首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Osmotic water permeability of Necturus gallbladder epithelium   总被引:6,自引:5,他引:1       下载免费PDF全文
An electrophysiological technique that is sensitive to small changes in cell water content and has good temporal resolution was used to determine the hydraulic permeability (Lp) of Necturus gallbladder epithelium. The epithelial cells were loaded with the impermeant cation tetramethylammonium (TMA+) by transient exposure to the pore-forming ionophore nystatin in the presence of bathing solution TMA+. Upon removal of the nystatin a small amount of TMA+ is trapped within the cell. Changes in cell water content result in changes in intracellular TMA+ activity which are measured with intracellular ion-sensitive microelectrodes. We describe a method that allows us to determine the time course for the increase or decrease in the concentration of osmotic solute at the membrane surface, which allows for continuous monitoring of the difference in osmolality across the apical membrane. We also describe a new method for the determination of transepithelial hydraulic permeability (Ltp). Apical and basolateral membrane Lp's were assessed from the initial rates of change in cell water volume in response to anisosmotic mucosal or serosal bathing solutions, respectively. The corresponding values for apical and basolateral membrane Lp's were 0.66 x 10(-3) and 0.38 x 10(-3) cm/s.osmol/kg, respectively. This method underestimates the true Lp values because the nominal osmotic differences (delta II) cannot be imposed instantaneously, and because it is not possible to measure the true initial rate of volume change. A model was developed that allows for the simultaneous determination of both apical and basal membrane Lp's from a unilateral exposure to an anisosmotic bathing solution (mucosal). The estimates of apical and basal Lp with this method were 1.16 x 10(-3) and 0.84 x 10(-3) cm/s.osmol/kg, respectively. The values of Lp for the apical and basal cell membranes are sufficiently large that only a small (less than 3 mosmol/kg) transepithelial difference in osmolality is required to drive the observed rate of spontaneous fluid absorption by the gallbladder. Furthermore, comparison of membrane and transepithelial Lp's suggests that a large fraction of the transepithelial water flow is across the cells rather than across the tight junctions.  相似文献   

2.
The hydraulic water permeability (Lp) of the cell membranes of Necturus gallbladder epithelial cells was estimated from the rate of change of cell volume after a change in the osmolality of the bathing solution. Cell volume was calculated from computer reconstruction of light microscopic images of epithelial cells obtained by the "optical slice" technique. The tissue was mounted in a miniature Ussing chamber designed to achieve optimal optical properties, rapid bath exchange, and negligible unstirred layer thickness. The control solution contained only 80% of the normal NaCl concentration, the remainder of the osmolality was made up by mannitol, a condition that did not significantly decrease the fluid absorption rate in gallbladder sac preparations. The osmotic gradient ranged from 11.5 to 41 mosmol and was achieved by the addition or removal of mannitol from the perfusion solutions. The Lp of the apical membrane of the cell was 1.0 X 10(-3) cm/s . osmol (Posm = 0.055 cm/s) and that of the basolateral membrane was 2.2 X 10(-3) cm/s . osmol (Posm = 0.12 cm/s). These values were sufficiently high so that normal fluid absorption by Necturus gallbladder could be accomplished by a 2.4-mosmol solute gradient across the apical membrane and a 1.1-mosmol gradient across the basolateral membrane. After the initial cell shrinkage or swelling resulting from the anisotonic mucosal or serosal medium, cell volume returned rapidly toward the control value despite the fact that one bathing solution remained anisotonic. This volume regulatory response was not influenced by serosal ouabain or reduction of bath NaCl concentration to 10 mM. Complete removal of mucosal perfusate NaCl abolished volume regulation after cell shrinkage. Estimates were also made of the reflection coefficient for NaCl and urea at the apical cell membrane and of the velocity of water flow across the cytoplasm.  相似文献   

