首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mechanism ofStaphylococcus aureus inactivation by deuteroporphyrin (DT) and light was studied with singlet oxygen quenchers or hydroxyl radical scavengers. The light-activated DT (10 /ml) reduced the viability of the culture to less than 1%, whereas methionine, tryptophan, and 1,4-diazabicyclo-2,2,2-octane (DBCO) used as singlet oxygen quenchers provided almost 60% protection. Propylgallate, which is a hydroxyl free radical scavenger, also provided 60% protection. The presence of a singlet oxygen quencher and propylgallate provided almost complete protection from inactivation (96%). Photoinactivation in the absence of culture media (in saline) increased the killing rate and decreased the ability of the singlet oxygen quenchers to protect. In the same conditions damage from hydroxl free radicals was well protected by propyl gallate. The present results indicate thatS. aureus photoinactivation by DT and light is mediated by both singlet oxygen and hydroxyl free radicals.  相似文献   

2.
The effects of various scavengers of reactive oxygen and/or radical species on cell survival in vitro of EMT6 and CHO cells following photodynamic therapy (PDT) or gamma irradiation were compared. None of the agents used exhibited major direct cytotoxicity. Likewise, none interfered with cellular porphyrin uptake, and none except tryptophan altered singlet oxygen production during porphyrin illumination. The radioprotector cysteamine (MEA) was equally effective in reducing cell damage in both modalities. In part, this protection seems to have been induced by oxygen consumption in the system due to MEA autoxidation under formation of H2O2. The addition of catalase, which prevents H2O2 buildup, reduced the effect of MEA to the same extent in both treatments. Whether the remaining protection was due to MEA's radical-reducing action or some remaining oxygen limitation is unclear. The protective action of MEA was not mediated by a doubling of cellular glutathione levels, since addition of buthionine sulfoximine, which prevented glutathione increase, did not diminish the observed MEA protection. The hydroxyl radical scavenger mannitol also afforded protection in both kinds of treatment, but it was approximately twice as effective in gamma irradiation as in PDT. This is consistent with the predominant role of OH radicals in ionizing radiation damage and their presumed minor involvement in PDT damage. Superoxide dismutase, a scavenger of O2, acted as a radiation protector but was not significantly effective in PDT. Catalase, which scavenges H2O2, was ineffective in both modalities. Tryptophan, an efficient singlet oxygen scavenger, reduced cell death through PDT by several orders of magnitude while being totally ineffective in gamma irradiation. These data reaffirm the predominant role of 1O2 in the photodynamic cell killing but also indicate some involvement of free radical species.  相似文献   

3.
An H  Xie J  Zhao J  Li Z 《Free radical research》2003,37(10):1107-1112
To solve the problems faced in clinical use of hypocrellins, a water-soluble preparation of Hypocrellin B (HB), HB-Triton X-100 (TX-100) micelles, was prepared. To evaluate the photodynamic activity, the free radicals (OH and HB•¯) and singlet oxygen (
1
O
2
) generated via photosensitization of the preparation in aqueous solution were detected by using electron paramagnetic resonance (EPR) and spectrophotometric methods. It was observed that
1
O
2
was formed with a quantum yield of 0.72, similar to that for HB in organic solvents, further, hydroxyl radicals (
OH) could also be efficiently produced by the new preparation, which have never before been detected following HB photoactivities. In addition, the semiquinone anion radicals (HB•-) could also be generated via the self-electron transfer between an excited triplet state and a ground state molecule. The accumulation of HB•- would replace that of
OH or
1
O
2
with the depletion of oxygen in the system. All these findings suggested that the HB-TX-100 micelles could play the photodynamic action through not only the type I mechanism by free radicals (OH, O2•- and HB•-) but also the type II mechanism by singlet oxygen (
1
O
2
). It can be concluded further that the new preparation basically maintains the inherent photodynamic activity of HB, or even higher.  相似文献   

4.
Some of the photophysical properties (stationary absorbance and fluorescence, fluorescence decay times and singlet oxygen quantum yields) of pheophorbide a, metal-free, ClAl-, Cu- and Mg-t-butyl-substituted phthalocyanines, metal-free, ClAl- and Cu-t-butyl-substituted naphthalocyanines and of a number of tetraphenylporphyrins (5,10,15,20-tetraphenylporphyrin, 5,10,15,20-tetra(m-hydroxyphenyl)porphyrin, 5,10,15,20-tetra(p-hydroxyphenyl)porphyrin) have been studied in comparison with hematoporphyrin IX in order to select potent photosensitizers for the photodynamic treatment of cancer. The photodynamic activity of these compounds was investigated using Lewis lung carcinoma in mice. As a consequence of the photophysical parameters (relatively short singlet state lifetimes, and high singlet oxygen quantum yields) the photodynamic activities of pheophorbide a, t-butyl-substituted ClAl-phthalocyanine and ClAl-naphthalocyanine were selected for study in greater detail. Under the conditions employed in the present study, pheophorbide a was found to be the most effective sensitizer, as judged from its strong absorption at the excitation wavelength as compared with the hematoporphyrin derivative and greater singlet oxygen quantum yield relative to the phthalocyanines and naphthalocyanines. The photodynamic activity was observed to be strongly dependent on the photophysical parameters of the compounds. The primary mechanism underlying the photodynamic activity of these sensitizers probably consists of energy transfer from the lowest triplet state of the dyes to molecular oxygen, resulting in the formation of singlet oxygen (type II of photosensitization).  相似文献   

