首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Reaction center triplet states in photosystem I and photosystem II   总被引:3,自引:0,他引:3  
A photosystem I (PS I) particle has been prepared by lithium dodecyl sulfate digestion which lacks the acceptor X, and iron-sulfur centers B and A. Illumination of these particles at liquid helium temperature results in the appearance of a light-induced spin-polarized triplet signal observed by EPR. This signal is attributed to the triplet state of P-700, the primary donor, formed by recombination of the light induced radical pair P-700+ A1- (where A1 is the intermediate acceptor). Formation of the triplet does not occur if P-700 is oxidized or if A1 is reduced, prior to the illumination. A comparison of the P-700 triplet with that of P-680, the primary donor of Photosystem II, shows several differences. (1) The P-680 triplet is 1.5 mT (15 G) wider than the P-700 triplet. This is reflected by the zero-field splitting parameters, which indicate that P-700 is a slightly larger species than P-680. The zero-field splitting parameters do not indicate that either P-700 or P-680 are dimeric. (2) The P-700 triplet is induced by red and far-red light, while the P-680 triplet is induced only by red light. (3) The temperature dependences of the P-700 triplet and the P-680 triplet are different.  相似文献   

2.
I Vass  S Styring 《Biochemistry》1992,31(26):5957-5963
Fluorescence and electron paramagnetic resonance (EPR) measurements have been applied to characterize chlorophyll triplet formation in the reaction center of photosystem II (PSII). A highly triplet forming state was generated in PSII membranes by chemical double reduction of the primary electron acceptor QA. In triplet forming PSII centers, the steady-state yield of chlorophyll fluorescence decreased to about 70% of the maximal fluorescence yield observed in closed PSII centers in which QA is singly reduced. The results are well interpreted in the framework of a model where the charge state of QA electrostatically controls the yield of primary charge separation [Schatz, G. H., Brock, H., & Holzwarth, A. R. (1988) Biophys. J. 54, 397-405]. Thus, high triplet yield and decreased, although still quite high, fluorescence indicate a charge-neutralized state of PSII in which QA is singly or doubly reduced and protonated or absent. The EPR signal of the triplet primary chlorophyll donor, 3P680, is suppressed by illumination at 77 K concomitant with the formation of a cationic radical (g = 2.0025-2.0027, and 0.92 mT wide) that is stable in the dark. This is attributed to the oxidation of an accessory chlorophyll (Chl) in the vicinity of P680. Electrostatic repulsion between Chl+ and P680+ is likely to prevent primary charge separation, and in turn triplet formation, providing a further example of electrostatic control of primary charge separation. The triplet P680 EPR signal is also suppressed in the presence of oxygen. This effect, which is almost completely reversible by removing the oxygen, is attributed to the interaction of triplet P680 with triplet O2.  相似文献   

3.
Herman Kramer  Paul Mathis   《BBA》1980,593(2):319-329
The formation of the triplet state of carotenoids (detected by an absorption peak at 515 nm) and the photo-oxidation of the primary donor of Photosystem II, P-680 (detected by an absorption increase at 820 nm) have been measured by flash absorption spectroscopy in chloroplasts in which the oxygen evolution was inhibited by treatment with Tris. The amount of each transient form has been followed versus excitation flash intensity (at 590 or 694 nm). At low excitation energy the quantum yield of triplet formation (with the Photosystem II reaction center in the state Q) is about 30% that of P-680 photo-oxidation. The yield of carotenoid triplet formation is higher in the state Q than in the state Q, in nearly the same proportion as chlorophyll a fluorescence. It is concluded that, for excited chlorophyll a, the relative rates of intersystem crossing to the triplet state and of fluorescence emission are the same in vivo as in organic solvent. At high flash intensity the signal of P-680+ completely saturates, whereas that of carotenoid triplet continues to increase.

