首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
It has been long postulated that extracellular purines can modulate the function of the male reproductive system by interacting with different purinergic receptors of Sertoli and germinative cells. Many authors have described the biological changes induced by extracellular ATP and/or adenosine in these cells, and some hypothetical models for paracrine communication mediated by purines were proposed; however, the cellular source(s) of these molecules in seminiferous tubules remains unknown. In this study, we demonstrated for the first time that Sertoli cells are able to release ATP (0.3 nmol/mg protein) and adenosine (0.1 nmol/mg protein) in the extracellular medium, while germinative and myoid peritubular cells are able to secrete adenosine (0.02 and 0.37 nmol/mg protein, respectively). Indeed, all the three types of cells were able to release inosine at significant concentrations (about 0.4 nmol/mg protein). This differential secretion depending on the cellular type suggests that these molecules may be involved in the paracrine regulation and/or control of the maturation processes of these cells.  相似文献   

2.
Recent reports have described purinergic modulation of tumor necrosis factor-alpha (TNF-α) signaling in neutrophils and astrocytes. In Sertoli cells, both TNF-R1 and TNF-R2 TNF-α receptors are present and this cytokine modulates many functions of these cells related to the maintenance of spermatogenesis. Sertoli cells express distinct purinoreceptors and previous work has shown that these cells secrete extracellular nucleotides and their metabolites. In this work, we studied the possible role of extracellular purines in TNF-α signaling in cultured Sertoli cells. This cytokine increased inosine concentration from 30 min to 6 h, with no effect at 24 h. Both TNF-α and inosine increased nitrite accumulation and nitric oxide synthase activity. Erythro-9-(2-hydroxy-3-nonyl)adenine (EHNA), an adenosine deaminase inhibitor, abolished the TNF-α induced inosine increase, nitrite accumulation and nitric oxide synthase activity. These results suggest that extracellular inosine acts as intermediary in TNF-α stimulated nitric oxide production in cultured Sertoli cells.  相似文献   

3.
Tissue type (t) and urokinase type (u) plasminogen activators (PAs) have been shown to be secreted by Sertoli cells in the seminiferous tubules in a cyclic fashion and to be dependent upon FSH stimulation or upon the presence of adjacent spermatogenic cells. In the present study we have analyzed the production of PAs by retinoid-treated rat Sertoli cells. In addition, because retinoids modulate the response of Sertoli cells to FSH either potentiating or antagonizing its action, we have investigated a possible modulation of FSH-stimulated PA production. Under basal conditions, Sertoli cells, isolated from prepubertal rats, secrete predominantly uPA. A significant dose-dependent inhibition of uPA activity was observed after treatment with retinol, while no significant effect was detected upon tPA secretion. When Sertoli cells were cultured in the presence of 0.25 microM retinol, a significant inhibition of uPA activity was evident after 16 h of treatment and reached approximately 80% after 48 h of treatment. The analysis of the mRNA levels revealed that retinol induces an inhibition of the steady-state levels of uPA mRNA without affecting those of tPA. Moreover, retinol affected uPA mRNA levels by increasing mRNA turnover. The effect of retinoids on Sertoli cells isolated from older animals was less evident, possibly due to the reduced production of uPA with the increase of age of the donor animals. Our results on the effect of retinoids upon Sertoli cell uPA production reinforce the importance of retinoids in the control of postnatal testis development.  相似文献   

4.
Retinol (vitamin A) is involved in several cellular processes, like cell division, differentiation, transformation and apoptosis. Although it has been shown that retinol is a limitant factor for all these processes, the precise mechanisms by which retinol acts are still unknown. In the present study we hypothesised that alterations in the cytoskeleton of Sertoli cells induced by retinol supplementation could indicate an adaptive maintenance of its functions, since it plays an important role in the transformation process that we observed. Previous results demonstrated that Sertoli cells treated with retinol showed an oxidative imbalance, that leads the cell to two phenotypes: apoptosis or transformation. Our group has identified characteristics of Sertoli cells transformed by retinol which results in normal cell functions modification. In the present study the actin filament fluorescence assay and the deformation coefficient showed a modification in the morphology induced by retinol. We also observed an oxidative alteration in isolated cytoskeleton proteins and did not show alterations when these proteins are analyzed by electrophoreses. Our results showed an increase in mitochondria superoxide production and a decrease in nitric oxide levels. All results were partially or completely reverted by co-treatment of the antioxidant Trolox®. These findings suggest that the cytoskeleton components suffer individual alterations in different levels and that these alterations generate a global phenotype modification and that these processes are probably ROS dependent. We believe that the results from this study indicate an adaptation of the cytoskeleton to oxidative imbalance since there was not a loss of its function. (Mol Cell Biochem 271: 189–196, 2005)  相似文献   