3.
Microelectrode techniques were employed to measure membrane potentials, the electrical resistance of the cell membranes, and the shunt pathway, and to compute the equivalent electromotive forces (EMF) at both cell borders in toad urinary bladder epithelium before and after reductions in mucosal sodium concentration. Basal electrical parameters were not significantly different from those obtained with impalements from the serosal side, indicating that mucosal impalements do not produce significant leaks in the apical membrane. A decrease in mucosal Na concentration caused the cellular resistance to increase and both apical and basolateral EMF to depolarize. When Na was reduced from 112 to 2.4 mM in bladders with spontaneously different baseline values of transepithelial potential difference (Vms), a direct relationship was found between the change in Vms brought about by the Na reduction and the base-line Vms before the change. A direct relationship was also found by plotting the change in EMF at the apical or basolateral border caused by a mucosal Na reduction with the corresponding base-line EMF before the change. These results indicate that resting apical membrane EMF (and, therefore, resting apical membrane potential) is determined by the Na selectivity of the apical membrane, whereas basolateral EMF is at least in part the result of rheogenic Na transport. These results are consistent with data of others that suggested a link between the activity of the basolateral Na pump and apical Na conductance.  相似文献   

4.
A study of the mechanisms of the effects of amphotericin B and ouabain on cell membrane and transepithelial potentials and intracellular K activity (alpha Ki) of Necturus gallbladder epithelium was undertaken with conventional and K-selective intracellular microelectrode techniques. Amphotericin B produced a mucosa-negative change of transepithelial potential (Vms) and depolarization of both apical and basolateral membranes. Rapid fall of alpha Ki was also observed, with the consequent reduction of the K equilibrium potential (EK) across both the apical and the basolateral membrane. It was also shown that, unless the mucosal bathing medium is rapidly exchanged, K accumulates in the unstirred fluid layers near the luminal membrane generating a paracellular K diffusion potential, which contributes to the Vms change. Exposure to ouabain resulted in a slow decrease of alpha Ki and slow depolarization of both cell membranes. Cell membrane potentials and alpha Ki could be partially restored by a brief (3-4 min) mucosal substitution of K for Na. Under all experimental conditions (control, amphotericin B, and ouabain), EK at the basolateral membrane was larger than the basolateral membrane equivalent emf (Eb). Therefore, the K chemical potential difference appears to account for Eb and the magnitude of the cell membrane potentials, without the need to postulate an electrogenic Na pump. Comparison of the rate of Na transport across the tissue with the electrodiffusional K flux across the basolateral membrane indicates that maintenance of a steady-state alpha Ki cannot be explained by a simple Na,K pump-K leak model. It is suggested that either a NaCl pump operates in parallel with the Na,K pump, or that a KCl downhill neutral extrusion mechanism exists in addition to the electrodiffusional K pathway.  相似文献   

5.
The mechanisms of apparent streaming potentials elicited across Necturus gallbladder epithelium by addition or removal of sucrose from the apical bathing solution were studied by assessing the time courses of: (a) the change in transepithelial voltage (Vms). (b) the change in osmolality at the cell surface (estimated with a tetrabutylammonium [TBA+]-selective microelectrode, using TBA+ as a tracer for sucrose), and (c) the change in cell impermeant solute concentration ([TMA+]i, measured with an intracellular double-barrel TMA(+)-selective microelectrode after loading the cells with TMA+ by transient permeabilization with nystatin). For both sucrose addition and removal, the time courses of Vms were the same as the time courses of the voltage signals produced by [TMA+]i, while the time courses of the voltage signals produced by [TBA+]o were much faster. These results suggest that the apparent streaming potentials are caused by changes of [NaCl] in the lateral intercellular spaces, whose time course reflects the changes in cell water volume (and osmolality) elicited by the alterations in apical solution osmolality. Changes in cell osmolality are slow relative to those of the apical solution osmolality, whereas lateral space osmolality follows cell osmolality rapidly, due to the large surface area of lateral membranes and the small volume of the spaces. Analysis of a simple mathematical model of the epithelium yields an apical membrane Lp in good agreement with previous measurements and suggests that elevations of the apical solution osmolality elicit rapid reductions in junctional ionic selectivity, also in good agreement with experimental determinations. Elevations in apical solution [NaCl] cause biphasic transepithelial voltage changes: a rapid negative Vms change of similar time course to that of a Na+/TBA+ bi-ionic potential and a slow positive Vms change of similar time course to that of the sucrose-induced apparent streaming potential. We conclude that the Vms changes elicited by addition of impermeant solute to the apical bathing solution are pseudo-streaming potentials, i.e., junctional diffusion potentials caused by salt concentration changes in the lateral intercellular spaces secondary to osmotic water flow from the cells to the apical bathing solution and from the lateral intercellular spaces to the cells. Our results do not support the notion of junctional solute-solvent coupling during transepithelial osmotic water flow.  相似文献   