The rate of triplet-triplet energy transfer from chlorophyll a to carotenoids has been derived from the rise time of the absorption change at 515 nm, in chloroplasts and in several light-harvesting pigment-protein complexes. In all cases the rate is very high, around 8 · 107 s−1 at 294 K. It is about 2–3 times slower at 5 K. The transitory formation of chlorophyll triplet has been verified in two pigment-protein complexes, at 5 K.  相似文献   


4.
Sally Reinman  Paul Mathis 《BBA》1981,635(2):249-258
The influence of temperature on the rate of reduction of P-680+, the primary donor of Photosystem II, has been studied in the range 5–294 K, in chloroplasts and subchloroplasts particles. P-680 was oxidized by a short laser flash. Its oxidation state was followed by the absorption level at 820 nm, and its reduction attributed to two mechanisms: electron donation from electron donor D1 and electron return from the primary plastoquinone (back-reaction).Between 294 and approx. 200 K, the rate of the back-reaction, on a logarithmic scale, is a linear function of the reciprocal of the absolute temperature, corresponding to an activation energy between 3.3 and 3.7 kcal · mol?1, in all of the materials examined (chloroplasts treated at low pH or with Tris; particles prepared with digitonin). Between approx. 200 K and 5 K the rate of the back-reaction is temperature independent, with t12 = 1.6 ms. In untreated chloroplasts we measured a t12 of 1.7 ms for the back-reaction at 77 and 5 K.The rate of electron donation from the donor D1 has been measured in darkadapted Tris-treated chloroplasts, in the range 294–260 K. This rate is strongly affected by temperature. An activation energy of 11 kcal · mol?1 was determined for this reaction.In subchloroplast particles prepared with Triton X-100 the signals due to P-680 were contaminated by absorption changes due to the triplet state of chlorophyll a. This triplet state has been examined with pure chlorophyll a in Triton X-100. An Arrhenius plot of its rate of decay shows a temperature-dependent region (292–220 K) with an activation energy of 9 kcal · mol?1, and a temperature-independent region (below 200 K) with t12 = 1.1 ms.  相似文献   

5.
The published reports of flash-induced absorbance changes in the 680-690 nm spectral region, which have been attributed to bleaching of the primary reaction center chlorophyll of photosystem II (PSII) P-680, are discussed in light of what is known about the primary electron acceptor of PSII, C-550. The question of whether the fluorescence yield changes, which accompany the photoreduction of C-550, might influence the measurements of chlorophyll bleaching is examined. The responses attributed to P-680 and their relationship to C-550 indicate that, if the absorbance measurements are valid, P-680 probably functions as the primary electron donor to PSII rather than as a photochemical sensitizer of the primary redox reaction.  相似文献   

6.
A key step in the photosynthetic reactions in photosystem II of green plants is the transfer of an electron from the singlet-excited chlorophyll molecule called P680 to a nearby pheophytin molecule. The free energy difference of this primary charge separation reaction is determined in isolated photosystem II reaction center complexes as a function of temperature by measuring the absolute quantum yield of P680 triplet formation and the time-integrated fluorescence emission yield. The total triplet yield is found to be 0.83 +/- 0.05 at 4 K, and it decreases upon raising the temperature to 0.30 at 200 K. It is suggested that the observed triplet states predominantly arise from P680 but to a minor extent also from antenna chlorophyll present in the photosystem II reaction center. No carotenoid triplet states could be detected, demonstrating that the contamination of the preparation with CP47 complexes is less than 1/100 reaction centers. The fluorescence yield is 0.07 +/- 0.02 at 10 K, and it decreases upon raising the temperature to reach a value of 0.05-0.06 at 60-70 K, increases upon raising the temperature to 0.07 at approximately 165 K and decreases again upon further raising the temperature. The complex dependence of fluorescence quantum yield on temperature is explained by assuming the presence of one or more pigments in the photosystem II reaction center that are energetically degenerate with the primary electron donor P680 and below 60-70 K trap part of the excitation energy, and by temperature-dependent excited state decay above 165 K. A four-compartment model is presented that describes the observed triplet and fluorescence quantum yields at all temperatures and includes pigments that are degenerate with P680, temperature-dependent excited state decay and activated upward energy transfer rates. The eigenvalues of the model are in accordance with the lifetimes observed in fluorescence and absorption difference measurements by several workers. The model suggests that the free energy difference between singlet-excited P680 and the radical pair state P680+l- is temperature independent, and that a distribution of free energy differences represented by at least three values of about 20, 40, and 80 meV, is needed to get an appropriate fit of the data.  相似文献   

