首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aims: To determine whether the 20‐kDa chaperone‐like protein of Bacillus thuringiensis ssp. israelensis enhances synthesis, crystallization and solubility of the Cry3A coleopteran toxin and whether the crystalline inclusions produced are toxic to neonates of the Colorado potato beetle, Leptinotarsa decemlineata. Methods and Results: The cry3A gene was expressed in the 4Q7 strain of B. thuringiensis ssp. israelensis in the absence or presence of the 20‐kDa gene. The 20‐kDa protein enhanced Cry3A yield by 2·7‐fold per unit of fermentation medium. Crystal volumes averaged 2·123 and 0·964 μm3 when synthesized in, respectively, the presence or absence of the 20‐kDa protein. Both crystals were soluble at pH 5 and pH 6; however, the larger crystal was 1·7× and 1·5× more soluble at, respectively, pH 7 and pH 10. No significant difference in toxicity against L. decemlineata neonates was observed. Conclusions: This report demonstrated that the 20‐kDa chaperone‐like protein enhances yield, volume and solubility of the coleopteran Cry3A crystalline inclusions per unit crystal/spore mixture. Significance and Impact of the Study: This is the first report showing that an accessory protein (20‐kDa) could enhance synthesis and crystallization of Cry3A, a finding that could be beneficial for commercial production of this coleopteran‐specific insecticidal protein for microbial insecticides and possibly even for transgenic crops.  相似文献   

2.
Xia L  Sun Y  Ding X  Fu Z  Mo X  Zhang H  Yuan Z 《Current microbiology》2005,51(1):53-58
Heterologous DNA fragments (20-kb) associated with Cry1 crystal proteins (protoxins) from a soil-isolated Bacillus thuringiensis strain 4.0718 were isolated and analyzed. RFLP patterns of the PCR products showed that the 20-kb DNA fragments harbored cry1Aa, cry1Ac, cry2Aa, and cry2Ab genes. Furthermore, a 4.2-kb DNA fragment, which contained the promoter, the coding region, and the terminator of cry1Ac gene, was cloned from the 20-kb DNAs by PCR, and then the cry1Ac gene was expressed in an acrystalliferous B. thuringiensis strain 4Q7 by using E. coli-B. thuringiensis shuttle vector pHT3101. SDS-PAGE and microscopy studies revealed that the recombinant could express 130-kDa Cry1Ac protoxin and produce bipyramidal crystals during sporulation. Bioassay results proved that crystal-spore mixture from the recombinant was toxic to Plutella xylostella. This was the first report of cry-type genes present on 20-kb DNA associated with Cry1 protoxins of B. thuringiensis.  相似文献   

3.
Attempts have been made to express or to merge different Cry proteins in order to enhance toxic effects against various insects. Cry1A proteins of Bacillus thuringiensis form a typical bipyramidal parasporal crystal and their protoxins contain a highly conserved C-terminal region. A chimerical gene, called cry(4Ba-1Ac), formed by a fusion of the N-terminus part of cry4Ba and the C-terminus part of cry1Ac, was constructed. Its transformation to an acrystalliferous B. thuringiensis strain showed that it was expressed as a chimerical protein of 116 kDa, assembled in spherical to amorphous parasporal crystals. The chimerical gene cry(4Ba-1Ac) was introduced in a B. thuringiensis kurstaki strain. In the generated crystals of the recombinant strain, the presence of Cry(4Ba-1Ac) was evidenced by MALDI-TOF. The recombinant strain showed an important increase of the toxicity against Culex pipiens larvae (LC50 = 0.84 mg l?1 ± 0.08) compared to the wild type strain through the synergistic activity of Cry2Aa with Cry(4Ba-1Ac). The enhancement of toxicity of B. thuringiensis kurstaki expressing Cry(4Ba-1Ac) compared to that expressing the native toxin Cry4Ba, might be related to its a typical crystallization properties. The developed fusion protein could serve as a potent toxin against different pests of mosquitoes and major crop plants.  相似文献   