6.
We investigated Cl(-) transport pathways in the apical and basolateral membranes of rabbit esophageal epithelial cells (EEC) using conventional and ion-selective microelectrodes. Intact sections of esophageal epithelium were mounted serosal or luminal side up in a modified Ussing chamber, where transepithelial potential difference and transepithelial resistance could be determined. Microelectrodes were used to measure intracellular Cl(-) activity (a), basolateral or apical membrane potentials (V(mBL) or V(mC)), and the voltage divider ratio. When a basal cell was impaled, V(mBL) was -73 +/- 4.3 mV and a(i)(Cl) was 16.4 +/- 2.1 mM, which were similar in presence or absence of bicarbonate. Removal of serosal Cl(-) caused a transient depolarization of V(mBL) and a decrease in a(i)(Cl) of 6.5 +/- 0.9 mM. The depolarization and the rate of decrease of a(i)(Cl) were inhibited by approximately 60% in the presence of the Cl(-)-channel blocker flufenamate. Serosal bumetanide significantly decreased the rate of change of a(i)(Cl) on removal and readdition of serosal Cl(-). When a luminal cell was impaled, V(mC) was -65 +/- 3.6 mV and a was 16.3 +/- 2.2 mM. Removal of luminal Cl(-) depolarized V(mC) and decreased a by only 2.5 +/- 0.9 mM. Subsequent removal of Cl(-) from the serosal bath decreased a(i)(Cl) in the luminal cell by an additional 6.4 +/- 1.0 mM. A plot of V(mBL) measurements vs. log a(i)(Cl)/log a(o)(Cl) (a(o)(Cl) is the activity of Cl(-) in a luminal or serosal bath) yielded a straight line [slope (S) = 67.8 mV/decade of change in a(i)(Cl)/a(o)(Cl)]. In contrast, V(mC) correlated very poorly with log a/a (S = 18.9 mV/decade of change in a/a). These results indicate that 1) in rabbit EEC, a(i)(Cl) is higher than equilibrium across apical and basolateral membranes, and this process is independent of bicarbonate; 2) the basolateral cell membrane possesses a conductive Cl(-) pathway sensitive to flufenamate; and 3) the apical membrane has limited permeability to Cl(-), which is consistent with the limited capacity for transepithelial Cl(-) transport. Transport of Cl(-) at the basolateral membrane is likely the dominant pathway for regulation of intracellular Cl(-).  相似文献   

7.
Summary The transepithelial resistance, the cell membrane resistance and the ratio of resistances of the serosal (baso-lateral) to the mucosal (brush border) cell membrane were measured in rat duodenum, jejunum and ileum by means of microelectrode techniques. These measured values were not affected in the presence of actively transported solutes in the mucosal bathing fluid.Contribution of an electrical conductance through the extracellular shunt pathway to the total transepithelial conductance was quantitatively estimated using an electrically equivalent circuit analysis. These values estimated in respective tissues of small intestine were approx. 95% of the total transepithelial conductance, remaining unaffected by an active solute transport.From these data, the changes in emf's of the mucosal and serosal membrane induced byd-glucose or glycine were separately evaluated.  相似文献   

8.
With an increased influx of Ca2+ in the cytoplasm, the response of cells to ADH in the urinary bladder of the frog was lowered by addition of ionophore A23187 from the side of the basolateral cell membrane, but inhibited when it was added from the apical cell membrane. The removal of calcium by EGTA from the serosal surface was accompanied by a sharp increase of osmotic permeability not only to water, but also to inulin; while when calcium was removed from the mucosal surface of the urinary bladder, osmotic permeability was not changed. After being added to the Ringer solution from the outer surface of the apical cell membrane, the inhibitors of Ca2+ channels (verapamil, Ni2+, Mn2+, Co2+) decreased the effect of ADH. These data indicate that Ca2+ applied onto the outer surface of apical plasma membrane plays an important role in the action of ADH.  相似文献   