7.
The photochemistry of the isolated Photosystem II reaction-centre core from pea and the green alga Scenedesmus was examined by e.s.r. Two types of triplet spectrum were observed in addition to the spin-polarized reaction-centre triplet previously identified. The additional triplet formed on continuous illumination at 4.2 K was attributed to a monomeric phaeophytin molecule. The second triplet, which was stable in the dark at 4.2 K following illumination, was assigned to the radical pair Donor+I-. This provides evidence that an electron donor to chlorophyll P680 is present on the polypeptide D1-polypeptide D2-cytochrome b-559 core complex.  相似文献   

8.
The triplet states in plant photosystem II (PS II), 3P680, and from chlorophyll a, 3Chl a, in organic solution have been investigated using pulse ENDOR combined with repetitive laser excitation at cryogenic temperature with the aim to obtain their hyperfine (hf) structure. The large zero field splitting (ZFS) tensor of 3P680 enabled orientation selection via the electron spin resonance (EPR) field setting along the ZFS tensor axes. ENDOR spectra have been obtained for the first time also for the in-plane X- and Y-orientations of the ZFS tensor. This allowed a full determination of the hf-tensors of the three methine protons and one methyl group of 3P680. Based on the orientations of the axes of these hf-tensors, a unique orientation of the axes of the ZFS tensor of 3P680 in the Chl a molecular frame was obtained. These data serve as a structural basis for determining the orientation of 3P680 in the PS II protein complex by EPR on single crystals (see M. Kammel et al. in this issue). The data obtained represent the first complete set of the larger hf-tensors of the triplet state 3P680. They reflect the spin density distribution both in the highest occupied (HOMO) and lowest unoccupied (LUMO) orbitals. The data clearly confirm that 3P680 is a monomeric Chl a species at low temperature (T=10 K) used, as has been proposed earlier based on D- and E-values obtained from EPR and optically detected magnetic resonance (ODMR) studies. Comparison with the hf data for the cation and anion radicals of Chl a indicates a redistribution of spin densities in particular for the LUMO orbital of the triplet states. The electron spin distribution in the LUMO orbital is of special interest since it harbours the excited electron in the excited P680 singlet state, from which light-induced electron transfer proceeds. Observed shifts of hf couplings from individual nuclei of 3P680 as compared with 3Chl a in organic solution are of special interest, since they indicate specific protein interactions, e.g. hydrogen bonding, which might be used in future studies for assigning 3P680 to a particular chlorophyll molecule in PS II.  相似文献   

9.
Electron paramagnetic resonance (EPR) has been used to investigate the cation and triplet states of Rhodobacter capsulatus reaction centers (RCs) containing amino acid substitutions affecting the primary donor, monomeric bacteriochlorophylls (Bchls), and the photoactive bacteriopheophytin (Bphe). The broadened line width of the cation radical in HisM200----Leu and HisM200----Phe reaction centers, whose primary donor consists of a Bchl-Bphe heterodimer, indicates a highly asymmetric distribution of the unpaired electron over the heterodimer. A T0 polarized triplet state with reduced yield is observed in heterodimer-containing RCs. The zero field splitting parameters indicate that this triplet essentially resides on the Bchl half of the heterodimer. The cation and triplet states of reaction centers containing HisM200----Gln, HisL173----Gln, GluL104----Gln, or GluL104----Leu substitutions are similar to those observed in wild type. Oligonucleotide-mediated mutagenesis has been used to change the histidine residues that are positioned near the central Mg2+ ions of the reaction center monomeric bacteriochlorophylls. Reaction centers containing serine substitutions at M180 and L153 or a threonine substitution at L153 have unaltered pigment compositions and are photochemically active. The cation and triplet states of HisL153----Leu reaction centers are similar to those observed in wild type. Triplet energy transfer to carotenoid is not observed at 100 K in HisM180----Arg chromatophores. These results have important implications for the structural requirements of tetrapyrrole binding and for our understanding of the mechanisms of primary electron transfer in the reaction center.  相似文献   

