首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
AIMS: To contribute to an understanding of the phenomena related to the effect of low electric current (LEC) in grape must fermentation during laboratory and pilot plant scale winemaking, with selected co-culture yeasts (Saccharomyces cerevisiae strain 404 and Hanseniaspora guilliermodii strain 465). METHODS AND RESULTS: LEC (10, 30, 50 and 100 mA) was applied to fresh grape must as an alternative method to the usual addition of SO2. Parameters such as polarity, treatment duration (24-96 h) and type of inoculum yeast were varied one at a time. LEC decreased the survival time and increased the death rate of H. guilliermondii strain 465 in co-cultures, whereas it did not affect the growth and survival of S. cerevisiae strain 40. A final comparison was made of the main physico-chemical parameters on wine obtained after the different tests. CONCLUSIONS: The results have demonstrated that the low voltage treatment using a pair of graphite electrodes had a positive effect on grape juice fermentation (yeast microflora) during the early stages of winemaking, even with the potential of being an alternative method to the usual addition of SO2. SIGNIFICANCE AND IMPACT OF THE STUDY: These results could be of significant importance in developing new winemaking technologies for an innovative yeast fermentation control process for 'biological wine'.  相似文献   

2.
AIMS: To better understand the outcome of employing low electric current (LEC) technology as a new preservation and alternative in wine technology, and to contribute to its development. It is used in industrial-scale winemaking with commercial yeast (Saccharomyces cerevisiae) during the grape must fermentation. METHODS AND RESULTS: LEC (200 mA, time 16 days) was applied to fresh grape must as an alternative method to the usual sulfur dioxide addition used in the industrial process; two tanks, each 30,000 l, were employed for parallel fermentations. The results show that LEC decreased the survival time and increased the death rate of apiculate yeasts, whereas it did not affect the growth and survival of S. cerevisiae. A comparison was made of the main chemical and sensory parameters of the wines obtained. CONCLUSIONS: The results have demonstrated that the low-voltage treatment had a positive effect on the grape juice fermentation (yeast microflora) during the early stages of winemaking. SIGINIFICANCE AND IMPACT OF THE STUDY: These results could be of significant importance in developing, for 'biological wine', new winemaking technologies for an innovative control process of yeast fermentation.  相似文献   

3.
AIMS: The objectives of this study were to investigate the potential application of a low-amperage direct electric current as a non-thermal process for inactivation of Saccharomyces cerevisiae. METHODS AND RESULTS: Electric current was generated using a direct current power supply connected to a traditional electrochemical cell with two platinum electrodes immersed in conducting solution containing a population of S. cerevisiae. This treatment provoked inactivation of the yeast cells. The microbial destruction illustrated by D-values calculated from survival curves was shown to be proportional to the current amperage (i) (D varies from 1547 min to 140 min when i varies from 0.1 to 1 A, respectively). The efficacy of the treatment was shown to be better at pH < 7. Statistical analysis showed no significant effect (P > 0.05) of ionic strength on yeast lethality induced by electrolysis. CONCLUSIONS: The lethal effect of the electric treatment on S. cerevisiae in phosphate buffer was shown to be due to neither ohmic heating nor toxic hydrogen peroxide. A synergistic effect of temperature and electrolysis was observed when the temperature became lethal for the yeast. SIGNIFICANCE AND IMPACT OF THE STUDY: The method described for yeast lethality induced by electrolysis has potential for soft sterilization, particularly when combined with the synergistic effect of moderate heat.  相似文献   