4.
A new cry1Ab-type gene encoding the 130 kDa protein of Bacillus thuringiensis NT0423 bipyramidal crystals was cloned, sequenced, and expressed in a crystal-negative B. thuringiensis host. Hybridization experiments revealed that the crystal protein gene is located on a 44 MDa plasmid of B. thuringiensis NT0423. A strong positive signal detected on the 6.6 kb HindIII fragment from B. thuringiensis NT0423 plasmid DNA was cloned and sequenced. The cry1Ab-type gene, designated cry1Af1, consisted of open reading frame of 3453 bp, encoding a protein of 1151 amino acid residues. The polypeptide has the deduced amino acid sequences predicting molecular masses of 130,215 Da. With both Bt I and Br II promoter sequences were found, the B. thuringiensis NT0423 crystal protein gene promoter closely aligned with those of cry1A-type crystal protein gene. When compared with known sequences of other Cry and Cyt proteins, the Cry1Af1 protein showed maximum 93% sequence identity to Cry1Ab protein of B. thuringiensis subsp. kurstaki. The expressed Cry1Af1 protein in a crystal-negative B. thuringiensis host appears to have strong insecticidal activity against lepidopteran larvae (Plutella xylostella). Crystals containing Cry1Af1 were about six times more toxic than the wild-type crystals of B. thuringiensis NT0423. Received: 20 February 2001 / Accepted: 17 April 2001  相似文献   

5.
A new cry1Ac-type gene was cloned from Bacillus thuringiensis strain BLB1, sequenced and expressed. The deduced amino acid sequence of the polypeptide has a predicted molecular mass of 132.186 kDa. The amino acid sequence alignment of BLB1 Cry1Ac with those of the published ones showed that this is a new delta-endotoxin. When compared with Cry1Ac of Bacillus thuringiensis strain HD1, it was found that BLB1 Cry1Ac harbours three mutations: V358E localized in domain II and V498A and Y571C localized in domain III. When the BLB1 Cry1Ac toxin was expressed in an acrystalliferous strain of B. thuringiensis (HD1CryB), bipyramidal crystals were produced. The spore–crystal mixture of this recombinant strain was at least two-fold more active against larvae of the lepidopteran Ephestia kuehniella than that of the recombinant strain expressing Cry1Ac of HD1. The study of the structural effect of these mutations suggested that they may stabilize key regions involved in the binding of the domains II and III to insect receptors.  相似文献   

6.
A novel cry gene, cry8Db, highly toxic to scarab beetles such as the Japanese beetle, Popillia japonica Newman, was cloned from an isolate of Bacillus thuringiensis(Bt), BBT2-5. The cry8Db gene has 3525 bp nucleotides and codes for a protein of 1174 amino acid residues. The protein, Cry8Db, has typical Bt characteristics such as the 8-block, conserved sequences and the three-domain 3 D toxin structure as defined with Cry3Aa. When the amino acid sequence of Cry8Db was compared with that of Cry8Da whose gene was cloned and characterized in our laboratory earlier, substantial sequence diversities were found in their Domain III. The cry8Db gene was expressed in an acrystalliferous B. thuringiensis strain, BT51. BT51 expressing cry8Db formed a spherical crystal like the natural crystal of BBT2-5. The Cry8Db protein was assayed along with the other scarab active Cry8Da and Cry8Ca against the Japanese beetle. While Cry8Da and Cry8Db had toxicity against both adults and larvae of the Japanese beetle, Cry8Ca was toxic to only larvae. Cry8Ca showed no toxicity against the adult beetle up to 30 μg per 1 cm2 of leaf discs on which the protein was applied. The activation process of Cry8Db by adult and larval gut juice was compared in vitro with the processes of Cry8Da and Cry8Ca. All three proteins, Cry8Db, Cry8Da and Cry8Ca, produced a toxic core of approximately 70 kDa equally indicating that the activation process does not inactivate the adult activity of Cry8Ca. We concluded that the adult activity of Cry8D proteins is encoded in Domain II. Further tests against other beetle species showed a significant difference between Cry8D’s and Cry8Ca but no difference between Cry8Da and Cry8Db. Comparison of 3D structural models of Cry8Ca, Cry8Da and Cry8Db, which were constructed by using Cry3Bb as the structural template, indicated significant structural differences, especially between Cry8Ca and Cry8D proteins, in three major surface-exposed loops of Domain II that may be involved in determining the adult beetle activity.  相似文献   

7.
By a combination of PCR and mass spectrometry, a total of five cry genes (cry1Aa, cry1Ac, cry2Aa, cry2Ab, and cry1Ia) were detected in genomic DNA from the wild-type Bacillus thuringiensis strain 4.0718, and three protoxins (Cry1Aa, Cry1Ac, and Cry2Aa) were identified in the strain's parasporal crystals. These results indicated that this complementary method may be useful in evaluating B. thuringiensis strains at both the gene and protein levels.  相似文献   

