首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A rapid and highly efficient method for transformation of sugarcane callus   总被引:1,自引:0,他引:1  
Modern sugarcane cultivars have complex genetic characteristics and low fertility that render their genetic improvement through traditional breeding difficult. Genetic engineering methodology to introduce foreign genes provides new opportunities for the genetic improvement of sugarcane cultivars. One of prerequisites for successful insertion of a gene cassette into the plant genome is the availability of an efficient transformation protocol. An improved protocol for Agrobacterium-mediated transformation of sugarcane is described. Between 85 and 100% of calli transformed using this procedure produced new calli, and 100% of them were positive for the inserted gene. The whole procedure permitted the production of transgenic calli in a short time (1.5 mo). The transformed calli can be cultured further for the production of the inserted gene-encoded enzyme by using cell culture, or they can be regenerated into transgenic plants. This protocol may be implemented also for the generation of transgenic plants from other species.  相似文献   

2.
[目的]通过检测黑腹果蝇 DDrosophiila melanogaster中piggyBac(PB)转座子AgoPLE1.1的转化活性,明确AgoPLE1.1开发为昆虫转基因载体的潜力.[方法]构建AgoPLE1.1转座酶辅助质粒pAgoHsp和带有红色荧光标记的供体质粒pXLAgo-PUbDsRed,辅助质粒和供体...  相似文献   

3.
Examination of random insertional mutations in transgenic animals harbouring an abnormal phenotype contributes to the discovery of new genes and/or the understanding of already known genes. Here we describe a transgenic mouse line showing early-onset obesity as consequence of the transgene insertion. Molecular genetic analysis revealed a partial deletion of the leptin receptor (Lepr, Ob-R) gene including the coding sequences downstream of exon 17'. This defect prevents the expression of all described membrane-bound isoforms of Ob-R except for isoform Ob-Rc in the homozygous transgenic animals. Thus, this mouse model might be useful for the investigation of the function of the short Ob-R isoforms.  相似文献   

4.
Summary Transfer of genes from heterologous species provides the means of selectively introducing new traits into crop plants and expanding the gene pool beyond what has been available to traditional breeding systems. With the recent advances in genetic engineering of plants, it is now feasible to introduce into crop plants, genes that have previously been inaccessible to the conventional plant breeder, or which did not exist in the crop of interest. This holds a tremendous potential for the genetic enhancement of important food crops. However, the availability of efficient transformation methods to introduce foreign DNA can be a substantial barrier to the application of recombinant DNA methods in some crop plants. Despite significant advances over the past decades, development of efficient transformation methods can take many years of painstaking research. The major components for the development of transgenic plants include the development of reliable tissue culture regeneration systems, preparation of gene constructs and efficient transformation techniques for the introduction of genes into the crop plants, recovery and multiplication of transgenic plants, molecular and genetic characterization of transgenic plants for stable and efficient gene expression, transfer of genes to elite cultivars by conventional breeding methods if required, and the evaluation of transgenic plants for their effectiveness in alleviating the biotic and abiotic stresses without being an environmental biohazard. Amongst these, protocols for the introduction of genes, including the efficient regeneration of shoots in tissue cultures, and transformation methods can be major bottlenecks to the application of genetic transformation technology. Some of the key constraints in transformation procedures and possible solutions for safe development and deployment of transgenic plants for crop improvement are discussed.  相似文献   

5.
The introduction of foreign genes into the germ line of mammals has been a practical reality now for a number of years. This form of experimentation allows the creation of lines of animals tailor-made to answer specific molecular genetic questions. Manipulation of the mammalian embryos has been enormously important in developmental biology in recent years and that experience has brought about the possibility of new experiments allowing the molecular analysis of many biological processes. The methodologies involved in constructing transgenic animals have been published extensively in a number of comprehensive reviews. In typical experiments, pronuclear stage (one cell) embryos are collected after fertilization, but prior to the onset of cleavage. Exogenous cloned linearized DNA is injected into one of the two pronuclei by means of a finely drawn injection pipet. The manipulated embryo is transferred into the oviduct or ovarian bursal space of a surrogate mother previously mated with a sterile male. Alternative methods include retroviral transfection of cleavage stage embryos or insertion of genetically engineered embryo-derived embryonal stem cells into blastocysts. Offspring from these procedures are screened by standard molecular analyses to determine presence of the foreign genetic material. The present report explores the application of this methodology to a specific set of problems: (i) regulation of gene expression in vivo, (ii) the establishment of disease models for the study of pathogenesis, (iii) the use of exogenous genetic elements to correct specific genetic defects, (iv) the role of insertional mutagenesis in disruption of normal development, (v) analysis of genetic ablation, (iv) the use of transgenic animals to modulate carcinogens.  相似文献   