4.
AIMS: To investigate the occurrence and extent of Saccharomyces cerevisiae and Oenococcus oeni interactions. METHODS AND RESULTS: Interactions between S. cerevisiae and O. oeni were investigated by double-layer and well-plate assays showing the occurrence of specific interactions for each yeast-malolactic bacteria (MLB) coupling. Heat and protease treatments of synthetic grape juice fermented by the S. cerevisiae strain F63 indicated that the inhibitory activity exerted by this yeast on O. oeni is due to a proteinaceous factor(s) which exerts either bacteriostatic or bactericidal effect depending on concentration and affects malolactic fermentation in natural grape juice and wine. CONCLUSIONS: A proteinaceous factor(s) produced by a S. cerevisiae wine strain able to inhibit O. oeni growth and malic acid fermentation was characterized. SIGNIFICANCE AND IMPACT OF THE STUDY: The individuation, characterization and exploitation of yeast proteinaceous factor(s) exerting inhibitory activity on MLB may offer new opportunities for the management of malolactic fermentation.  相似文献   

5.
AIMS: Recombinant Saccharomyces cerevisiae strains harbouring different levels of xylulokinase (XK) activity and effects of XK activity on utilization of xylulose were studied in batch and fed-batch cultures. METHODS AND RESULTS: The cloned xylulokinase gene (XKS1) from S. cerevisiae was expressed under the control of the glyceraldehyde 3-phosphate dehydrogenase promoter and terminator. Specific xylulose consumption rate was enhanced by the increased specific XK activity, resulting from the introduction of the XKS1 into S. cerevisiae. In batch and fed-batch cultivations, the recombinant strains resulted in twofold higher ethanol concentration and 5.3- to six-fold improvement in the ethanol production rate compared with the host strain S. cerevisiae. CONCLUSIONS: An effective conversion of xylulose to xylulose 5-phosphate catalysed by XK in S. cerevisiae was considered to be essential for the development of an efficient and accelerated ethanol fermentation process from xylulose. SIGNIFICANCE AND IMPACT OF THE STUDY: Overexpression of the XKS1 gene made xylulose fermentation process accelerated to produce ethanol through the pentose phosphate pathway.  相似文献   

6.
Pichia guilliermondii is a representative of a group of so-called flavinogenic yeast species that overproduce riboflavin (vitamin B(2)) in response to iron limitation. Using insertion mutagenesis, we isolated P. guilliermondii mutants overproducing riboflavin. Analysis of nucleotide sequence of recombination sites revealed that insertion cassettes integrated into the genome disrupting P. guilliermondii genes similar to the VMA1 gene of Ashbya gossypii and Saccharomyces cerevisiae and FES1 and FRA1 genes of S. cerevisiae. The constructed P. guilliermondiiΔvma1-17 mutant possessed five- to sevenfold elevated riboflavin production and twofold decreased iron cell content as compared with the parental strain. Pichia guilliermondiiΔfra1-45 mutant accumulated 1.8-2.2-fold more iron in the cells and produced five- to sevenfold more riboflavin as compared with the parental strain. Both Δvma1-17 and Δfes1-77 knockout strains could not grow at 37 °C in contrast to the wild-type strain and the Δfra1-45 mutant. Increased riboflavin production by the wild-type strain was observed at 37 °C. Although the Δfes1-77 mutant did not overproduce riboflavin, it showed partial complementation when crossed with previously isolated P. guilliermondii riboflavin-overproducing mutant rib80-22. Complementation analysis revealed that Δvma1-17 and Δfra1-45 mutants are distinct from previously reported riboflavin-producing mutants hit1-1, rib80-22 and rib81-31 of this yeast.  相似文献   

7.
AIMS: The aim of this work is to identify the dominant yeast species in homemade sourdoughs. METHODS AND RESULTS: PCR/restriction fragment length polymorphism analysis of internal transcribed spacer regions was used for the identification of isolates and the data were confirmed with phenotypic tests. The strains belonging to Saccharomyces cerevisiae were identified to strain level by analysis of inter-delta regions. CONCLUSION: This work shows that the dominant species in homemade sourdoughs can differ from each other. Saccharomyces cerevisiae was found to be the dominant species, followed by the Candida milleri, C. humilis, S. exiguus and Issatchenkia orientalis. The inter-delta regions of S. cerevisiae strains showed high polymorphism. SIGNIFICANCE AND IMPACT OF THE STUDY: Occurrence of single, non-Saccharomyces species and S. cerevisiae polymorphism in the yeast populations of sourdough samples.  相似文献   