8.
An indigenously isolated strain of Bacillus thuringiensis subsp. kenyae exhibited toxicity against lepidopteran as well as dipteran insects. The lepidopteran active cry1Ac protoxin gene coding sequence of 3.5 kb from this strain was cloned into vector pET28a(+). However, it could not be expressed in commonly used Escherichia coli expression hosts, BL21(DE3) and BL21(DE3)pLysS. This gene is classified as cry1Ac17 in the B. thuringiensis toxic nomenclature database. The coding sequence of this gene revealed that it contains about 3% codons, which are not efficiently translated by these expression hosts. Hence, this gene was expressed in a modified expression host, Epicurian coli BL21-Codonplus (DE3)-RIL. The expression of gene yielded a 130-kDa Cry1Ac17 protein. The protein was purified and its toxicity was tested against economically important insect pests, viz., Helicoverpa armigera and Spodoptera litura. LC50 values obtained against these insects were 0.1 ng/cm3 and 1231 ng/cm2, respectively. The higher toxicity of Cry1Ac17 protein, compared to other Cry1Ac proteins, toward these pests demonstrates the potential of this isolate as an important candidate in the integrated resistance management program in India.  相似文献   

9.
Unlike other Bacillus thuringiensis Cry proteins, Cry1Ia does not form a crystal since it is a secreted delta-endotoxin. We have engineered a Cry1Iac chimeric protein by substituting the C-terminal part of Cry1Ia by the corresponding Cry1Ac part. When expressed in an acrystalliferous B. thuringiensis strain, Cry1Iac did not crystallize, but when expressed in the crystalliferous strain BNS3, the chimeric protein co-crystallized with the endogenous Cry1A delta-endotoxins forming a typical bipyramidal crystal. The integration of Cry1Ia in the composition of the crystal of BNS3 led to an increase of its delta-endotoxin production (13%) and to an improvement (60%) of its toxicity against Agrotis ipsilon.  相似文献   

10.
Laboratory feeding experiments using two transgenic Bacillus thuringiensis (Bt) rape cultivars (Bt‐Westar and Bt‐Oscar) both expressing the Cry1Ac protein, and the corresponding untransformed lines, were carried out to study the effects of transgenic Bt rape on the non‐target herbivore Athalia rosae (L.) (Hymenoptera: Tenthredinidae). Furthermore, Cry1Ac protein concentration in Bt rape leaves, A. rosae larvae fed Bt rape, their faeces, eonymph instars, pupae, and adults were quantified using an enzyme‐linked immunosorbent assay (ELISA). There were no significant differences in mortality, larval development, and weight between transgenic Bt rape and non‐transgenic rape fed A. rosae. Additionally, we did not detect any significant differences in the fecundity and fertility of adult females either fed as larvae with transgenic Bt or with non‐transgenic rape. However, results of the ELISA indicated that Cry1Ac protein was detectable in larvae and faeces (Bt‐Westar 1.1 ± 0.2 and Bt‐Oscar 0.3 ± 0.2 µg Cry1Ac protein/g fresh weight) although this was less than in the leaf material, where concentrations were 2.2 ± 0.8 µg Cry1Ac protein/g fresh weight for Bt‐Westar and 7.5 ± 2.9 µg Cry1Ac protein/g fresh weight in Bt‐Oscar. In contrast, Cry1Ac protein could not be detected in eonymphs, pupae, or adults of A. rosae. Our results suggest that Cry1Ac protein in Bt rape does not have a significant effect on the herbivore A. rosae but the protein is still detectable after ingestion and excretion by these herbivores, thus providing the possibility of exposure to organisms other than herbivores.  相似文献   

11.
Bacillus thuringiensis (Bt) Cry1Ac protein is a toxin against different leaf‐eating lepidopteran insects that attack poplar trees. In the present study, the mode of migration of the Bt‐Cry1Ac protein within poplar grafts was investigated. Grafting was done using Pb29 (transgenic poplar 741 with cry1Ac genes), CC71 (transgenic poplar 741 with cry3A genes), non‐transgenic poplar 741 and non‐transgenic Populus tomentosa, either as scion or as rootstock. In order to detect migration of Bt‐Cry1Ac protein from one portion of the graft union to different tissues in the grafted plant, ELISA analysis was employed to assess the content of Bt‐Cry1Ac protein in the phloem, xylem, pith and leaves of the grafted poplar. To further verify migration of Bt‐Cry1Ac protein, Clostera anachoreta larvae, which are susceptible to Bt‐Cry1Ac protein, were fed leaves from the control graft (i.e., graft portion that originally did not contain Bt‐Cry1Ac protein). The results showed that Bt‐Cry1Ac protein was transported between rootstock and scion mainly through the phloem. Migration of Bt‐Cry1Ac protein in the grafted union was also evidenced in that the leaves of the control graft did have a lethal effect on C. anachoreta larvae in laboratory feeding experiments.  相似文献   