10.
During photosynthesis carotenoids normally serve as antenna pigments, transferring singlet excitation energy to chlorophyll, and preventing singlet oxygen production from chlorophyll triplet states, by rapid spin exchange and decay of the carotenoid triplet to the ground state. The presence of two beta-carotene molecules in the photosystem II reaction centre (RC) now seems well established, but they do not quench the triplet state of the primary electron-donor chlorophylls, which are known as P(680). The beta-carotenes cannot be close enough to P(680) for triplet quenching because that would also allow extremely fast electron transfer from beta-carotene to P(+)(680), preventing the oxidation of water. Their transfer of excitation energy to chlorophyll, though not very efficient, indicates close proximity to the chlorophylls ligated by histidine 118 towards the periphery of the two main RC polypeptides. The primary function of the beta-carotenes is probably the quenching of singlet oxygen produced after charge recombination to the triplet state of P(680). Only when electron donation from water is disturbed does beta-carotene become oxidized. One beta-carotene can mediate cyclic electron transfer via cytochrome b559. The other is probably destroyed upon oxidation, which might trigger a breakdown of the polypeptide that binds the cofactors that carry out charge separation.  相似文献   

11.
M Polm  K Brettel 《Biophysical journal》1998,74(6):3173-3181
Photoinduced electron transfer in photosystem I (PS I) proceeds from the excited primary electron donor P700 (a chlorophyll a dimer) via the primary acceptor A0 (chlorophyll a) and the secondary acceptor A1 (phylloquinone) to three [4Fe-4S] clusters, Fx, FA, and FB. Prereduction of the iron-sulfur clusters blocks electron transfer beyond A1. It has been shown previously that, under such conditions, the secondary pair P700+A1- decays by charge recombination with t1/2 approximately 250 ns at room temperature, forming the P700 triplet state (3P700) with a yield exceeding 85%. This reaction is unusual, as the secondary pair in other photosynthetic reaction centers recombines much slower and forms directly the singlet ground state rather than the triplet state of the primary donor. Here we studied the temperature dependence of secondary pair recombination in PS I from the cyanobacterium Synechococcus sp. PCC6803, which had been illuminated in the presence of dithionite at pH 10 to reduce all three iron-sulfur clusters. The reaction P700+A1- --> 3P700 was monitored by flash absorption spectroscopy. With decreasing temperature, the recombination slowed down and the yield of 3P700 decreased. In the range between 303 K and 240 K, the recombination rates could be described by the Arrhenius law with an activation energy of approximately 170 meV. Below 240 K, the temperature dependence became much weaker, and recombination to the singlet ground state became the dominating process. To explain the fast activated recombination to the P700 triplet state, we suggest a mechanism involving efficient singlet to triplet spin evolution in the secondary pair, thermally activated repopulation of the more closely spaced primary pair P700+A0- in a triplet spin configuration, and subsequent fast recombination (intrinsic rate on the order of 10(9) s(-1)) forming 3P700.  相似文献   