6.
Transgenic techniques are generating new strains of animals that are of great importance for many neurological research projects. This includes new animal models of human diseases that should allow analysis of disease etiology and treatment. The insertion of new genetic material into the mouse genome enables the investigator to study the effects of overexpression of normal or mutated genes under a variety of experimental conditions. The use of cell-specific and/or developmentally regulated promoters permits studies on the expression of the specific DNA in selected cells within the nervous system at important developmental stages. This article focuses on the techniques for generating transgenic mice, noting specific advantages or problems that should be considered when designing a transgenic project. The use of reporter genes such as the LacZ gene is discussed, using the particular example of the myelin proteolipid protein promoter directing expression of the LacZ gene in differentiating oligodendrocytes.  相似文献   

7.
遗传转化是植物基因工程的重要手段。快速、高效地将目的基因导入植物细胞, 并缩短获得转基因后代的时间是遗传转化的关键。花生(Arachis hypogaea)是我国重要的油料及经济作物。目前花生的遗传转化体系尚未完善, 制约着花生的基因功能解析和分子育种进程。该文建立了一套快速、稳定的花生遗传转化体系。通过将农杆菌注射于花生第2茎节的切面获得转化植株, 再将阳性植株进行移栽和回土, 采摘注射点以上的荚果进行后续鉴定与分析。结果表明, 利用该方法可获得40%以上的T0代嵌合体植株, 约5个月可收获T0代花生种子, 其中约有9%的T1代花生植株为非嵌合体的杂合体。针对部分转基因植株结实少的问题, 进一步提出了将快速转化体系与传统组培方法相结合的优化方案。构建的快速转化方法对大蒜(Allium sativum)、马铃薯(Solanum tuberosum)和香雪兰(Freesia refracta)的遗传转化具有潜在应用价值, 对其它植物的遗传转化也有重要参考价值。  相似文献   

8.
Ding S  Wu X  Li G  Han M  Zhuang Y  Xu T 《Cell》2005,122(3):473-483
  相似文献   

9.
谢秀祯  林俏慧  郭勇 《广西植物》2007,27(6):903-908
以根癌农杆菌LBA4404和EHA105为供体菌株,对玫瑰茄愈伤组织进行了转化条件的研究,建立了一套玫瑰茄愈伤组织遗传转化体系。利用该转化体系获得了2个稳定表达新霉素磷酸转移酶活性的玫瑰茄转化细胞系。GUS活性组织化学检测和PCR扩增鉴定的结果表明,愈伤组织的转化率为4%。说明采用农杆菌介导法将外源基因经愈伤组织导入玫瑰茄细胞是可行的。  相似文献   

10.
In order to investigate whether foreign genes can be used as genetic markers of donor nuclei in fish nuclear transplantation, expression of the GFP gene derived from donor nuclei was examined in nuclear transplants in medaka (Oryzias latipes). Embryonic nuclei were obtained from blastula embryos produced by crossing of transgenic fish of the wild-type strain heterozygous for the GFP gene with nontransgenic ones or by mutual crossing between transgenic fish. The GFP gene was driven by the promoter of the medaka elongation factor gene, EF-1alpha-A, which is known to induce GFP expression in many tissues except for the muscle in the transgenic fish. The nuclei were transplanted into nonenucleated unfertilized eggs of the orange-red strain. Adult nuclear transplants were successfully obtained at the rate of about 2% of the operated eggs. They were triploid and had no reproductive potential. The GFP gene was expressed in embryos, fry, and adults of nuclear transplants in a pattern similar to that in the transgenic fish. These results indicate that GFP is useful as a foreign genetic marker of donor nuclei in fish nuclear transplantation.  相似文献   

11.
A collection of transgenic Arabidopsis thaliana plants has been obtained by Agrobacterium-mediated transformation. The genomes of the transgenic plants contain insertions of T-DNA of the vector plasmids pLD3 or pPCVRN4. Genes bearing T-DNA insertions were shown to constitute 12-18% of the total number of A. thaliana genes. Seventy-five lines have been chosen from the collection and subjected to genetic and molecular-genetic analysis. Of these, 5 were dominant mutants, and 70, recessive insertion mutants with various morphological defects. Identification of mutant phenotypes and genetic characterization of the transgenic lines have been performed with the use of nutrient media supplemented with exogenous hormones, which revealed five recessive lethal mutants and one dominant sterile mutant.  相似文献   

12.
月季组织培养和遗传转化体系的研究进展   总被引:1,自引:0,他引:1  
月季通过器官和体细胞胚发生途径都可以获得再生植株,在遗传转化中主要是利用体细胞胚作为转化受体。目前,利用农杆菌介导法和基因枪法已成功将外源基因如报告基因、抗病基因和改变花色的基因等导入月季基因组中。本文对近年来月季组织培养和转基因研究进展进行了综述,为建立月季高效遗传转化体系奠定了理论基础。  相似文献   