5.
Extracellular purines are involved in the regulation of a wide range of physiological processes, including cytoprotection, ischemic preconditioning, and cell death. These actions are usually mediated via triggering of membrane purinergic receptors, which may activate antioxidant enzymes, conferring cytoprotection. Recently, it was demonstrated that the oxidative stress induced by cisplatin up-regulated A1 receptor expression in rat testes, suggesting an involvement of purinergic signaling in the response of testicular cells to oxidant injury. In this article, we report the effect of hydrogen peroxide on purinergic agonist release by cultured Sertoli cells. Extracellular inosine levels are strongly increased in the presence of H2O2, suggesting an involvement of this nucleoside on Sertoli cells response to oxidant treatment. Inosine was observed to decrease H2O2-induced lipoperoxidaton and cellular injury, and it also preserved cellular ATP content during H2O2 exposure. These effects were abolished in the presence of nucleoside uptake inhibitors, indicating that nucleoside internalisation is essential for its action in preventing cell damage.  相似文献   

6.
The levels of cellular retinol-binding protein (CRBP) and cellular retinoic acid-binding protein (CRABP) have been measured in Sertoli cells maintained under different cultural conditions. Sertoli cells were isolated from prepubertal rats and cultured in a chemically defined medium without or with follicle-stimulating hormone (FSH), insulin, retinol or testosterone added individually or in combinations. The additions were made at the beginning of the culture or 24 h before the cells were subjected to determinations of CRBP and CRABP by radioimmunoassay. No differences were observed either after 1 or 4 days of treatment. The results obtained indicated that the levels of the two retinoid-binding proteins were unchanged in Sertoli cells in response to hormone and/or retinol administration. To rule out the possibility that the Sertoli cells used in our study were unresponsive to the hormones, lactate production by the cells cultured in the presence of FSH or insulin was measured. The amount of lactate produced under hormonal stimulation was significantly higher than the amount produced in absence of the hormones, thus indicating the ability of our Sertoli cells to respond to the hormonal stimulation.  相似文献   

7.
Extracellular purines are involved in the regulation of a wide range of physiological processes, including cytoprotection, ischemic preconditioning, and cell death. These actions are usually mediated via triggering of membrane purinergic receptors, which may activate antioxidant enzymes, conferring cytoprotection. Recently, it was demonstrated that the oxidative stress induced by cisplatin up-regulated A1 receptor expression in rat testes, suggesting an involvement of purinergic signaling in the response of testicular cells to oxidant injury. In this article, we report the effect of hydrogen peroxide on purinergic agonist release by cultured Sertoli cells. Extracellular inosine levels are strongly increased in the presence of H2O2, suggesting an involvement of this nucleoside on Sertoli cells response to oxidant treatment. Inosine was observed to decrease H2O2-induced lipoperoxidaton and cellular injury, and it also preserved cellular ATP content during H2O2 exposure. These effects were abolished in the presence of nucleoside uptake inhibitors, indicating that nucleoside internalisation is essential for its action in preventing cell damage.  相似文献   

8.
Sertoli cells are hormonally regulated by follicle-stimulating hormone (FSH) acting upon a G-protein-linked cell surface FSH receptor. FSH increases intracellular cyclic AMP but the involvement of other signal transduction mechanisms including intracellular calcium in FSH action are not proven. Using freshly isolated rat Sertoli cells we measured cytosolic free ionized calcium levels by dual-wavelength fluorescence spectrophotometry using the calcium-sensitive fluorescent dye Fura2-AM. The cytosolic calcium concentration in unstimulated Sertoli cells was 89 +/- 2 nM (n = 151 experiments) and was markedly increased by either calcium channel ionophores (ionomycin, Bay K8644) or plasma membrane depolarization consistent with the presence of voltage-sensitive and -independent calcium channel in Sertoli cell membranes. Ovine FSH stimulated a specific, sensitive (ED50, 5.0 ng of S-16/ml), and dose-dependent (maximal at 20 ng/ml) rise in cytosolic calcium commencing within 60 s to reach levels of 192 +/- 31 nM after 180 s and lasting for at least 10 min. The effect of FSH was replicated by forskolin, cholera toxin, and dibutyryl cyclic AMP, suggesting that cyclic AMP may mediate the FSH-induced rise in cytosolic calcium. The FSH-induced rise in cytosolic calcium required extracellular calcium and was abolished by calcium channel blockers specific for dihydropyridine (verapamil, nicardipine), nonvoltage-gated (ruthenium red) or all calcium channels (cobalt). Thus FSH action on Sertoli cells involves a specific, rapid, and sustained increase in cytosolic calcium which requires extracellular calcium and involves both dihydropyridine-sensitive, voltage-gated calcium channels and voltage-independent, receptor-gated calcium channels in the plasma membranes of rat Sertoli cells. The replication by cyclic AMP of the effects of FSH suggests that calcium may be a signal-amplification or -modulating mechanism rather than an alternate primary signal transduction system for FSH in Sertoli cells.  相似文献   