5.
The photodynamic action of cercosporin was assayed in various kinds of natural and artificial membranes. Cerosporin induces lipoperoxidation of liposomes, rat liver and pea internode mitochondria and microsomes, estimated both as malondialdehyde (MDA) formation and O2 consumption. Cercosporin-induced lipoperoxidation is inhibited by either singlet oxygen quenchers, free radical trapping agents or EDTA. Superoxide anion (O2-), hydrogen peroxide and hydroxyl radicals (.OH) are not involved in the activity of cercosporin. In addition cercosporin, by chelating iron, lowers the lipoperoxidation induced by such a metal. Therefore cercosporin stimulates, through singlet oxygen production, the hydroperoxide formation but, at the same time, it inhibits the continuation of the iron-mediated free radical chain. The present results suggest that cellular lipid peroxidation has a certain relevance to toxic activity of cercosporin.  相似文献   

6.
A. B. Uzdensky 《Biophysics》2016,61(3):461-469
The photodynamic effect, viz., photodamage of stained cells in the presence of oxygen, is used for destruction of tumors and other abnormal cells. The present review considers the biophysical mechanisms of the photodynamic action on cells. The importance of two major mechanisms of photodynamic damage of cells is discussed. The first one is mediated by electron or proton transfer, whereas the second one involves singlet oxygen. Another question that is considered is the importance of oxidation of membrane lipids or proteins for the photodynamic damage of cells. The phototransformation of photosensitizers and their intracellular localization and delivery to cells and tissues that have undergone abnormal changes are discussed. The current data on photosensitizer nanotransporters are presented. The potential sensors for reactive oxygen species in cells are discussed.  相似文献   

7.
Genotoxicity of singlet oxygen   总被引:9,自引:0,他引:9  
Singlet oxygen, 1O2(1Δg), fulfills essential prerequisites for a genotoxic substance, like hydroxyl radicals and other oxygen radicals: it can react efficiently with DNA and it can be generated inside cells, e.g. by photosensitization and enzymatic oxidation. As might be anticipated from the non-radical character of singlet oxygen, the pattern of DNA modifications it produces is very different from that caused by hydroxyl radicals. While hydroxyl radicals produce DNA strand breaks and sites of base loss (AP sites) in high yield and react with all four bases of DNA, singlet oxygen generates predominantly modified guanine residues and few strand breaks and AP sites. There is now convincing evidence that a major product of base modification caused by singlet oxygen is 8-hydroxyguanine (7,8-dihydro-8-oxoguanine). Indeed, the recently reported miscoding properties of 8-hydroxyguanine can explain the predominant type of mutations observed when DNA modified by singlet oxygen is replicated in cells. There are also strong indications that singlet oxygen generated by photosensitization can act as an ultimate DNA modifying species inside cells. However, indirect genotoxic mechanisms involving other reactive oxygen species produced from singlet oxygen are also possible and appear to predominate in some cases. The cellular defense system against oxidants consists of effective singlet oxygen scavengers such as carotenoids. The observation that carotenoids can inhibit neoplastic cell transformation when administered not only together with but also after the application of chemical or physical carcinogens might indicate a role of singlet oxygen in tumor promotion that could be independent of the direct or indirect DNA damaging properties.  相似文献   

8.
The photodynamic properties of a second-generation photodynamic sensitizer, meta-tetra(hydroxyphenyl)chlorin (mTHPC) were studied by dye-sensitized photoinactivation (650 nm) of HT29 human adenocarcinoma cells in culture. The photocytotoxicity of mTHPC in vitro depended on the presence of molecular oxygen. A strong inhibition of the photocytotoxicity of mTHPC was observed upon addition of sodium azide, a known singlet oxygen quencher. Photocytotoxicity was not inhibited by scavengers of superoxide anion radical, hydrogen peroxide and hydroxyl radicals. We suggest that mTHPC photosensitizes cell killing predominantly by type II, singlet oxygen-mediated photodynamic reactions. Illumination of cells preloaded with mTHPC induced peroxidation of membrane lipids. Inhibition of photoperoxidation by alpha-tocopherol (0.1 mM) present during illumination did not result in any decrease in toxicity, suggesting that reactions of lipid peroxidation play only a minor role in the overall photocytotoxic effect of mTHPC.  相似文献   

