首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Despite indications that S. granulatus and S. luteus release iron-chelating compounds, the exact spectrum of ferric hydroxamates synthesized by these two Suillus species remained unclear. Hence the aim of this study was to identify all of the main siderophores produced by these two ectomycorrhizal fungal species under pure culture conditions. By means of HPLC and LC–MS analyses we show that S. granulatus releases cyclic and linear fusigen, ferrichrome, coprogen and triacetylfusarinine C into the nutrient medium, while S. luteus culture filtrates contain cyclic and linear fusigen, ferricrocin and coprogen. All of the different siderophores were identified on basis of reference compounds and their specific MS spectra which were recorded on a high resolution MS in positive electrospray ionisation mode. Initial HPLC separations were performed on a C-18 stationary phase, using an acidic eluent (0.1% formic acid in water and acetonitrile) in gradient mode. The potential of these two ectomycorrhizal fungal species to produce siderophores representing three different groups of hydroxamates is discussed in relation to its ecological significance.  相似文献   

2.
Transfer of 15N between interacting mycelia of a wood-decomposing fungus (Hypholoma fasciculare) and an ectomycorrhizal fungus (Tomentellopsis submollis) was studied in a mature beech (Fagus sylvatica) forest. The amount of 15N transferred from the wood decomposer to the ectomycorrhizal fungus was compared to the amount of 15N released from the wood-decomposing mycelia into the soil solution as 15N-NH4. The study was performed in peat-filled plastic containers placed in forest soil in the field. The wood-decomposing mycelium was growing from an inoculated wood piece and the ectomycorrhizal mycelium from an introduced root from a mature tree. The containers were harvested after 41 weeks when physical contact between the two foraging mycelia was established. At harvest, 15N content was analyzed in the peat (total N and 15NH4 +) and in the mycorrhizal roots. A limited amount of 15N was transferred to the ectomycorrhizal fungus and this transfer could be explained by 15NH4 + released from the wood-decomposing fungus without involving any antagonistic interactions between the two mycelia. Using our approach, it was possible to study nutritional interactions between basidiomycete mycelia under field conditions and this and earlier studies suggest that the outcomes of such interactions are highly species-specific and depend on environmental conditions such as resource availability.  相似文献   

3.
Three ericoid mycorrhizal fungi were grown in pure culture under iron deprivation: (i) the ascomyceteHymenoscyphus ericae, a characteristic endophyte of ericaceous plants on acid soils; (ii) the hyphomyceteOidiodendron griseum, an ericoid mycorrhizal fungus which is also a soil-borne fungus able to colonize wood; and (iii) an endophyte of the calciculous ericaceous plantRhodothamnus chamaecistus. All three fungi produced several hydroxamate siderophores which were isolated in the ferric form by adsorption to Amberlite XAD-2, gel chromatography on Sephadex LH20 and by HPLC on a C18 reversed-phase column. Siderophores were identified by (i) co-chromatography with known fungal siderophores, (ii) ion spray mass spectrometry after semi-preparative HPLC and (iii) analyzing their electrophoretic behavior. WhileH. ericae andO. griseum were similar in producing ferricrocin as their principal siderophore, the endophyte ofR. chamaecistus produced mainly fusigen.  相似文献   

4.
The ability of ericoid and ectomycorrhizal fungi to utilize 14C-labelled lignin and O14CH3-labelled dehydropolymer of coniferyl alcohol as sole C sources has been assessed in pure culture studies. The results indicate that ericoid mycorrhizal fungi are more effective in degrading lignin than ectomycorrhizal fungi. Amongst the ectomycorrhizal fungi the facultative mycorrhizal fungus Paxillus involutus degraded lignin more readily than those which are normally considered to be obligately mycorrhizal fungi such as Suillus bovinus and Rhizopogon roseolus. The importance of these lignin degrading capabilities is discussed in relation to the predominance of specific mycorrhiza forms along a gradient of increasing organic matter and hence lignin content of soil.  相似文献   