9.
The effects of addition of ATP to the mucosal bathing solution on transepithelial, apical, and basolateral membrane voltages and resistances in Necturus gallbladder epithelium were determined. Mucosal ATP (100 microM) caused a rapid hyperpolarization of both apical (Vmc) and basolateral (Vcs) cell membrane voltages (delta Vm = 18 +/- 1 mV), a fall in transepithelial resistance (Rt) from 142 +/- 8 to 122 +/- 7 omega.cm2, and a decrease in fractional apical membrane resistance (fRa) from 0.93 +/- 0.02 to 0.83 +/- 0.03. The rapid initial hyperpolarization of Vmc and Vcs was followed by a slower depolarization of cell membrane voltages and a lumen-negative change in transepithelial voltage (Vms). This phase also included an additional decrease in fRa. Removal of the ATP caused a further depolarization of membrane voltages followed by a hyperpolarization and then a return to control values. fRa fell to a minimum after removal of ATP and then returned to control values as the cell membrane voltages repolarized. Similar responses could be elicited by ADP but not by adenosine. The results of two-point cable experiments revealed that ATP induced an initial increase in cell membrane conductance followed by a decrease. Transient elevations of mucosal solution [K+] induced a larger depolarization of Vmc and Vcs during exposure to ATP than under control conditions. Reduction of mucosal solution [Cl-] induced a slow hyperpolarization of Vmc and Vcs before exposure to ATP and a rapid depolarization during exposure to ATP. We conclude that ATP4- is the active agent and that it causes a concentration-dependent increase in apical and basolateral membrane K+ permeability. In addition, an apical membrane electrodiffusive Cl- permeability is activated by ATP4-.  相似文献   

10.
Experimental modulation of the apical membrane Na+ conductance or basolateral membrane Na+-K+ pump activity has been shown to result in parallel changes in the basolateral K+ conductance in a number of epithelia. To determine whether modulation of the basolateral K+ conductance would result in parallel changes in apical Na+ conductance and basolateral pump activity, Necturus urinary bladders stripped of serosal muscle and connective tissue were impaled through their basolateral membranes with microelectrodes in experiments that allowed rapid serosal solution changes. Exposure of the basolateral membrane to the K+ channel blockers Ba2+ (0.5 mM/liter), Cs+ (10 mM/liter), or Rb+ (10 mM/liter) increased the basolateral resistance (Rb) by greater than 75% in each case. The increases in Rb were accompanied simultaneously by significant increases in apical resistance (Ra) of greater than 20% and decreases in transepithelial Na+ transport. The increases in Ra, measured as slope resistances, cannot be attributed to nonlinearity of the I-V relationship of the apical membrane, since the measured cell membrane potentials with the K+ channel blockers present were not significantly different from those resulting from increasing serosal K+, a maneuver that did not affect Ra. Thus, blocking the K+ conductance causes a reduction in net Na+ transport by reducing K+ exit from the cell and simultaneously reducing Na+ entry into the cell. Close correlations between the calculated short-circuit current and the apical and basolateral conductances were preserved after the basolateral K+ conductance pathways had been blocked. Thus, the interaction between the basolateral and apical conductances revealed by blocking the basolateral K+ channels is part of a network of feedback relationships that normally serves to maintain cellular homeostasis during changes in the rate of transepithelial Na+ transport.  相似文献   

11.
Apparent streaming potentials were elicited across Necturus gallbladder epithelium by addition or removal of sucrose from the apical bathing solution. In NaCl Ringer's solution, the transepithelial voltage (Vms) change (reference, basolateral solution) was positive with sucrose addition and negative with sucrose removal. Bilateral Cl- removal (cyclamate replacement) had no effect on the polarity or magnitude of the Vms change elicited by addition of 100 mM sucrose. In contrast, bilateral Na+ removal (tetramethylammonium [TMA+] replacement) inverted the Vms change (from 2.7 +/- 0.3 to -3.2 +/- 0.2 mV). Replacement of Na+ and Cl- with TMA+ and cyclamate, respectively, abolished the change in Vms. Measurements of cell membrane voltages and relative resistances during osmotic challenges indicate that changes in cell membrane parameters do not explain the transepithelial voltage changes. The initial changes in Vms were slower than expected from concomitant estimates of the time course of sucrose concentration (and hence osmolality) at the membrane surface. Paired recordings of the time courses of paracellular bi-ionic potentials (partial substitution of apical Na+ with tetrabutylammonium [TBA+]) revealed much faster time courses than those produced by sucrose addition, although the diffusion coefficients of sucrose and TBACl are similar. Hyperosmotic and hypoosmotic challenges yielded initial Vms changes at the same rate; thereafter, the voltage increased with hypoosmotic solution and decreased with hyperosmotic solution. These late voltage changes appear to result from changes in width of the lateral intercellular spaces. The early time courses of the Vms changes produced by osmotic challenge are inconsistent with the expectations for water-ion flux coupling in the junctions. We propose that they are pseudo-streaming potentials, i.e., junctional diffusion potentials caused by salt concentration changes in the lateral intercellular spaces secondary to osmotic water flow.  相似文献   