9.
We have previously reported metabolic cooperation between Sertoli and peritubular myoid cells in terms of synthesis of one of the main testicular extracellular matrix (ECM) constituents, glycosaminoglycans (GAG). This study concerns Sertoli cell ECM-peritubular myoid cell interactions in terms of GAG synthesis. We have examined the responses of hormones and other regulatory agents such as a combination of follicle-stimulating hormone (FSH), insulin, retinol, and testosterone (FIRT) on peritubular myoid cells, and tested if Sertoli cell ECM or serum factor substitute for the stimulation by FIRT. Testicular peritubular myoid cells cultured on Sertoli cell ECM showed significant increases in the levels of cell- and ECM-associated GAG over that when cultured on uncoated plastic. This indicates a specific cell-substratum interaction between Sertoli cell ECM and peritubular myoid cells in the testis in terms of GAG synthesis. Moreover, in terms of cell-associated GAG synthesis, peritubular myoid cells cultured on Sertoli cell ECM or on plastic in the presence of serum substituted for the stimulatory response of FIRT on peritubular myoid cells cultured on uncoated plastic. The data are discussed in relation to the possible role of cell-substratum interaction in maintaining peritubular myoid cell functions. © 1993 Wiley-Liss, Inc.  相似文献   

10.
While numerous studies have examined the response of immature rat Sertoli cells to specific hormones and growth factors, the regulation of mature cells in vitro has not been well examined because highly purified cells have been difficult to isolate. We now describe a detailed method for isolating Sertoli cells from mature (> 60 days of age) rats and generating primary cultures of these cells greater than 90% in purity. We demonstrate that cell density, hormones, and growth factors regulate the synthesis or secretion of two Sertoli cell products, transferrin and Cyclic Protein-2 (CP-2)/cathepsin L. Cell density modulated the response of mature Sertoli cells to some hormones; insulin (at 10 micrograms/ml) and epidermal growth factor (EGF) acted synergistically to stimulate transferrin synthesis by 80% when cells were cultured at a density of 1.65 x 10(5) cells/cm2 but had no effect on transferrin synthesis by cells cultured at 1.46 x 10(5) cells/cm2. A mixture of FSH, retinol, and testosterone increased transferrin synthesis by 30% at both cell densities, and this stimulation was independent of the effect of EGF and insulin. CP-2/cathepsin L synthesis was significantly stimulated by increased cell density. FSH, retinol, and testosterone also stimulated CP-2/cathepsin L synthesis by 30%; however, this stimulation just missed being statistically significant. Finally, we demonstrated that secretion of transferrin and CP-2 was reduced when cells were cultured in the presence of interleukin-1 alpha, a cytokine synthesized by Sertoli cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
The conditioned medium from Sertoli cells contains a potent mitogen(s) that can markedly stimulate the proliferation of 4 different cell lines of endoderm or mesoderm origin in the presence or absence of serum. With A431 cells, conditioned medium produced in a dose-dependent manner up to a 5.2-fold increase in cell number after 5 days in culture. Addition of follicle-stimulating hormone (FSH), testosterone, retinol, and insulin to the Sertoli cells increased the secretion of the mitogenic activity. The ability of Sertoli cell conditioned medium (SCCM) to displace 125I-labeled epidermal growth factor (125I-EGF) from formalin-fixed A431 cells was also examined. The SCCM from Sertoli cells incubated with insulin contained 1.42 ng eq of EGF/ml; testosterone, retinol, and FSH (in the presence of insulin) further increased the secretion of this EGF competing activity to 2.09, 2.56, and 3.22 ng eq/ml, respectively. The amount of EGF competing activity was positively correlated with mitogenic activity. Separation of SCCM by gel filtration on Bio-Gel P-10 produced three major peaks of EGF-competing activity at apparent Mr = 1800-2100, 3800-4200, and 8000-9500. Chromatographing SCCM (in the presence of protease inhibitors) on size exclusion high performance liquid chromatography revealed two peaks of EGF competing activity at Mr about 8000 and 2000 coincident with and proportional to peaks of mitogenic activity. This activity was heat-sensitive and resistant to reducing agents, and addition of an equivalent amount of EGF as that present in SCCM produced an inhibition in growth of the A431 cells compared to a 3-fold stimulation with SCCM. Thus, the Sertoli cells secrete a potent mitogen that is distinct from EGF and alpha TGF. This factor that we have termed Sertoli cell-secreted growth factor is hormonally regulated by FSH, testosterone, and retinol and may play an important role in controlling spermatogenesis.  相似文献   