12.
The cry4Ba gene from Bacillus thuringiensis subsp. israelensis and the binary toxin gene from B. sphaericus C3-41 were cloned together into a shuttle vector and expressed in an acrystalliferous strain of B. thuringiensis subsp. israelensis 4Q7. Transformed strain Bt-BW611, expressing both Cry4Ba protein and binary toxin protein, was more than 40-fold more toxic to Culex pipiens larvae resistant to B. sphaericus than the transformed strains expressing Cry4Ba protein or binary toxin protein independently. This result showed that the coexpression of cry4Ba of B. thuringiensis subsp. israelensis with B. sphaericus binary toxin gene partly suppressed more than 10,000-fold resistance of C. pipiens larvae to the binary toxin. It was suggested that production of Cry4Ba protein and binary toxin protein interacted synergistically, thereby increasing their mosquito-larvicidal toxicity.  相似文献   

13.
Cry1Ac insecticidal crystal proteins produced by Bacillus thuringiensis (Bt) have become an important natural biological agent for the control of lepidopteran insects. In this study, a cry1Ac toxin gene from Bacillus thuringiensis 4.0718 was modified by using error-prone PCR, staggered extension process (StEP) shuffling combined with Red/ET homologous recombination to investigate the insecticidal activity of delta-endotoxin Cry1Ac. A Cry1Ac toxin variant (designated as T524N) screened by insect bioassay showed increased insecticidal activity against Spodoptera exigua larvae while its original insecticidal activity against Helicoverpa armigera larvae was still retained. The mutant toxin T524N had one amino acid substitution at position 524 relative to the original Cry1Ac toxin, and it can accumulate within the acrystalliferous strain Cry-B and form more but a little smaller bipyramidal crystals than the original Cry1Ac toxin. Analysis of theoretical molecular models of mutant and original Cry1Ac proteins indicated that the mutation T524N located in the loop linking β16–β17 of domain III in Cry1Ac toxin happens in the fourth conserved block which is an arginine-rich region to form a highly hydrophobic surface involving interaction with receptor molecules. This study showed for the first time that single mutation T524N played an essential role in the insecticidal activity. This finding provides the biological evidence of the structural function of domain III in insecticidal activity of the Cry1Ac toxin, which probably leads to a deep understanding between the interaction of toxic proteins and receptor macromolecules.  相似文献   

14.
15.
A fusion gene was constructed by combining the cry1Ac gene of Bacillus thuringiensis strain 4.0718 with a neurotoxin gene, hwtx-1, which was synthesized chemically. In this process, an enterokinase recognition site sequence was inserted in frame between two genes, and the fusion gene, including the promoter and the terminator of the cry1Ac gene, was cloned into the shuttle vector pHT304 to obtain a new expression vector, pXL43. A 138-kDa fusion protein was mass-expressed in the recombinant strain XL002, which was generated by transforming pXL43 into B. thuringiensis acrystalliferous strain XBU001. Quantitative analysis indicated that the expressed protein accounted for 61.38% of total cellular proteins. Under atomic force microscopy, there were some bipyramidal crystals with a size of 1.0 × 2.0 μm. Bioassay showed that the fusion crystals from recombinant strain XL002 had a higher toxicity than the original Cry1Ac crystal protein against third-instar larvae of Plutella xylostella, with an LC50 (after 48 h) value of 5.12 μg/mL. The study will enhance the toxicity of B. thuringiensis Cry toxins and set the groundwork for constructing fusion genes of the B. thuringiensis cry gene and other foreign toxin genes and recombinant strains with high toxicity. LiQiu Xia and XiaoShan Long contributed equally to this work.  相似文献   