12.
Summary The presence and regional localization of voltagegated ion channels on taste cells inNecturus maculosus were studied. Lingual epithelium was dissected from the animal and placed in a modified Ussing chamber such that individual taste cells could be impaled with intracellular microelectrodes and the chemical environment of the apical and basolateral membranes of cells could be strictly controlled. That is, solutions bathing the the mucosal and serosal surfaces of the epithelium could be exchanged independently and the effects of pharmacological agents could be tested selectively on the apical or basolateral membranes of taste cells. In the presence of amphibian physiological saline, action potentials were elicited by passing brief depolarizing current pulses through the recording electrode. Action potentials provided a convenient assay of voltage-gated ion channels. As in other excitable tissues, blocking current through Na+, K+, or Ca2+ channels had predictable and consistent effects on the shape and magnitude of the action potential. A series of experiments was conducted in which the shape and duration of regenerative action potentials were monitored when the ionic composition was altered and/or pharmacological blocking agents were added to the mucosal or to the serosal chamber. We have found the following: (1) voltage-gated K+ channels (delayed rectifier) are found predominately, if not exclusively, on the chemoreceptive apical membrane; (ii) voltage-gated Na+ and Ca2+ channels are found on the apical (chemoreceptive) and basolateral (synaptic) membrane; (iii) there is a K+ leak channel on the basolateral membrane which appears to vary seasonally in its sensitivity to TEA. The nonuniform distribution of voltage-gated K+ channels and their predominance on the apical membrane may be important in taste transduction: alterations in apical K+ conductance may underlie receptor potentials ellicted by rapid stimuli.  相似文献   

13.
The roles of apical and basolateral transport mechanisms in the regulation of cell volume and the hydraulic water permeabilities (Lp) of the individual cell membranes of the Amphiuma early distal tubule (diluting segment) were evaluated using video and optical techniques as well as conventional and Cl-sensitive microelectrodes. The Lp of the apical cell membrane calculated per square centimeter of tubule is less than 3% that of the basolateral cell membrane. Calculated per square centimeter of membrane, the Lp of the apical cell membrane is less than 40% that of the basolateral cell membrane. Thus, two factors are responsible for the asymmetry in the Lp of the early distal tubule: an intrinsic difference in the Lp per square centimeter of membrane area, and a difference in the surface areas of the apical and basolateral cell membranes. Early distal tubule cells do not regulate volume after a reduction in bath osmolality. This cell swelling occurs without a change in the intracellular Cl content or the basolateral cell membrane potential. In contrast, reducing the osmolality of the basolateral solution in the presence of luminal furosemide diminishes the magnitude of the increase in cell volume to a value below that predicted from the change in osmolality. This osmotic swelling is associated with a reduction in the intracellular Cl content. Hence, early distal tubule cells can lose solute in response to osmotic swelling, but only after the apical Na/K/Cl transporter is blocked. Inhibition of basolateral Na/K ATPase with ouabain results in severe cell swelling. This swelling in response to ouabain can be inhibited by the prior application of furosemide, which suggests that the swelling is due to the continued entry of solutes, primarily through the apical cotransport pathway.  相似文献   

14.
Membrane potentials and the electrical resistance of the cell membranes and the shunt pathway of toad urinary bladder epithelium were measured using microelectrode techniques. These measurements were used to compute the equivalent electromotive forces (EMF) at both cell borders before and after reductions in mucosal Cl- concentration ([Cl]m). The effects of reduction in [Cl]m depended on the anionic substitute. Gluconate or sulfate substitutions increased transepithelial resistance, depolarized membrane potentials and EMF at both cell borders, and decreased cell conductance. Iodide substitutions had opposite effects. Gluconate or sulfate substitutions decreased apical Na conductance, where iodide replacements increased it. When gluconate or sulfate substitutions were brought about the presence of amiloride in the mucosal solution, apical membrane potential and EMF hyperpolarized with no significant changes in basolateral membrane potential or EMF. It is concluded that: (a) apical Na conductance depends, in part, on the anionic composition of the mucosal solution, (b) there is a Cl- conductance in the apical membrane, and (c) the electrical communication between apical and basolateral membranes previously described is mediated by changes in the size of the cell Na pool, most likely by a change in sodium activity.  相似文献   