12.
Site-directed mutations were constructed in photosystem II of Synechocystis sp. PCC6803 in which the axial ligand, D1-His198, of special pair chlorophyll PD1 was replaced with Gln and where D1-Thr179, which overlies monomeric chlorophyll ChlD1, was replaced with His. The D1-His198Gln mutation produces a 3nm displacement to the blue of the bleaching minimum in the Soret and in the Qy region of the (P+QA--PQA) absorbance difference spectrum. To a first approximation, the bleaching can be assigned to the low-energy exciton transition of the special pair chlorophylls PD1/PD2. The D1-Thr179His mutation produces a 2nm displacement to the red of the bleaching minimum in the Qy region of the (3P-1P) absorbance difference spectrum. Analysis of the flash-induced (P+QA--PQA) and (3P-1P) absorbance difference spectra of both mutants compared with wild-type at 80K indicate that the cation of the oxidized donor P+ is predominantly localized on the chlorophyll PD1 of the special pair and that the reaction centre triplet state, produced upon charge recombination from 3[P+Pheo-], when the primary quinone electron acceptor QA is doubly reduced, is primarily localized on ChlD1.  相似文献   

13.
Electron transfer in photosystem II at cryogenic temperatures   总被引:4,自引:0,他引:4  
The photochemistry in photosystem II of spinach has been characterized by electron paramagnetic resonance (EPR) spectroscopy in the temperature range of 77-235 K, and the yields of the photooxidized species have been determined by integration of their EPR signals. In samples treated with 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), a single stable charge separation occurred throughout the temperature range studied as reflected by the constant yield of the Fe(II)-QA-EPR signal. Three distinct electron donation pathways were observed, however. Below 100 K, one molecule of cytochrome b559 was photooxidized per reaction center. Between 100 and 200 K, cytochrome b559 and the S1 state competed for electron donation to P680+. Photooxidation of the S1 state occurred via two intermediates: the g = 4.1 EPR signal species first reported by Casey and Sauer [Casey, J. L., & Sauer, K. (1984) Biochim. Biophys. Acta 767, 21-28] was photooxidized between 100 and 160 K, and upon being warmed to 200 K in the dark, this EPR signal yielded the multiline EPR signal associated with the S2-state. Only the S1 state donated electrons to P680+ at 200 K or above, giving rise to the light-induced S2-state multiline EPR signal. These results demonstrate that the maximum S2-state multiline EPR signal accounts for 100% of the reaction center concentration. In samples where electron donation from cytochrome b559 was prevented by chemical oxidation, illumination at 77 K produced a radical, probably a chlorophyll cation, which accounted for 95% of the reaction center concentration. This electron donor competed with the S1 state for electron donation to P680+ below 100 K.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
In photosynthetic bacteria, in which the iron-ubiquinone complex X is prereduced, a magnetic field induces an increase of the emmission yield, which is correlated with the decrease in reaction center triplet yield reported previously (Hoff, A.J., Rademaker, H., van Grondelle, R. and Duysens, L.N.M. (1977) Biochim. Biophys. Acta 460, 547--554). Our results support the hypothesis that under these conditions charge recombination of the oxidized primary donor and the reduced primary acceptor predominantly generates the excited singlet state of the reaction center bacteriochlorophyll. In Chlorella vulgaris and spinach chloroplasts, at 120 K, the magnetic field has an effect similar to that found in bacteria, which suggests that an intermediary electron acceptor between P-680 and Q is present in Photosystem II also.  相似文献   

15.
Triplet state electron paramagnetic resonance (EPR) experiments have been carried out at X-band on Rb. sphaeroides R-26 reaction centers that have been reconstituted with the carotenoid, spheroidene, and exchanged with 132-OH-Zn-bacteriochlorophyll a and [3-vinyl]-132-OH-bacteriochlorophyll a at the monomeric, accessory bacteriochlorophyll sites BA,B or with pheophytin a at the bacteriopheophytin sites HA,B. The primary donor and carotenoid triplet state EPR signals in the temperature range 95–150 K are compared and contrasted with those from native Rb. sphaeroides wild type and Rb. sphaeroides R-26 reaction centers reconstituted with spheroidene. The temperature dependencies of the EPR signals are strikingly different for the various samples. The data prove that triplet energy transfer from the primary donor to the carotenoid is mediated by the monomeric, BChlB molecule. Furthermore, the data show that triplet energy transfer from the primary donor to the carotenoid is an activated process, the efficiency of which correlates with the estimated triplet state energies of the modified pigments.Abbreviations BChl bacteriochlorophyll - BPhe bacteriopheophytin - Chl chlorophyll - EPR electron paramagnetic resonance - LDAO lauryl-dimethylamine-N-oxide - Phe pheophytin  相似文献   