5.
A field survey was carried out to investigate the diversity of mycorrhizal fungi associated with Gnetum spp. in Cameroon. The extent and variation of ectomycorrhizal colonisation as well as the degree of host specificity were evaluated. Gnetum spp. were found to be almost always ectomycorrhizal in all sites visited. There were just two ectomycorrhizal morphotypes (‘yellow’ and ‘white’) associated with this plant. Such low diversity is unusual for an ectomycorrhizal plant. The yellow morphotype was the most widespread and prevalent and was identified by morphological and molecular methods to have been formed with Scleroderma sinnamariense. Propagules of this fungus were present in soil collected from farm lands, cocoa plantations, Chromolaena and bush fallows, as well as in a relatively undisturbed forest harbouring ectomycorrhizal legumes. The fungus responsible for the white morphotype was identified as also belonging to the genus Scleroderma by ITS sequence similarity. Arbuscular mycorrhizal structures were absent in cleared and stained portions of the roots.  相似文献   

6.
The ectendomycorrhizal fungiWilcoxina mikolae isolates CSY-14 and RMD-947 andW. rehmii isolate CSY-85 were grown in pure culture under iron-limiting conditions. All three isolates tested positive for siderophore formation using both the ferric perchlorate assay and a sensitive HPLC iron-binding assay. A peptide siderophore was isolated from the culture medium by HPLC and shown to contain the amino acids serine, glycine and ornithine in a 1:2:3 ratio. This siderophore was identified as ferricrocin on the basis of electrospray mass spectroscopy and its co-chromatography in two different HPLC systems with ferricrocin isolated fromAspergillus fumigatus. Ferricrocin was the only siderophore isolated from theseWilcoxina cultures. This is the first report of siderophore formation by ectendomycorrhizal fungi.  相似文献   

7.
以西南亚高山针叶林建群种粗枝云杉(Picea asperata)为研究对象,采用红外加热模拟增温结合外施氮肥(NH4NO3 25 g N m-2 a-1)的方法,研究连续3a夜间增温和施肥对云杉幼苗外生菌根侵染率、土壤外生菌根真菌生物量及其群落多样性的影响。结果表明:夜间增温对云杉外生菌根侵染率的影响具有季节性及根级差异。夜间增温对春季(2011年5月)云杉1级根,夏季(2011年7月)和秋季(2010年10月)云杉2级根侵染率影响显著。除2011年7月1级根外,施氮对云杉1、2级根侵染率无显著影响。夜间增温对土壤中外生菌根真菌的生物量和群落多样性无显著影响,施氮及增温与施氮联合处理使土壤中外生菌根真菌生物量显著降低,但却提高了外生菌根真菌群落的多样性。这说明云杉幼苗外生菌根侵染率对温度较敏感,土壤外生菌根真菌生物量及其群落多样性对施氮较敏感。这为进一步研究该区域亚高山针叶林地下过程对全球气候变化的响应机制提供了科学依据。  相似文献   

8.
  • 1 Weevil larvae of the genus Otiorhynchus are a serious problem in agriculture and forestry, causing damage to a wide range of plant species, primarily by larval feeding on roots. Otiorhynchus larvae are a serious pest in forest plantations in Iceland, causing 10–20% mortality of newly‐planted seedlings.
  • 2 We studied the effects of soil fungi on the survival of Otiorhynchus sulcatus larvae. The larvae were introduced into pots with birch seedlings grown in: (i) nursery peat; (ii) nursery peat inoculated with three different species of ectomycorrhizal fungi; (iii) nursery peat inoculated with insect pathogenic fungi; (iv) nursery peat inoculated with ectomycorrhizal fungi and insect pathogenic fungi; and (v) nursery peat inoculated with natural forest soil from Icelandic birch woodland.
  • 3 Larval survival was negatively affected by inoculation of: (i) the ectomycorrhizal fungus Laccaria laccata; (ii) the ectomycorrhizal fungus Cenococcum geophylum; (iii) the insect pathogenic fungus Metarhizium anisopliae; and (iv) forest soil. Inoculation with the ectomycorrhizal fungus Phialophora finlandia did not have any significant effect on larval survival. No significant synergistic effect was found between insect pathogenic and ectomycorrhizal fungi.
  • 4 It is concluded that ectomycorrhizal and insect pathogenic fungi have a significant potential in biological control of Otiorhynchus larvae in afforestation areas in Iceland. Further studies are needed to establish the effect of these fungi in the field and to analyse how mycorrhizal fungi affect root‐feeding larvae.
  相似文献   

