cell surface-derived species) and heparan sulfate-agaroses by affinity chromatography. The evidence for an interaction between the heparan sulfate side chains of the proteoglycans and the immobilized heparan sulfate are as follows: (a) the individual side chains released from the proteoglycan by papain bind to the affinity matrix, (b) the bound proteoglycans are desorbed by a solution of cognate heparan sulfate chains, and (c) the core protein obtained by heparan sulfate-lyase digestion of the proteoglycan does not bind to the affinity matrix. The proteoglycans interact only with one subtype of heparan sulfate. The binding of free heparan sulfate chains to the affinity matrix is completely abolished by heparan sulfate oligosaccharides provided they are composed of both iduronate- and glucuronate-containing disaccharide sequences.  相似文献   

17.
The addition of proteinase inhibitors (1 mM phenylmethylsulfonyl fluoride, 10 mM N-ethylmaleimide, 0.25 mM benzamidine hydrochloride, 6.25 mM EDTA, 12.5 mM 6-aminohexanoic acid and 2 mM iodoacetic acid) to explant cultures of adult bovine articular cartilage inhibits proteoglycan synthesis as well as the loss of the macromolecule from the tissue. Those proteoglycans lost to the medium of explant cultures treated with proteinase inhibitors were either aggregates or monomers with functional hyaluronic acid-binding regions, whereas proteoglycans lost from metabolically active tissue also included a population of monomers that were unable to aggregate with hyaluronate. Analysis of the core protein from proteoglycans lost into the medium of inhibitor-treated cultures showed the same size distribution as the core proteins of proteoglycans present in the extracellular matrix of metabolically active cultures. The core proteins of proteoglycans appearing in the medium of metabolically active cultures showed that proteolytic cleavage of these macromolecules occurred as a result of their loss from the tissue. Explant cultures of articular cartilage maintained in medium with proteinase inhibitors were used to investigate the passive loss of proteoglycan from the tissue. The rate of passive loss of proteoglycan from the tissue was dependent on surface area, but no difference in the proportion of proteoglycan aggregate to monomer appearing in the medium was observed. Furthermore, proteoglycans were lost at the same rate from the articular and cut surfaces of cartilage. Proteoglycan aggregates and monomer were lost from articular cartilage over a period of time, which indicates that proteoglycans are free to move through the extracellular matrix of cartilage. The movement of proteoglycans out of the tissue was shown to be temperature dependent, but was different from the change of the viscosity of water with temperature, which indicates that the loss of proteoglycan was not solely due to diffusion. The activation energy for the loss of proteoglycans from articular cartilage was found to be similar to the binding energies for electrostatic and hydrogen bonds.  相似文献   

18.
H Hagiwara 《Histochemistry》1992,98(5):305-309
The localization of proteoglycans in rat epiphyseal growth plate cartilage was investigated immunoelectron microscopically by the post-embedding method, using mouse monoclonal antibody (2-B-6) which specifically recognizes 4-sulphated chondroitin or dermatan sulphate after digestion of proteoglycans with chondroitinase ABC. Fixation with ruthenium hexamine trichloride (RHT) and embedding in LR White served to preserve chondrocytes in the expanded state and matrix proteoglycans were observed as a reticular network of filaments. Immunoelectron microscopy revealed gold labelling of the secondary antibodies for the demonstration of proteoglycans on these filamentous structures and in elements of the Golgi apparatus. Filaments associated with matrix vesicles were also labelled. After fixation in the presence of RHT, it was clearly demonstrated that cartilage matrix proteoglycans are retained approximately in their original spatial distribution and their antigenicity is well preserved.  相似文献   

19.
We examined the presence of proteoglycans in the extracellular matrix of cartilage and bone in fetal mouse radii at the ultrastructural level, using the cationic dye polyethyleneimine (PEI). After staining with this dye, the proteoglycans appeared as granules in the uncalcified bone matrix and as extended winding structures in the cartilage matrix. PEI-positive material was removed after treatment of the tissue with chondroitinase ABC. Inhibition of the proteoglycan synthesis by beta-D-xyloside resulted in smaller PEI-positive windings in the cartilage matrix. These observations suggest that the winding, PEI-positive structures represent proteoglycan aggregates. No loss of PEI-positive material in the calcified cartilage matrix was seen, suggesting that proteoglycans do not need to be removed to make the matrix calcifiable.  相似文献   

20.
The localization of proteoglycans in rat epiphyseal growth plate cartilage was investigated immunoelectron microscopically by the post-embedding method, using mouse monoclonal antibody (2-B-6) which specifically recognizes 4-sulphated chondroitin or dermatan sulphate after digestion of proteoglycans with chondroitinase ABC. Fixation with ruthenium hexamine trichloride (RHT) and embedding in LR White served to preserve chondrocytes in the expanded state and matrix proteoglycans were observed as a reticular network of filaments. Immunoelectron microscopy revealed gold labelling of the secondary antibodies for the demonstration of proteoglycans on these filamentous structures and in elements of the Golgi apparatus. Filaments associated with matrix vesicles were also labelled. After fixation in the presence of RHT, it was clearly demonstrated that cartilage matrix proteoglycans are retained approximately in their original spatial distribution and their antigenicity is well preserved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号