16.
A recombinant gene expressing a Cry1Ac-GFP fusion protein with a molecular mass of approximately 160 kD was constructed to investigate the expression of cry1Ac, the localization of its gene product Cry1Ac, and its role in crystal development in Bacillus thuringiensis. The cry1Ac-gfp fusion gene under the control of the cry1Ac promoter was cloned into the plasmid pHT304, and this construct was designated pHTcry1Ac-gfp. pHTcry1Ac-gfp was transformed into the crystal-negative strain, HD-73 cry, and the resulting strain was named HD-73(pHTcry1Ac-gfp). The gfp gene was then inserted into the large HD-73 endogenous plasmid pHT73 and fused with the 3′ terminal of the cry1Ac gene by homologous recombination, yielding HD-73Φ(cry1Ac-gfp)3534. Laser confocal microscopy and Western blot analyses showed for the first time that the Cry1Ac-GFP fusion proteins in both HD-73(pHTcry1Ac-gfp) and HD-73Φ(cry1Ac-gfp)3534 were produced during asymmetric septum formation. Surprisingly, the Cry1Ac-GFP fusion protein showed polarity and was located near the septa in both strains. There was no significant difference between Cry1Ac-GFP and Cry1Ac in their toxicity to Plutella xylostella larvae.  相似文献   

17.
18.
Two new crystal protein genes, cry24B and s1orf2, were cloned from a mosquitocidal Bacillus thuringiensis serovar sotto strain. The cry24B and s1orf2 genes encoded a 76-kDa and 62-kDa protein, respectively. The Cry24B protein retained five conserved regions commonly found in the existing Cry proteins. The amino acid sequence of the S1ORF2 had a high homology to that of the ORF2 protein of B. thuringiensis serovar jegathesan. Southern hybridization experiments with a cry24B gene-specific probe revealed that these genes are located on two large plasmids of > 100 kb. When the two genes, cry24B and s1orf2, were expressed in an acrystalliferous B. thuringiensis host, the proteins were synthesized and accumulated as inclusions. These inclusions exhibited no larvicidal activities against three mosquito species: Aedes aegypti, Anopheles stephensi, and Culex pipiens molestus. Likewise, the inclusions contained no cytocidal activity against HeLa cells.  相似文献   

19.
For almost half a century, the structure of the full‐length Bacillus thuringiensis (Bt) insecticidal protein Cry1Ac has eluded researchers, since Bt‐derived crystals were first characterized in 1965. Having finally solved this structure we report intriguing details of the lattice‐based interactions between the toxic core of the protein and the protoxin domains. The structure provides concrete evidence for the function of the protoxin as an enhancer of native crystal packing and stability.  相似文献   

20.
The insect pathogen Bacillus thuringiensis is suitable for use in biological control, and certain strains have been developed as commercial bioinsecticides. The molecular and biological characterization of a Bacillus thuringiensis subsp. aizawai strain, named HU4‐2, revealed its potential as a bioinsecticide. The strain was found to contain eight different cry genes: cry1Ab, cry1Ad, cry1C, cry1D, cry1F, cry2, cry9Ea1, and a novel cry1I‐type gene. Purified parasporal crystals from strain HU4‐2 comprised three major proteins of 130–145 kDa, which were tested for their insecticidal potency to four species of Lepidoptera (Helicoverpa armigera, Spodoptera exigua, S. littoralis, and S. frugiperda) and three species of mosquito (Culex pipiens pipiens, Aedes aegypti, and Anopheles stephensi). The crystal proteins were highly toxic against all the species of Lepidoptera tested, moderately toxic against two of the mosquito species (C. pipiens and Ae. aegypti), but no toxicity was observed against a third species of mosquito (An. stephensi) at the concentrations used in our study. The LC50 values of the HU4‐2 Bt strain against H. armigera larvae (5.11 µg/ml) was similar to that of HD‐1 Bt strain (2.35 µg/ml), the active ingredient of the commercial product Dipel®. Additionally, the LC50 values of the HU4‐2 Bt strain against S. littoralis, S. frugiperda, and S. exigua (2.64, 2.22, and 3.38 µg/ml, respectively) were also similar to that of the Bt strain isolated from the commercial product Xentari® for the same three species of Spodoptera (1.94, 1.34, and 2.19 µg/ml, respectively). Since Xentari® is significantly more toxic to Spodoptera spp. than Dipel® and, reciprocally, Dipel® is significantly more toxic against H. armigera than Xentari®, we discuss the potential of the HU4‐2 strain to control all these important lepidopteran pests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号