16.
The oxidation of carotenoid upon illumination at low temperature has been studied in Mn-depleted photosystem II (PSII) using EPR and electronic absorption spectroscopy. Illumination of PSII at 20 K results in carotenoid cation radical (Car+*) formation in essentially all of the centers. When a sample which was preilluminated at 20 K was warmed in darkness to 120 K, Car+* was replaced by a chlorophyll cation radical. This suggests that carotenoid functions as an electron carrier between P680, the photooxidizable chlorophyll in PSII, and ChlZ, the monomeric chlorophyll which acts as a secondary electron donor under some conditions. By correlating with the absorption spectra at different temperatures, specific EPR signals from Car+* and ChlZ+* are distinguished in terms of their g-values and widths. When cytochrome b559 (Cyt b559) is prereduced, illumination at 20 K results in the oxidation of Cyt b559 without the prior formation of a stable Car+*. Although these results can be reconciled with a linear pathway, they are more straightforwardly explained in terms of a branched electron-transfer pathway, where Car is a direct electron donor to P680(+), while Cyt b559 and ChlZ are both capable of donating electrons to Car+*, and where the ChlZ donates electrons when Cyt b559 is oxidized prior to illumination. These results have significant repercussions on the current thinking concerning the protective role of the Cyt b559/ChlZ electron-transfer pathways and on structural models of PSII.  相似文献   

17.
《FEBS letters》1986,203(2):215-219
The re-reduction course of P-680+, the photooxidized PS II primary donor, was measured as a function of excitation number in Cl-depleted PS II membranes. After the 1st and 2nd excitations the signal amplitude of P-680+ is small, indicating a submicrosecond reduction of P-680+ by Z, the secondary donor of PS II. After the 3rd excitation, however, a larger P-680+ signal with a 40–50 μs half-life is observed. The slow decay of this signal is attributed to a back-reaction with a reduced acceptor in the presence of the Z+S2 state on the donor side. The state Z+S2 has a lifetime longer than 300 ms and its formation was found to depend on the presence of the abnormal S2 state created by the 1st excitation. The P-680 data and thermoluminescence measurements show that the S-state advancement beyond S2 is blocked in the absence of Cl and that the Cl-free abnormal S2 state has a lifetime about 10-times longer than the normal S2 state.  相似文献   

18.
P. Gast  T. Swarthoff  F.C.R. Ebskamp  A.J. Hoff 《BBA》1983,722(1):163-175
The yield of the triplet state of the primary electron donor of Photosystem I of photosynthesis (PT-700) and the characteristic parameters (g value, line shape, saturation behavior) of the ESR signal of the photoaccumulated intermediary acceptor A have been measured for two types of Photosystem I subchloroplast particles: Triton particles (TSF 1, about 100 chlorophyll molecules per P-700) that contain the iron-sulfur acceptors FX, FB and FA, and lithium dodecyl sulfate (LDS) particles (about 40 chlorophyll molecules per P-700) that lack these iron-sulfur acceptors. The results are: (i) In Triton particles the yield of PT-700 upon illumination is independent of the redox state of A and of FX,B,A and is maximally about 5% of the active reaction centers at 5 K. The molecular sublevel decay rates are kx = 1100 s?1 ± 10%, ky = 1300 s?1 ± 10% and kz = 83 s?1 ± 20%. In LDS particles the triplet yield decreases linearly with concentration of reduced intermediary acceptors, the maximal yield being about 4% at 5 K assuming full P-700 activity. (ii) In Triton particles the acceptor complex A consists of two acceptors A0 and A1, with A0 preceding A1. In LDS particles at temperatures below ?30°C only A0 is photoactive. (iii) The spin-polarized ESR signal found in the time-resolved ESR experiments with Triton particles is attributed to a polarized P-700-A?1 spectrum. The decay kinetics are complex and are influenced by transient nutation effects, even at low microwave power. It is concluded that the lifetime at 5 K of P-700A0A?1 must exceed 5 ms. We conclude that PT-700 originates from charge recombination of P-700A?0, and that in Triton particles A0 and A1 are both photoaccumulated upon cooling at low redox potential in the light. Since the state P-700AF?X does not give rise to triplet formation the 5% triplet yield in Triton particles is probably due to centers with damaged electron transport.  相似文献   