8.
Pichia guilliermondii is a representative of a yeast species, all of which over-synthesize riboflavin in response to iron deprivation. Molecular genetic studies in this yeast species have been hampered by a lack of strain-specific tools for gene manipulation. Stable P. guilliermondii ura3 mutants were selected on the basis of 5'-fluoroorotic acid resistance. Plasmid carrying Saccharomyces cerevisiae URA3 gene transformed the mutant strains to prototrophy with a low efficiency. Substitution of a single leucine codon CUG by another leucine codon CUC in the URA3 gene increased the efficiency of transformation 100 fold. Deletion cassettes for the RIB1 and RIB7 genes, coding for GTP cyclohydrolase and riboflavin synthase, respectively, were constructed using the modified URA3 gene and subsequently introduced into a P. guilliermondii ura3 strain. Site-specific integrants were identified by selection for the Rib(-) Ura(+) phenotype and confirmed by PCR analysis. Transformation of the P. guilliermondii ura3 strain was performed using electroporation, spheroplasting or lithium acetate treatment. Only the lithium acetate transformation procedure provided selection of uracil prototrophic, riboflavin deficient recombinant strains. Depending on the type of cassette, efficiency of site-specific integration was 0.1% and 3-12% in the case of the RIB1 and RIB7 genes, respectively. We suggest that the presence of the ARS element adjacent to the 3' end of the RIB1 gene significantly reduced the frequency of homologous recombination. Efficient gene deletion in P. guilliermondii can be achieved using the modified URA3 gene of S. cerevisiae flanked by 0.8-0.9 kb sequences homologous to the target gene.  相似文献   

9.
AIMS: The aim was to investigate the antifungal actions of nonyl gallate against Saccharomyces cerevisiae ATCC 7754. METHODS AND RESULTS: The maximum potency of both the growth inhibitory and the fungicidal effect against the yeast strain was found in nonyl gallate among n-alkyl gallates tested. Nonyl gallate induced ROS generation dose-dependently in growing cells. This ester rapidly killed yeast cells even when cell division was restricted by cycloheximide. This ester inhibited glucose-induced medium acidification and promoted the efflux of intracellular potassium ions in a nongrowing condition. Moreover, nonyl gallate induced a leakage of calcein from artificially prepared liposomes to a greater extent than dodecyl gallate did. CONCLUSIONS: These results suggested nonyl gallate injured plasma membrane of S. cerevisiae, resulting in its exhibition of fungicidal effect accompanying with a leakage of intracellular materials from the cells. SIGNIFICANCE AND IMPACT OF THE STUDY: Our study reveals new knowledge on the antifungal actions of nonyl gallate against S. cerevisiae. When nonyl gallate is applied as a food preservative, the level of its addition to foods may be reduced because of its potent antifungal activity compared with weak acids including sorbic acid and benzoic acid.  相似文献   

10.
AIMS: To investigate the influence of a specific ecological niche, the wine grape, on the survival and development of Saccharomyces cerevisiae. METHODS AND RESULTS: A strain with a rare phenotype was sprayed onto the grape surfaces and monitored through two vintages using a specific indicative medium and analysing the internal transcribed spacer regions in the 5.8S rDNA. During the ripening process, there was a progressive colonization of the surface of the undamaged and damaged grapes by epiphytic yeasts, up to the time of harvest. The damaged wine grapes showed a much greater epiphytic yeast population. However, the inoculated S. cerevisiae strain showed a scarce persistence on both undamaged and damaged wine grapes, and the damaged grapes did not appear to improve the grape surface colonization of this strain. CONCLUSIONS: Results indicated that wine grape is not a favourable ecological niche for the development and colonization of S. cerevisiae species. SIGNIFICANCE AND IMPACT OF THE STUDY: Results of this work are further evidence that S. cerevisiae is not specifically associated with natural environments such as damaged and undamaged wine grapes.  相似文献   