13.
植物基因工程的兴起,使特定的外源基因引入植物细胞成为可能。水稻转基因研究是国内外植物分子遗传学研究的热点之一。近十几年来,水稻转基因研究已取得显著进展。综述了水稻基因转化的方法、转基因技术在水稻上的应用及外源基因在转基因后代中的遗传表达的研究进展。  相似文献   

14.
Summary Plant genetic transformation technologies rely upon the selection and recovery of transformed cells. Selectable marker genes used so far have been either antibiotic resistance genes or herbicide tolerance genes. There is a need to apply alternative principles of selection, as more transgenic traits have to be incorporated into a transgenic crop and because of concern that the use of conventional marker genes may pose a threat to humans and the environment. New classes of marker genes are now available, conferring metabolic advantage of the transgenic cells over the non-transformed cells. The new selection systems, as described in this review, are being used with success and superior performance over the traditional marker systems.  相似文献   

15.
高效遗传转化技术是植物重要性状功能基因鉴定的前提和转基因育种的基础.随着纳米生物技术的发展,以纳米载体介导的植物转基因技术已显示出巨大的应用潜力.综述了国内外应用于植物纳米载体的类型、与外源基因的结合方式以及传输细胞的原理,重点阐述了影响纳米基因载体性能与转化效率的重要因素,以及纳米载体介导外源基因转化植物细胞的方法,...  相似文献   

16.
The random germline integration of genetically engineered transgenes has been a powerful technique to study the role of particular genes in variety of biological processes. Although the identification of the transgene insertion site is often not essential for functional analysis of the transgene, identifying the site can have practical benefit. Enabling one to distinguish between animals that are homozygous or hemizygous for the transgene locus could facilitate breeding strategies to produce animals with a large number of genetic markers. Furthermore, founder lines generated with the same transgene construct may exhibit different phenotypes and levels of transgene expression depending on the site of integration. The goal of this report was to develop a rapid protocol for the identification and verification of transgene insertion sites. To identify host genomic sequences at the coagulation Factor X transgene integration site, DNA from a tail snip of the transgenic mouse was digested with NcoI and circularized using T4 DNA ligase. Using appropriately positioned PCR primers annealing to a transgene fragment distal to a terminal transgene restriction site (NcoI), one could amplify a fragment containing the transgene terminal region and extending into the flanking genomic sequence at the insertion site. DNA sequence determination of the amplicon permitted identification of the insertion site using a BLASTN search. FISH analysis of a metaphase spread of primary fibroblasts derived from the transgenic mouse was consistent with the identification of insertion site near the end of mouse chromosome 14. Identification of transgene insertion sites will facilitate genotyping strategies useful for the construction of mice with multiple engineered genetic markers and to distinguish among different founder lines generated by the same transgene. Furthermore, identification of the insertion site is necessary to analyze unexpected phenotypes that might be caused by insertional inactivation of an endogenous gene.  相似文献   

17.
稳定遗传表达分析是一种植物中常用的整体解析基因的方式。有多种转化方式可供选择,也可根据所需要的获得的转基因植物材料选择受体材料。但是由于稳定遗传转化周期较长且大部分材料不适合于进行荧光观察,所以在一些基因的研究中逐渐被瞬时表达分析系统。虽然瞬时表达分析用时短,但是转化效率受到多方面的限制,转化材料无法保存。目前由于植物悬浮培养细胞材料均一,增殖迅速并且可以满足大批量研究需求逐渐成为植物研究中的热点材料。以此同时,在亚细胞定位方面,悬浮培养细胞还是良好的应用材料。采用农杆菌介导法进行植物悬浮培养细胞的转化中方法较为成熟,但是获得纯净的转基因细胞系的转化周期较长。在本研究中针对上述问题我们建立了一种转化时间短,转化效率高的植物悬浮培养细胞稳定遗传转化体系。同时将这个体系应用到基因的亚细胞定位当中进行蛋白质快速定位分析。  相似文献   