12.
J B Yee  J C Hutson 《Life sciences》1989,44(17):1193-1199
Sertoli cells of the testis secrete lactate in response to follicle-stimulating hormone (FSH). It is thought that the developing germ cells use lactate as an energy substrate preferentially over glucose. However, the biochemical mechanism(s) involved in the regulation of lactate secretion in response to FSH are unknown. The purpose of this study was to determine if extracellular calcium was important for the actions of FSH during this response. It was found that the FSH-induced increase in lactate production by Sertoli cells was not dependent upon the presence of extracellular calcium. However, A23187 (a calcium ionophore) stimulated lactate secretion in the presence of extracellular calcium. When FSH and A23187 were tested together at maximal concentrations, more lactate was secreted than when either FSH or A23187 was tested alone. Neither verapamil, nifedipine nor diltiazem (calcium channel "blockers") were able to inhibit the ability of FSH to increase lactate secretion. These results indicate that FSH-induced secretion of lactate by cultured Sertoli cells is not dependent upon extracellular calcium.  相似文献   

13.
Testicular peritubular cells produce a paracrine factor termed PModS that has dramatic effects on Sertoli cell function in vitro. The current study was designed to examine the actions of PModS and hormones on Sertoli cell aromatase activity and plasminogen activator production at various stages of pubertal development. Sertoli cells were isolated from 10-, 20-, and 35-day-old rats (ages correspond to prepubertal, midpubertal, and late-pubertal stages of development). Aromatase activity was found to be high and hormone-responsive in prepubertal Sertoli cells and to decline and be nonresponsive to hormones in late-pubertal Sertoli cells. FSH was the only hormone found to influence aromatase activity and estrogen production. PModS alone was not found to affect aromatase activity at any of the developmental stages examined. Interestingly, PModS was found to suppress the ability of FSH to stimulate aromatase activity and estrogen production in midpubertal Sertoli cells. Results imply that PModS may promote Sertoli cell differentiation to a more adult stage of development that is less responsive to FSH in stimulating aromatase activity. In contrast to aromatase activity, plasminogen activator production was found to increase during pubertal development. Production of Sertoli cell tissue-type plasminogen activator (tPa) was stimulated by FSH at each of the developmental stages examined, whereas production of urokinase-type plasminogen activator (uPa) was influenced by FSH only in prepubertal Sertoli cells. Insulin also stimulated uPa and tPa production by prepubertal Sertoli cells, and retinol significantly suppressed uPa production and the ability of FSH to stimulate tPa production by midpubertal Sertoli cells.  相似文献   

14.
15.
Actions of extracellular matrix on Sertoli cell morphology and function   总被引:3,自引:0,他引:3  
Sertoli cells were isolated and cultured in the absence or presence of extracellular matrix (ECM) to determine whether ECM may influence Sertoli cell function on a molecular level. As previously described, a morphological analysis of the cells indicated that ECM allows the expression of a columnar histotype and the formation of junctional complexes. The combined actions of ECM and hormones were found to have a profound effect in promoting the expression of a polarized Sertoli cell morphology. In our investigation of the effects of ECM on Sertoli cells, we used transferrin and androgen-binding protein (ABP) production as biochemical markers of Sertoli cell function. The presence of ECM was found to cause a 25% increase in the basal level of transferrin production; however, ECM had no effect on the basal level of ABP production by Sertoli cells. Regulatory agents such as follicle-stimulating hormone (FSH) and a combination of FSH, insulin, retinol, and testosterone stimulated the production of both transferrin and ABP. The ability of hormones to stimulate these Sertoli cell functions was not influenced by the presence of ECM. Similar results were obtained with 2-microns- or 50-microns-thick ECM and with a seminiferous tubule biomatrix preparation. ECM was found to increase the maintenance of long-term Sertoli cell cultures; however, the decline in Sertoli cell functional integrity, which occurs during cell culture, was not affected by the presence of ECM. An additional functional parameter examined was the radiolabeled proteins secreted by Sertoli cells. ECM did not promote the production or affect the electrophoretic profile of Sertoli cell-secreted proteins under basal or hormonally stimulated conditions. Combined results indicated that although ECM allowed the expression of a normal Sertoli cell histotype, ECM had no major effects on the Sertoli cell functions analyzed nor on the hormonal regulation of these functions. The inability of ECM to affect Sertoli cell function on a molecular level is discussed with regard to environmental as opposed to regulatory cellular interactions. Our observations imply that dramatic effects of ECM on cell morphology do not necessarily correlate to subsequent effects on cellular function.  相似文献   