11.
Dietary influence of kefir on microbial activities in the mouse bowel   总被引:3,自引:0,他引:3  
AIMS: In this work the microflora present in kefir, a fermented milk product, was studied together with the effect of kefir administration on different groups of indigenous bacteria of mouse bowel. METHODS AND RESULTS: Kefir microflora was composed of lactic acid bacteria, acetic acid bacteria and yeasts. Yeast population was composed of Saccharomyces cerevisiae, S. unisporus, Candida kefir, Kluyveromyces marxianus and K. lactis. The streptococci levels in kefir treated mice increased by 10-fold and the levels of sulfite-reducing clostridia decreased by 100-fold. The number of lactic acid bacteria increased significantly. CONCLUSIONS: The administration of kefir significantly increased the lactic acid bacteria counts in the mucosa of the bowel. Ingestion of kefir specifically lowered microbial populations of Enterobacteriaceae and clostridia. SIGNIFICANCE AND IMPACT OF THE STUDY: This is the first long-term study about the effects of the kefir administration on the intestinal microflora of mice.  相似文献   

12.
AIMS: Kloeckera apiculata and Saccharomyces cerevisiae yeast species are dominant, respectively, at the early and at the following stages of wine fermentation. In the present study, PCR fingerprinting and NTS region amplification and restriction were applied as techniques for monitoring yeast population performing Aglianico of Vulture grape must fermentation. METHODS AND RESULTS: Thirty S. cerevisiae and 30 K. apiculata strains were typed by PCR fingerprinting with (GAC)5 and (GTG)5 primers and by complete NTS region amplification followed by restriction with HaeIII and MspI enzymes. S. cerevisiae strains generated two patterns with (GAC)5 primer, while (GTG)5 primer yielded a higher genetic polymorphism. Conversely, in K. apiculata Aglianico wine strains (GAC)5 and (GTG)5 primers generated the same profile for all strains. Restriction analysis of the amplified NTS region gave the same profile for all strains within the same species, except for one strain of S. cerevisiae. CONCLUSIONS: The PCR fingerprinting technique was useful in discriminating at strain level S. cerevisiae, particularly with the primer (GTG)5. RFLP patterns generated from the NTS region of the two species can be more easily compared than the patterns resulting from PCR fingerprinting, thus RFLP is more suitable for the rapid monitoring of the species involved in different stages of fermentation. SIGNIFICANCE AND IMPACT OF THE STUDY: The molecular techniques used allow discrimination of S. cerevisiae at strain level and monitoring of the ratio of S. cerevisiae/K. apiculata during the fermentation process. Thus, their application can assure technological adjustments in a suitable time.  相似文献   

13.
AIMS: To determine the effects on xylitol accumulation and ethanol yield of expression of mutated Pichia stipitis xylitol dehydrogenase (XDH) with reversal of coenzyme specificity in recombinant Saccharomyces cerevisiae. METHODS AND RESULTS: The genes XYL2 (D207A/I208R/F209S) and XYL2 (S96C/S99C/Y102C/D207A/I208R/F209S) were introduced into S. cerevisiae, which already contained the P. stipitis XYL1 gene (encoding xylose reductase, XR) and the endogenously overexpressed XKS1 gene (encoding xylulokinase, XK). The specific activities of mutated XDH in both strains showed a distinct increase in NADP(+)-dependent activity in both strains with mutated XDH, reaching 0.782 and 0.698 U mg(-1). In xylose fermentation, the strain with XDH (D207A/I208R/F209S) had a large decrease in xylitol and glycerol yield, while the xylose consumption and ethanol yield were decreased. In the strain with XDH (S96C/S99C/Y102C/D207A/I208R/F209S), the xylose consumption and ethanol yield were also decreased, and the xylitol yield was increased, because of low XDH activity. CONCLUSIONS: Changing XDH coenzyme specificity was a sufficient method for reducing the production of xylitol, but high activity of XDH was also required for improved ethanol formation. SIGNIFICANCE AND IMPACT OF THE STUDY: The difference in coenzyme specificity was a vital parameter controlling ethanolic xylose fermentation but the XDH/XR ratio was also important.  相似文献   