19.
Absorption changes at 820 or 515 nm after a short laser flash were studied comparatively in untreated chloroplasts and in chloroplasts in which oxygen evolution is inhibited. In chloroplasts pre-treated with Tris, the primary donor of Photosystem II (P-680) is oxidized by the flash it is re-reduced in a biphasic manner with half-times of 6 microseconds (major phase) and 22 microseconds. After the second flash, the 6 microseconds phase is nearly absent and P-680+ decays with half-times of 130 microseconds (major phase) and 22 microseconds. Exogenous electron donors (MnCl2 or reduced phenylenediamine) have no direct influence on the kinetics of P-680+. In untreated chloroplasts the 6 and 22 microseconds phases are of very small amplitude, either at the 1st, 2nd or 3rd flash given after dark-adaptation. They are observed, however, after incubation with 10 mM hydroxylamine. These results are interpreted in terms of multiple pathways for the reduction of P-680+: a rapid reduction (less than 1 microseconds) by the physiological donor D1; a slower reduction (6 and 22 microseconds) by donor D'1, operative when O2 evolution is inhibited; a back-reaction (130 microseconds) when D'1 is oxidized by the pre-illumination in inhibited chloroplasts. In Tris-treated chloroplasts the donor system to P-680+ has the capacity to deliver only one electron. The absorption change at 515 nm (electrochromic absorption shift) has been measured in parallel. It is shown that the change linked to Photosystem II activity has nearly the same magnitude in untreated chloroplasts or in chloroplasts treated with hydroxylamine or with Tris (first and subsequent flashes). Thus we conclude that all the donors (P-680, D1, D'1) are located at the internal side of the thylakoid membrane.  相似文献   

20.
Experimental evidence for electron transfer, photosensitized by bacteriochlorophyll, from cytochrome c to a pigment complex P-760 (involving bacteriopheophytin-760 and also bacteriochlorophyll-800) in the reaction centers of Chromatium minutissimum has been described. This photoreaction occurs between 77 and 293 degrees K at a redox potential of the medium between -250 and -530 mV. Photoreduction of P-760 is accompanied by development of a wide absorption band at 650 nm and of an EPR signal with g=2.0025+/-0.0005 and linewidth of 12.5+/-0.5 G, which are characteristic of the pigment radical anion. It is suggested that the photoreduction of P-760 occurs under the interaction of reduced cytochrome c with the reaction center state P+-890-P--760 which is induced by light. The existence of short-lived state P+-890-P--760 is indicated by the recombination luminescence with activation energy of 0.12 eV and t 1/2 less than or equal to 6 ns. This luminescence is exicted and emitted by bacteriochlorophyll and disappears when P-760 is reduced. At low redox potentials, the flash-induced absorbance changes related to the formation of the carotenoid triplet state with t 1/2 = 6 mus at 20 degreesC are observed. This state is not formed when P-760 is reduced at 293 and 160 degrees K. It is assumed that this state is formed from the reaction center state P+-890---760, which appears to be a primary product of light reaction in the bacterial reaction centers and which is probably identical with the state PF described in recent works.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号