9.
Douglas fir (Pseudotsuga menziesii) seedlings in two bare-root forest nurseries were inoculated with the ectomycorrhizal fungus Laccaria laccata, together or not with one of five mycorrhization helper bacteria isolated from L. laccata sporocarps or mycorrhizas and previously selected by in vitro and glasshouse screenings. With the most efficient MHB isolates, when compared to the control with no bacteria, the percent of mycorrhizal short roots was increased from 60 to 90 or from 80 to 100, depending on the nursery, with inoculation doses as low as 106 living cells per m2. A dual inoculum made of calcium alginate beads containing the two microorganisms appears to be a valuable technique for increasing the efficiency of ectomycorrhizal inoculation of planting stocks in forest nurseries.  相似文献   

10.
High nutrient availability and defoliation generally reduce ectomycorrhizal colonization levels in trees, but it is not known how this affects the functional aspects of mycorrhizal symbiosis. It was therefore investigated whether (1) defoliation or increasing substrate N availability reduce C allocation from the plant to the fungus and N allocation from the fungus to the plant (symbiotic resource exchange), (2) symbiotic resource exchange depends on relative N and P availability, and (3) fungal N translocation to plant and plant C allocation to fungus are interdependent. Birch (Betula pendula) seedlings were grown in symbiosis with the ectomycorrhizal fungus Paxillus involutus at five times excess N, or at five times excess N and P for 6 weeks. One-half of the plants were defoliated and the plant shoots were allowed to photosynthesize 14CO2 while the fungal compartment was exposed to 14NH4. After 3 days, the 14C of plant origin in fungal tissues and 15N of fungal origin in plant tissues were quantified. Nutrient availability had no observable effect on symbiotic resource exchange in non-defoliated systems. Defoliation reduced symbiotic N acquisition by plants at all levels of nutrient availability, with the reduction being most marked at higher N availability, indicating an increased tendency in the symbiotic system to discontinue resource exchange after defoliation at higher fertility levels. The concentration of 14C in extramatrical mycelium correlated significantly with the concentration of 15N in birch shoots. The results support the assumption that N delivery to the host by the mycorrhizal fungus is dependent on C flow from the plant to the fungus, and that exchanges between the partners are reciprocal. No significant reductions in root 14C content as a response to defoliation were observed, indicating that defoliation specifically reduced allocation to fungus, but not markedly to roots.  相似文献   

11.
In order to assess the actual role of ectomycorrhizae in ion uptake by the ectomycorrhizal root system, we used a microelectrode ion flux estimation methodology that provided access to local values of net fluxes. This made it possible to investigate the heterogeneity of ion fluxes along the different types of roots of Pinus pinaster associated or not with ectomycorrhizal species. We compared two fungi able to grow with nitrate in pure culture, Rhizopogon roseolus and Hebeloma cylindrosporum, the former having a positive effect on host tree shoot growth (c. +30%) and the latter a negative effect (c.? 30%). In non‐mycorrhizal plants (control), NO3 was taken up at higher rates by the short roots than by the long ones, whereas K+ uptake occurred mainly in growing apices of long roots. In mycorrhizal plants, H. cylindrosporum did not modify K+ uptake and even decreased NO3 uptake at the level of ectomycorrhizal short roots, whereas R. roseolus strongly increased K+ and NO3 fluxes at the level of ectomycorrhizal short roots without any modification of the fluxes measured along the fungus‐free long roots. The measurement of ion influxes at the surface of the ectomycorrhizal roots can provide a way to reveal actual effects of mycorrhizal association on ion transport in relation to mycorrhizal efficiency in natural conditions.  相似文献   

12.
 Spruce and birch seedlings were grown together in boxes filled with unsterile peat. Both seedlings were colonized by the ectomycorrhizal fungus Scleroderma citrinum. The two plants thus shared a common external mycelium. 15N-labelled ammonium was supplied exclusively to the fungus, while the birch or the spruce plant was continuously fed with 13C-labelled CO2 for 72 h. The carbon and nitrogen transfer rates were strikingly different for birch and spruce seedlings. The mycorrhizal mycelium received carbohydrates mainly from the birch plant and the nitrogen transfer by the fungus to the plants was largely directed towards the birch. Carbon assimilates were also transferred in both directions between birch and spruce; however, there was no conclusive evidence for a net transfer of carbon between the plants. Accepted: 20 September 1996  相似文献   