14.
AIMS: The identification of culturable microbial communities on wooden art objects and from indoor air, and the analysis of their biodegradative properties. METHODS AND RESULTS: Common and newly-developed agar media were used for the isolation of fungal and bacterial microflora. The identification was carried out by traditional methods and by the sequencing of 16S or 18S rDNA PCR products. Different plate assays were employed to screen the lignolytic and cellulolytic activities of the isolated microflora. Interesting bacteria were isolated from art objects even though the fungi were the principal contaminants of art works. Various fungal and bacterial species exhibited their lignolytic and cellulolytic activity by the decolorization of Remazol Brilliant Blue R, Phenol Red, Azure B and Ostazin Brilliant Red H-3B. CONCLUSIONS: The microbial communities on wooden art objects exposed in an indoor environment were identified. The study showed the biodegradative power of many microorganisms, and new data were added to this field barely investigated. SIGNIFICANCE AND IMPACT OF THE STUDY: By the development of new culture media and the evaluation of different biodegradative plate assays, a strategy for the analysis of microflora in wooden art objects was established. Several aspects of the study could be also exploited for biotechnology applications.  相似文献   

15.
从斑马鱼肠道中分离到一株酵母菌,编号为ZF-5,进行了形态学观察、生理特征测定和26S rDNA D1/D2序列分析,并构建系统发育树。结果表明ZF-5菌株细胞呈卵圆形或杆状,为芽殖,有假菌丝;除乳糖外,能够发酵葡萄糖、蔗糖、麦芽糖等多种碳源;26S rDNA D1/D2区序列分析表明与季也蒙毕赤酵母Pichia guilliermondii的序列相似性最高,构建的系统发育进化树显示菌株ZF-5与Pichia guilliermondii模式菌株CBS 2030(= NRRL Y-2075)亲缘关系最近,  相似文献   

16.
Ethanol production by Clostridium thermocellum ATCC 35609 and Saccharomyces cerevisiae ATCC 26603 was improved in an electrochemical bioreactor system. It was increased by 61% with Cl. thermocellum and 12% with S. cerevisiae in the presence of -1.5 V of electric potential. These increases were attributed to high production rates due to regeneration and availability of increased reduced equivalents in the presence of electric potential. The electric current caused considerable shift in the metabolite concentrations on a molar basis in Cl. thermocellum fermentation but less in S. cerevisiae fermentation. Increasing electric potential in Cl. thermocellum fermentation resulted in less acetate and more lactate production. Acetate production was also reduced with increased electric potential in S. cerevisiae fermentation. The high electric potential of -5 V adversely affected the Cl. thermocellum fermentation, but not the S. cerevisiae fermentation even at a high electric potential of -10 V.  相似文献   

17.
S.J. HIOM, J.R. FURR, A.D. RUSSELL AND J.R. DICKINSON, 1992. The effects of chlorhexidine diacetate (CHA) on Candida albicans, C. glabrata and wild-type and mannan, and permeability mutants of Saccharomyces cerevisiae have been studied. A CHA concentration of 10 μg/ml had little lethal activity against the Candida strains, but was more effective against S. cerevisiae. Concentrations of 100 and especially 1000 μg/ml brought about a much more rapid death of cells. 2-Mercaptoethanol enhanced the activity of CHA to some extent. Some of the mutant strains of S. cerevisiae were rather more sensitive than the wild-type strain. The age of cultures of C. albicans and C. glabrata influenced their response to CHA.  相似文献   