18.
Wheat transformation technology has progressed rapidly during the past decade. Initially, procedures developed for protoplast isolation and culture, electroporation- and polyethylene glycol (PEG)-induced DNA transfer enabled foreign genes to be introduced into wheat cells. The development of biolistic (microprojectile) bombardment procedures led to a more efficient approach for direct gene transfer. More recently, Agrobacterium-mediated gene delivery procedures, initially developed for the transformation of rice, have also been used to generate transgenic wheat plants. This review summarises the considerable progress in wheat transformation achieved during the last decade. An increase in food production is essential in order to sustain the increasing world population. This could be achieved by the development of higher yielding varieties with improved nutritional quality and tolerance to biotic and abiotic stresses. Although conventional breeding will continue to play a major role in increasing crop yield, laboratory-based techniques, such as genetic transformation to introduce novel genes into crop plants, will be essential in complementing existing breeding technologies. A decade ago, cereals were considered recalcitrant to transformation. Since then, a significant research effort has been focused on cereals because of their agronomic status, leading to improved genetic transformation procedures (Bommineni and Jauhar 1997). Initially, the genetic transformation of cereals relied on the introduction of DNA into protoplasts and the subsequent production of callus from which fertile plants were regenerated. More recently, major advances have been accomplished in the regeneration of fertile plants from a range of source tissues, providing an essential foundation for the generation of transgenic plants. This review summarises procedures, vectors and target tissues used for transformation, high-lights the limitations of current approaches and discusses future trends. The citation of references is limited, where possible, to the most relevant or recent reports.  相似文献   

19.
Cotton is one of the most important cash crops in US agricultural industry. Environmental stresses, such as drought, high temperature and combination of both, not only reduce the overall growth of cotton plants, but also greatly decrease cotton lint yield and fiber quality. The impact of environmental stresses on fiber development is poorly understood due to technical difficulties associated with the study of developing fiber tissues and lack of genetic materials to study fiber development. To address this important question and provide the need for scientific community, we have generated transgenic cotton lines harboring cotton fiber specific promoter (CFSP)-reporter constructs from six cotton fiber specific genes (Expansin, E6, Rac13, CelA1, LTP, and Fb late), representing genes that are expressed at different stages of fiber development. Individual CFSP::GUS or CFSP::GFP construct was introduced into Coker 312 via Agrobacterium mediated transformation. Transgenic cotton lines were evaluated phenotypically and screened for the presence of selectable marker, reporter gene expression, and insertion numbers. Quantitative analysis showed that the patterns of GUS reporter gene activity during fiber development in transgenic cotton lines were similar to those of the native genes. Greenhouse drought and heat stress study showed a correlation between the decrease in promoter activities and decrease in fiber length, increase in micronaire and changes in other fiber quality traits in transgenic lines grown under stressed condition. These newly developed materials provide new molecular tools for studying the effects of abiotic stresses on fiber development and may be used in study of cotton fiber development genes and eventually in the genetic manipulation of fiber quality.  相似文献   

20.
Phytoremediation — the use of plants to clean up polluted soil and water resources — has received much attention in the last few years. Although plants have the inherent ability to detoxify xenobiotics, they generally lack the catabolic pathway for the complete degradation of these compounds compared to microorganisms. There are also concerns over the potential for the introduction of contaminants into the food chain. The question of how to dispose of plants that accumulate xenobiotics is also a serious concern. Hence the feasibility of phytoremediation as an approach to remediate environmental contamination is still somewhat in question. For these reasons, researchers have endeavored to engineer plants with genes that can bestow superior degradation abilities. A direct method for enhancing the efficacy of phytoremediation is to overexpress in plants the genes involved in metabolism, uptake, or transport of specific pollutants. Furthermore, the expression of suitable genes in root system enhances the rhizodegradation of highly recalcitrant compounds like PAHs, PCBs etc. Hence, the idea to amplify plant biodegradation of xenobiotics by genetic manipulation was developed, following a strategy similar to that used to develop transgenic crops. Genes from human, microbes, plants, and animals are being used successfully for this venture. The introduction of these genes can be readily achieved for many plant species using Agrobacterium tumefaciens-mediated plant transformation or direct DNA methods of gene transfer. One of the promising developments in transgenic technology is the insertion of multiple genes (for phase 1 metabolism (cytochrome P450s) and phase 2 metabolism (GSH, GT etc.) for the complete degradation of the xenobiotics within the plant system. In addition to the use of transgenic plants overexpressed with P450 and GST genes, various transgenic plants expressing bacterial genes can be used for the enhanced degradation and remediation of herbicides, explosives, PCBs etc. Another approach to enhancing phytoremediation ability is the construction of plants that secrete chemical degrading enzymes into the rhizosphere. Recent studies revealed that accelerated ethylene production in response to stress induced by contaminants is known to inhibit root growth and is considered as major limitation in improving phytoremediation efficiency. However, this can be overcome by the selective expression of bacterial ACC deaminase (which regulates ethylene levels in plants) in plants together with multiple genes for the different phases of xenobiotic degradation. This review examines the recent developments in use of transgenic-plants for the enhanced metabolism, degradation and phytoremediation of organic xenobiotics and its future directions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号