13.
Mühlmann O  Göbl F 《Mycorrhiza》2006,16(4):245-250
The ectomycorrhizal basidiomycete species Lactarius deterrimus Gröger is considered to be a strictly host-specific mycobiont of Picea abies (L.) Karst. However, we identified arbutoid mycorrhiza formed by this fungus on the roots of Arctostaphylos uva-ursi (L.) Spreng. in a mixed stand at the alpine timberline; typical ectomycorrhiza of P. abies were found in close relation. A. uva-ursi is known as an extremely unspecific phytobiont. The mycorrhizae of both associations are described and compared morphologically. The mycorrhiza formed by L. deterrimus on both A. uva-ursi and P. abies show typical ectomycorrhizal features such as a hyphal mantle and a Hartig net. The main difference between the mycorrhizal symbioses with the different phytobionts is the occurrence of intracellular hyphae in the epidermal cells of A. uva-ursi. This emphasizes the importance of the plant partner for mycorrhizal anatomy. This is the first report of a previously considered host-specific ectomycorrhizal fungus in association with A. uva-ursi under natural conditions. The advantages of this loose specificity between the fungus and plant species is discussed.  相似文献   

14.
15.
Summary Elicitors of the ectomycorrhizal fungus Hebeloma crustuliniforme and auxins (IAA, NAA and 2,4-D) were tested for their effects on apoplastic proteins and enzymes of suspension cultured cells of Picea abies (L.) Karst. The ectomycorrhizal elicitor increased the amount of some ionically wall-bound proteins (36, 28, 24, 21 kDa) and decreased the amount of others (61, 22 kDa). The elicitor triggered an H2O2 burst and enhanced the peroxidase (EC 1.11.1.7) activity of the Picea cells by increasing one of the two wall-bound peroxidase isoforms. Auxins significantly suppressed the elicitor induction of peroxidase but did not influence the elicitor-triggered H2O2 burst. The elicitors and auxin did not change the amount and the pattern of wall-bound invertase isoforms (EC 3.2.1.26) of spruce cells. However, auxin reduced the uptake of glucose by spruce cells and increased the acidification of the cell culture medium. Since Hebeloma lacks apoplastic invertase as well as a sucrose uptake system, utilization of plant-derived sucrose depends on the apoplastic plant invertase activity. Although the host invertase is constitutive, the fungus might be able to increase this invertase activity within a mycorrhiza by lowering the pH of the interface towards the pH optimum of the enzyme via the action of auxin. This fungus-released hormone could increase the H+ extrusion of plant cells by activation of the plant membrane H+-ATPases. Additionally, an auxin-dependent suppression of glucose uptake by cortical root cells could improve the glucose supply for the fungus. Furthermore, the fungal auxin might suppress the elicitor induced formation of defense enzymes, such as peroxidase.  相似文献   

16.
The coexistence of a large number of soil animals without extensive niche differentiation is one of the great riddles in soil biology. The main aim of this study was to explore the importance of partitioning of food resources for the high diversity of micro-arthropods in soil. In addition, we investigated if ectomycorrhizal fungi are preferentially consumed compared to saprotrophic fungi. Until today, ectomycorrhizal fungi have never been tested as potential food resource for oribatid mites. We offered six ectomycorrhizal fungi [Amanita muscaria (L.) Hook., Boletus badius (Fr.) Fr., Cenococcum geophilum Fr., Laccaria laccata (Scop.) Fr., Paxillus involutus (Batsch) Fr. and Piloderma croceum J. Erikss. & Hjortstam], one ericoid mycorrhizal fungus [Hymenoscyphus ericae (D.J. Read) Korf & Kernan] and three saprotrophic fungi [Agrocybe gibberosa (Fr.) Fayod, Alternaria alternata (Fr.) Keissl. and Mortierella ramanniana (A. Møller) Linnem.] simultaneously to each of the mainly mycophagous oribatid mite species Carabodes femoralis (Nicolet), Nothrus silvestris Nicolet and Oribatula tibialis Nicolet. The ericoid mycorrhizal fungus H. ericae and the ectomycorrhizal fungus B. badius were preferentially consumed by each oribatid mite species. However, feeding preferences differed significantly between the three species, with O. tibialis being most selective. This study for the first time documented that oribatid mites feed on certain ectomycorrhizal fungi.  相似文献   