15.
Phosphate transport across plasma membranes has been described in a wide variety of organisms and cell types including gastrointestinal epithelia. Phosphate transport across apical membranes of vertebrate gastrointestinal epithelia requires sodium; whereas, its transport across the basolateral membrane requires antiport processes involving primarily chloride or bicarbonate. To decipher the phosphate transport mechanism in the foregut apical membrane of the mollusc, Aplysia californica, in vitro short-circuited Aplysia californica gut was used. Bidirectional transepithelial fluxes of both sodium and phosphate were measured to see whether there was interaction between the fluxes. The net mucosal-to-serosal flux of Na+ was enhanced by the presence of phosphate and it was abolished by the presence of serosal ouabain. Similarly, the net mucosal-to-serosal flux of phosphate was dependent upon the presence of Na+ and was abolished by the presence of serosal ouabain. Theophylline, DIDS and bumetande, added to either side, had no effect on transepithelial difference or short-circuit current in the Aplysia gut bathed in a Na2HPO4 seawater medium. However, mucosal arsenate inhibited the net mucosal-to-serosal fluxes of both phosphate and Na+ and the arsenate-sensitive Na+ flux to that of phosphate was 2:1. These results suggest the presence of a Na-PO4 symporter in the mucosal membrane of the Aplysia californica foregut absorptive cell.  相似文献   

16.
Arginine vasotocin, 0.02--1 nM, increases osmotic water permeability of frog urinary bladder, arginine vasotocin after a simultaneous addition to the mucosal and serosal Ringer solutions rises the water permeability to a lesser degree than on the hormone addition only to the serosal solution. 1 nM remestyp, an agonist of V1-receptors, from the apical membrane decreases the hydroosmotic effect of arginine vasotocin added to the serosal Ringer solution. When added to the mucosal solution, combination of the same concentrations of arginine vasotocin and SR 49059, an antagonist of V--receptors, or desmopressin, agonist of V2-receptor alone, increases the effect of the same concentration of arginine vasotocin added to the serosal solution. 1 nM arginine vasotocin at the luminal membrane increases secretion into the Ringer solution of prostaglandin E, and prostaglandin E1 but not of prostaglandin F2 alpha. The data obtained indicate the presence of the arginine vasotocin receptors responsible for the hydroosmotic effect only in the basolateral membranes, while arginine prostaglandin E, participation is shown in modulation of the arginine vasotocin effect.  相似文献   

17.
We evaluated the conductances for ion flow across the cellular and paracellular pathways of flounder intestine using microelectrode techniques and ion-replacement studies. Apical membrane conductance properties are dominated by the presence of Ba-sensitive K channels. An elevated mucosal solution K concentration, [K]m, depolarized the apical membrane potential (psi a) and, at [K]m less than 40 mM, the K dependence of psi a was abolished by 1-2 mM mucosal Ba. The basolateral membrane displayed Cl conductance behavior, as evidenced by depolarization of the basolateral membrane potential (psi b) with reduced serosal Cl concentrations, [Cl]s. psi b was unaffected by changes in [K]s or [Na]s. From the effect of mucosal Ba on transepithelial K selectivity, we estimated that paracellular conductance (Gp) normally accounts for 96% of transepithelial conductance (Gt). The high Gp attenuates the contribution of the cellular pathway to psi t while permitting the apical K and basolateral Cl conductances to influence the electrical potential differences across both membranes. Thus, psi a and psi b (approximately 60 mV, inside negative) lie between the equilibrium potentials for K (76 mV) and Cl (40 mV), thereby establishing driving forces for K secretion across the apical membrane and Cl absorption across the basolateral membrane. Equivalent circuit analysis suggests that apical conductance (Ga approximately equal to 5 mS/cm2) is sufficient to account for the observed rate of K secretion, but that basolateral conductance (Gb approximately equal to 1.5 mS/cm2) would account for only 50% of net Cl absorption. This, together with our failure to detect a basolateral K conductance, suggests that Cl absorption across this barrier involves KCl co-transport.  相似文献   