16.
Testicular biopsies from 82 oligo-or azoospermic male patients were subjected to immunostaining using anti-human FSH antibodies. Histological evaluation showed normal spermatogenesis (nspg) in 7 (FSH: 2.7±0.7), mixed atrophy (ma) in 63 (FSH:5.3±0.5), and bilateral or unilateral Sertoli Cell Only syndrome (SCO) in 12 (FSH:21.7±3.5) patients. For the relationship between FSH values and testicular histology, see Bergmann et al. (1994). FSH immunoreactivity was found exclusively in Sertoli cells and in some interstitial cells. Seminiferous epithelium showing normal or impaired spermatogenesis displayed only weak immunoreactivity compared to intense immunoreaction, i.e. large and numerous vesicles in Sertoli cells of SCO tubules in biopsies showing mixed atrophy or SCO. In addition, h-FSH receptor mRNA was demonstrated by in situ hydridization using biotinylated cDNA antisense oligonucleotides. Hybridization signals were found within the seminiferous epithelium exclusively in Sertoli cell cytoplasm associated with normal spermatogenesis and in epithelia showing different signs of impairment, including SCO. It is concluded that: (1) Sertoli cells are the only cells within the seminiferous epithelium expressing FSH receptors; (2) the accumulation of FSH immunoreactivity in Sertoli cells of SCO tubules appears to be a sign of impaired Sertoli cell function.  相似文献   

17.
Sertoli and peritubular myoid cells, the somatic cells of the seminiferous tubule, support growth and differentiation of developing germ cells. This action strictly depends on the availability of in situ synthesized retinoic acid and we have previously documented the ability of Sertoli, but not peritubular cell extracts, to support the oxidation of retinol to retinoic acid. Using primary cultures of somatic cells treated with a physiological concentration of free retinol, we show here that the same is essentially true also for whole cultured cells. Sertoli cells are capable of producing not only retinoic acid, but are also the major site of retinyl ester (mainly, retinyl palmitate) formation. Compared with retinyl palmitate accumulation, retinoic acid synthesis was both faster and positively influenced by prior exposure to retinol. This increase in retinoic acid synthesis was further augmented by treatment with the retinoic acid catabolic inhibitor liarozole, thus indicating that enhanced synthesis, rather than reduced catabolism, is responsible for such an effect. Myoid cells had a higher capacity to incorporate exogenously supplied retinol, yet retinoic acid synthesis, and even more so retinyl palmitate formation, were considerably lower than in Sertoli cells. Retinoic acid synthesis in myoid cells was not only depressed, but also very little influenced by prior retinol exposure and totally insensitive to liarozole. These data further support the view that myoid cells are involved in retinol uptake from the blood and its transfer to other cells, rather than in metabolic interconversion or long-term storage of vitamin A, two processes that mainly take place in Sertoli cells.  相似文献   

18.
The stimulatory effects of follicle-stimulating hormone (FSH), insulin, and insulin-like growth factor I (IGF-I) on lactate production and hexose uptake by Sertoli cells from immature rats were studied. The time-courses and the maximal stimulatory effects of FSH, insulin, and IGF-I on lactate production were virtually identical. When Sertoli cells were incubated in the presence of FSH in combination with insulin or IGF-I (submaximal doses), additive but no pronounced synergistic effects were observed. The stimulatory effects of FSH and insulin were not dependent on the presence of extracellular calcium. 2-Deoxy-D-glucose (2-DOG), an analogue of D-glucose, was used to investigate the hexose transport system of Sertoli cells. Uptake of 2-DOG was linear in time and virtually all of the intracellular 2-DOG was phosphorylated up to 30 min of incubation; 2-DOG uptake was inhibited by cytochalasin B, but not by cytochalasin E. D-glucose, but not D-galactose, appeared to be an effective competitor of 2-DOG uptake. The Km of 2-DOG uptake was not influenced by FSH, insulin, and IGF-I. FSH had no effect on the Vmax of 2-DOG uptake, whereas insulin and IGF-I caused a 30% stimulation of the Vmax. It is concluded that FSH, insulin, and IGF-I stimulate lactate production by cultured Sertoli cells, but that only insulin and IGF-I stimulate hexose transport. The insulin-like effect of FSH on Sertoli cells may principally involve stimulation of glycolytic enzyme activities.  相似文献   