17.
A method to measure chitin content in fungi and ectomycorrhizal roots with high-performance liquid chromatography (HPLC) was developed. Measurements of fluorescence of 9-fluorenylmethylchloroformate (FMOC-CI) derivatives of glucosamine were made on acid hydrolysates of pure chitin, chitin-root mixtures and fungal-root mixtures. The method was applied on 5 isolates of ectomycorrhizal fungi, and ectomycorrhizal and non-mycorrhizal Pinus sylvestris roots. Interference from amino acids was removed by pre-treatment of samples with 0.2 N NaOH. This pre-treatment did not reduce the recovery of chitin, nor did plant material affect the recovery of chitin. The HPLC method was compared with a colorimetric chitin-method by measurements on root-fungal mixtures, with known fungal content. The HPLC method gave estimates of fungal biomass which were equal to the expected while the colorimetric method showed values significantly (p<0.001) lower than the expected. The present chitin method offers a sensitive and specific tool for the quantification of chitin in fungi and in ectomycorrhizal roots.  相似文献   

18.
31P-Nuclear Magnetic Resonance (NMR) was used to assess phosphate distribution in ectomycorrhizal and nonmycorrhizal roots of Castanea sativa Mill. as well as in the mycorrhizal fungus Pisolithus tinctorius in order to gain insight into phosphate trafficking in these systems. The fungus P. tinctorius accumulated high levels of polyphosphates during the rapid phase of growth. Mycorrhizal and nonmycorrhizal roots accumulate orthophosphate. Only mycorrhizal roots presented polyphosphates. The content in polyphosphates increased along the 3 months of mycorrhiza formation. In mycorrhizal roots of plants cultured under axenic conditions, the orthophosphate pool decreased along the culture time. In nonmycorrhizal roots the decrease in the orthophosphate content was less pronounced. The level of orthophosphate in mycorrhizal roots was significantly lower than in nonmycorrhizal ones, which indicates that this system relies upon the fungal polyphosphates as a major source of phosphate. Received: 28 July 1998 / Accepted: 21 October 1998  相似文献   

19.
Aluminium toxicity may be an important factor in the decline in vitality of many forest trees and the associated ectomycorrhizal fungal flora. In this study, comparative in vivo 31P NMR investigations on Al-adapted and non-Aladapted fungus of Suillus bovinus in pure culture have produced interesting new data. With respect to intracellular compartments, 31P NMR spectroscopy showed the spectra to differ in a peak-6 ppm appearing in the spectra of the A1-adapted fungus indicating terminal phosphate groups of mobile polyphosphate. Thus, in the Al-adapted fungus the average chain length of mobile polyphosphate is considerably shorter than in the non-Al-adapted fungus. A special method of cyclic phosphate supply followed by block averaging of the NMR spectra was used to determine the kinetic behaviour of phosphate uptake, storage and incorporation into polyphosphate at a constant external pH 3.5. While the Al-adapted fungus showed resistance to Al, an irreversible break-down in phosphate metabolism of the non-Al-adapted fungus by exposure to Al was caused. In comparison with the non-Al-adapted fungus supplied by nutrient solutions omitting Al, the Al-adapted fungus showed higher levels in both phosphate uptake and mobile polyphosphate concentration. As a consequence of these results a de-toxification of freely mobile Al-ions into a stable and insoluble complex in the Al-adapted fungus is considered to be due to a capture of intracellular Al by mobile polyphosphate of shorter chain length.  相似文献   

20.
Summary Seedlings of Pinus resinosa Ait. in test tubes were inoculated with the ectomycorrhizal fungus Paxillus involutus Fr. or with discs of sterile modified Melin-Norkrans (MMN) medium. Paxillus involutus was also inoculated to control tubes in the absence of Pinus resinosa seedlings. In vivo labelling of proteins in Pinus resinosa roots and in Paxillus involutus mycelium was carried out using 35S l-methionine 1, 2, 3, 4, 5 and 7 days after inoculation. Sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDSPAGE) of the protein extracts from the four treatments and autoradiography demonstrated that the presence of root exudates altered protein synthesis in Paxillus involutus as three major bands disappeared when Paxillus involutus was exposed to root exudates. Protein synthesis in Pinus resinosa was also altered when Paxillus involutus was introduced into the tubes, since at least two bands were more intense when seedlings were inoculated with Paxillus involutus, as compared to control roots. No difference was observed in the growth and the label incorporation of Paxillus involutus growing with or without root exudates. Ectomycorrhizal roots were not formed during this experiment. Gene regulation in this ectomycorrhizal association occurs, therefore, prior to the formation of ectomycorrhizal roots.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号