18.
AIMS: To identify and describe the indigenous yeast population involved in traditional balsamic vinegar (TBV) fermentation. METHODS AND RESULTS: Using the restriction analysis of the ribosomal region 5.8S (5.8S rRNA) and the internal transcribed spacers 1 and 2 (5.8S-ITS region) we were able to group 133 strains isolated from 17 cooked grape must samples into 10 different yeast species, included into 4 genera. Moreover, we sequenced the D1/D2 domains of the 26S rRNA and confirmed the reliability of each identification at species level. Most strains belonged to the genus Zygosaccharomyces. In particular, Zygosaccharomyces bailii was found in 41% of the samples, followed by Saccharomyces cerevisiae, Zygosaccharomyces pseudorouxii and Candida stellata. Strains belonging respectively to Zygosaccharomyces mellis, Zygosaccharomyces bisporus, Zygosaccharomyces rouxii, Hanseniaspora valbyensis, Hanseniaspora osmophila and Candida lactis-condensi species were also detected. Despite the great number of species recovered, the mtDNA restriction profiles showed low variability at strain level. Saccharomyces cerevisiae isolates with an higher degree of intraspecific variance were considered an exception. CONCLUSIONS: Many different indigenous yeast species were recovered and TBV yeasts population seems to be far more complex than what was reported in previous literature. SIGNIFICANCE AND IMPACT OF THE STUDY: This study has allowed us to gain a better understanding of the indigenous yeast species of TBV cooked must.  相似文献   

19.
Pichia anomala inhibits the growth of Penicillium roqueforti and Aspergillus candidus on agar. In this investigation, antagonistic activity on agar against 17 mold species was determined. The abilities of Pichia anomala, Pichia guilliermondii, and Saccharomyces cerevisiae to inhibit the growth of the mold Penicillium roqueforti in nonsterile high-moisture wheat were compared by adding 10(3) Penicillium roqueforti spores and different amounts of yeast cells per gram of wheat. Inoculated grain was packed in glass tubes, incubated at 25 degrees C with a restricted air supply, and the numbers of yeast and mold CFU were determined on selective media after 7 and 14 days. Pichia anomala reduced growth on agar plates for all of the mold species tested in a dose-dependent manner. Aspergillus fumigatus and Eurotium amstelodami were the most sensitive, while Penicillium italicum and Penicillium digitatum were the most resistant. Pichia anomala had the strongest antagonistic activity in wheat, with 10(5) and 10(6) CFU/g completely inhibiting the growth of Penicillium roqueforti. Inhibition was least pronounced at the optimum temperature (21 degrees C) and water activity (0.95) for the growth of Penicillium roqueforti. Pichia guilliermondii slightly reduced the growth of Penicillium roqueforti in wheat inoculated with 10(5) and 10(6) yeast CFU/g. S. cerevisiae inhibited mold growth only weakly at the highest inoculum level. Pichia anomala grew from 10(3) to 10(7) CFU/g of wheat in 1 week. To reach the same level, Pichia guilliermondii had to be inoculated at 10(4) CFU while S. cerevisiae required an inoculum of 10(5) CFU to reach 10(7) CFU/g of wheat.  相似文献   

20.
AIM: To evaluate whether intraspecific diversity of Saccharomyces cerevisiae in wine fermentations is affected by initial assimilable-nitrogen content. METHODS AND RESULTS: Saccharomyces cerevisiae isolates from two spontaneous commercial wine fermentations started with adequate and inadequate nitrogen amounts were characterized by mitochondrial DNA restriction analysis. Several strains occurred in each fermentation, two strains, but not the same ones, being predominant at frequencies of about 30%. No significant differences were detected by comparing the biodiversity indices of the two fermentations. Cluster analysis demonstrated that the strain distribution was independent of nitrogen content, the two pairs of closely related dominant strains grouping into clusters at low similarity. CONCLUSIONS: The genetic variability of S. cerevisiae in wine fermentations seemed not to depend on the nitrogen availability in must. SIGNIFICANCE AND IMPACT OF THE STUDY: Nitrogen content did not affect the genetic diversity but may have induced a 'selection effect' on S. cerevisiae strains dominating wine fermentations, with possible consequences on wine properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号