19.
Sertoli cell number is considered to be stable and unmodifiable by hormones after puberty in mammals, although recent data using the seasonal breeding adult Djungarian hamster (Phodopus sungorus) model challenged this assertion by demonstrating a decrease in Sertoli cell number after gonadotropin depletion and a return to control levels following 7 days of FSH replacement. The present study aimed to determine whether adult Sertoli cells are terminally differentiated using known characteristics of cellular differentiation, including proliferation, junction protein localization, and expression of particular maturational markers, in the Djungarian hamster model. Adult long-day (LD) photoperiod (16L:8D) hamsters were exposed to short-day (SD) photoperiod (8L:16D) for 11 wk to suppress gonadotropins and then received exogenous FSH for up to 10 days. Sertoli cell proliferation was assessed by immunofluorescence by the colocalization of GATA4 and proliferating cell nuclear antigen and quantified by stereology. Markers of Sertoli cell maturation (immature, cytokeratin 18 [KRT18]; mature, GATA1) and junction proteins (actin, espin, claudin 11 [CLDN11], and tight junction protein 1 [TJP1, also known as ZO-1]) also were localized using confocal immunofluorescence. In response to FSH treatment, proliferation was upregulated within 2 days compared with SD controls (90% vs. 0.2%, P < 0.001) and declined gradually thereafter. In LD hamsters, junction proteins colocalized at the basal aspect of Sertoli cells, consistent with inter-Sertoli cell junctions, and were disordered within the Sertoli cell cytoplasm in SD animals. Exogenous FSH treatment promptly restored localization of these junction markers to the LD phenotype. Protein markers of maturity remain consistent with those of adult Sertoli cells. It is concluded that adult Sertoli cells are not terminally differentiated in the Djungarian hamster and that FSH plays an important role in governing the differentiation process. It is proposed that Sertoli cells can enter a transitional state, exhibiting features common to both undifferentiated and differentiated Sertoli cells.  相似文献   

20.
Sertoli cell maturation is a complex process involving both morphological and biochemical changes. These cells have previously been shown to be targets for extracellular purine structures such as ATP and adenosine. These compounds evoke responses in rat Sertoli cells through the purinoceptor families, P2X and P2Y and PA1. The signals to purinoceptors are usually terminated by the action of ectonucleotidases. In a previous work, we demonstrated that rat Sertoli cells have ecto-ATPdiphosphohydrolase (EC 3.6.1.5), ecto-5-nucleotidase (EC 3.1.3.5) and ecto-adenosine deaminase (ecto-ADA) (EC 3.5.4.4) activities. Here we investigated whether some changes occur during rat Sertoli cell maturation in these activities. Rat Sertoli cells obtained from rats of different ages representing the pre pubertal, mid pubertal and young adult (10-, 18- and 35-day-old, respectively) were cultured and used for different assays. The nucleotide hydrolysis was estimated by measuring the Pi released using a colorimetric method and by HPLC analysis. ATP and ADP hydrolysis was increased 3-fold during sexual maturation. AMP hydrolysis increased 4-fold in 10- to 35-day-old Sertoli cells. Similar results were obtained when we used other substrates to measure the extracellular hydrolysis of nucleotides (GTP, GDP, GMP and IMP). The ecto-ADA activity showed a 2-fold increase in the specific activity (18- to 35-day-old Sertoli cells). The termination of the purine cascade by adenosine degradation was faster in the 35- than in 18-day-old Sertoli cells. Follicle Stimulating Hormone (FSH) influences on the ectonucleotidase activities were investigated in 10- and 18-day-old Sertoli cells and a significant increase in the ATP and ADP hydrolysis was observed. Our results show an increase in the extracellular purine cascade during the Sertoli cell development, indicating a rise in the purine communication inside the seminiferous tubules with rat sexual maturation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号