18.
Bumetanide inhibition of NaCl transport byNecturus gallbladder   总被引:4,自引:0,他引:4  
Salt transport by the Necturus gallbladder epithelium is the result of the coupled entry of NaCl into the cells across the apical membrane and the active transport of Na out of the cells across the basolateral membrane. The NaCl entry step was studied by measuring the rate of cell volume increase accompanying ouabain inhibition of the Na--K-ATPase in the basolateral membrane. When bumetanide, a diuretic analog of furosemide, was added to the mucosal bathing solution it reversibly blocked the entry of NaCl into the cells and abolished fluid transport. A dose-response relationship showed half-maximal inhibition of NaCl entry at a bumetanide concentration of 10(-9) M; complete inhibition of coupled NaCl movement occurred with as little as 10(-7) M bumetanide. Partial substitution of Na or Cl in the mucosal solution failed to demonstrate competition between bumetanide and either of the ions. The drug was also effective in blocking NaCl entry in the absence of ouabain; addition of the diuretic to the mucosal bathing solution resulted in prompt cell shrinkage and a decrease in intracellular NaCl. Cell volume decrease followed bumetanide addition to the mucosal bath because NaCl entry was blocked but active Na transport continued for several minutes until the intracellular Na transport pool was depleted.  相似文献   

19.
K channels in the basolateral membrane of insect hindgut were studied using current fluctuation analysis and microelectrodes. Locust recta were mounted in Ussing-type chambers containing Cl-free saline and cyclic AMP (cAMP). A transepithelial K current was induced by raising serosal [K] under short-circuit conditions. Adding Ba to the mucosal (luminal) side under these conditions had no effect; however, serosal Ba reversibly inhibited the short-circuit current (Isc), increased transepithelial resistance (Rt), and added a Lorentzian component to power density spectra of the Isc. A nonlinear relationship between corner frequency and serosal [Ba] was observed, which suggests that the rate constant for Ba association with basolateral channels increased as [Ba] was elevated. Microelectrode experiments revealed that the basolateral membrane hyperpolarized when Ba was added: this change in membrane potential could explain the nonlinearity of the 2 pi fc vs. [Ba] relationship if external Ba sensed about three-quarters of the basolateral membrane field. Conventional microelectrodes were used to determine the correspondence between transepithelially measured current noise and basolateral membrane conductance fluctuations, and ion-sensitive microelectrodes were used to measure intracellular K activity (acK). From the relationship between the net electrochemical potential for K across the basolateral membrane and the single channel current calculated from noise analysis, we estimate that the conductance of basolateral K channels is approximately 60 pS, and that there are approximately 180 million channels per square centimeter of tissue area.  相似文献   

20.
Summary Equivalent-circuit impedance analysis experiments were performed on the urinary bladders of freshwater turtles in order to quantify membrane ionic conductances and areas, and to investigate how changes in these parameters are associated with changes in the rate of proton secretion in this tissue. In all experiments, sodium reabsorption was inhibited thereby unmasking the electrogenic proton secretion process. We report the following: (1) transepithelial impedance is represented exceptionally well by a simple equivalent-circuit model, which results in estimates of the apical and basolateral membrane ionic conductances and capacitances; (2) when sodium transport is inhibited with mucosal amiloride and serosal ouabain, the apical and basolateral membrane conductances and capacitances exhibit a continual decline with time; (3) this decline in the membrane parameters is most likely caused by subtle time-dependent changes in cell volume, resulting in changes in the areas of the apical and basolateral membranes; (4) stable membrane parameters are obtained if the tissue is not treated with ouabain, and if the oncotic pressure of the serosal solution is increased by the addition of 2% albumin; (5) inhibition of proton secretion using acetazolamide in CO2 and HCO 3 -free bathing solutions results in a decrease in the area of the apical membrane, with no significant change in its specific conductance; (6) stimulation of proton transport with CO2 and HCO 3 -containing serosal solution results in an increase in the apical membrane area and specific conductance. These results show that our methods can be used to measure changes in the membrane electrophysiological parameters that are related to changes in the rate of proton transport. Notably, they can be used to quantify in the live tissue, changes in membrane area resulting from changes in the net rates of endocytosis and exocytosis which are postulated to be intimately involved in the regulation of proton transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号