9.
Synthesis and EPR investigations of new aminated hypocrellin derivatives   总被引:2,自引:0,他引:2  
Hypocrellins are novel photodynamic agents. A recent advance in the synthesis of hypocrellin congeners results in the production of two amino-substituted hypocrellin B derivatives in high yield via photochemical reaction. Both compounds exhibit similar photodynamic activity as hypocrellin B in terms of type I and type II mechanisms. In anaerobic media, semiquinone anion radicals can be detected by electron paramagnetic resonance (EPR) under irradiation; while superoxide anion radical, hydroxyl radical and singlet oxygen are photoproduced when oxygen was present. The quantum yields of singlet oxygen by these two new compounds are determined to be 0.72 and 0.64, respectively, similar to that of hypocrellin B. The comparison of the photosensitization chemistry of compounds 1 and 2 in liposomes with that in homogeneous solution has also been made. In liposomes, the type II photoprocess was favored and predominant over the type I photoprocess due to the decreased interactions between dye molecules. Both compounds exhibit much stronger red light absorption than the parent hypocrellin and therefore, merit investigation as photosensitizers.  相似文献   

10.
The decay channels of the singlet excited states of halogenated sulfonamide tetraphenylporphyrins, chlorins and bacteriochlorins were fully characterized. It was found that the radiative rates and the internal conversion rates of the bacteriochlorins are lower than expected from the Strickler-Berg equation and from the energy-gap law, respectively. It is concluded that this family of bacteriochlorins can combine long-lived singlet states with photostability, which are desired properties to harvest near-infrared light.  相似文献   

11.
Representative thiazines, xanthenes, acridines, and phenazines photosensitized the oxidation of reduced pyridine nucleotides and reduced glutathione when illuminated with low intensity visible light. Photooxidation resulted in oxygen consumption and in superoxide generation, assayed as the superoxide dismutase (SOD)-inhibitable reduction of ferricytochrome c. The major pathway of electron transfer involved dye reduction rather than singlet oxygen-mediated oxidation of the substrate, as demonstrated by the relative insensitivity of the oxidation to inhibition by sodium azide and by the observable bleaching of the dye. Hydrogen peroxide was a stable end product of photooxidation. Photosensitive dyes were photoreduced intracellularly. These dyes were transported across the membranes of Escherichia coli B and stimulated a light- and concentration-dependent increase in the cyanide-insensitive respiration. Dyes reduced intracellularly subsequently diffused out of the cell where they reduced extracellular cytochrome c. The photosensitive dyes examined in this study exhibited a light-dependent bacteriostatic effect on E. coli B grown in nutrient broth, manifested as an increased lag prior to growth. Restoration of growth coincided with increased levels of SOD, and the intracellular level of SOD correlated with the level of illumination, the dye concentration, and the reactivity of the dye to NADH in vitro. The thiazine dye, toluidine blue o, imposed a light- and oxygen-dependent lethality on E. coli B grown in glucose minimal medium. Toxicity was relieved by hydroxyl radical scavengers, and their ability to protect the cells was proportional to their reactivity with the hydroxyl radical. The results indicate that oxygen radicals and related species mediate photodynamic effects in E. coli B.  相似文献   

12.
In this paper, we have investigated the ability to sensitize the phototoxicity toward HeLa cells in vitro, of tetra-tert-butylphthalocyaninatosilicon (SiPc) covalently linked to one or two 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) radicals (R1c or R2c), which are shown as photosensitizers efficiently producing singlet oxygen (1Delta(g)). Addition of R1c or R2c encapsulated in liposomes to cultures, followed by irradiation with a 680-nm dye laser, resulted in a highly significant phototoxicity toward HeLa cells, in contrast to negligible phototoxicity observed with (dihydroxy)SiPc (R0). EPR measurements indicate that R1c and R2c exist in some degree as nitroxide radicals even in HeLa cells. Electronic absorption spectra indicate that the degree of aggregation increases in the order R2c相似文献   

13.
Phospholipid hydroperoxide glutathione peroxidase (PhGPx) is an important enzyme in the removal of lipid hydroperoxides (LOOHs) from cell membranes. Cancer treatments such as photodynamic therapy (PDT) induce lipid peroxidation in cells as a detrimental action. The photosensitizers used produce reactive oxygen species such as singlet oxygen ((1)O(2)). Because singlet oxygen introduces lipid hydroperoxides into cell membranes, we hypothesized that PhGPx would provide protection against the oxidative stress of singlet oxygen and therefore could interfere with cancer treatment. To test this hypothesis, human breast cancer cells (MCF-7) were stably transfected with PhGPx cDNA. Four clones with varying levels of PhGPx activity were isolated. The activities of other cellular antioxidant enzymes were not influenced by the overexpression of PhGPx. Cellular PhGPx activity had a remarkable inverse linear correlation to the removal of lipid hydroperoxides in living cells (r = -0.85), and correlated positively with cell survival after singlet oxygen exposure (r = 0.94). These data demonstrate that PhGPx provides significant protection against singlet oxygen-generated lipid peroxidation via removal of LOOH and suggest that LOOHs are major mediators in this cell injury process. Thus, PhGPx activity could contribute to the resistance of tumor cells to PDT.  相似文献   

14.
N-Hydroxypyridine-2-thione (2-HPT), known to release hydroxyl radicals on irradiation with visible light, and two related compounds, viz. N-hydroxypyridine-4-thione (4-HPT) and N-hydroxyacridine-9-thione (HAT), were tested for their potency to induce DNA damage in L1210 mouse leukemia cells and in isolated DNA from bacteriophage PM2. DNA single-strand breaks and modifications sensitive to various repair endonucleases (Fpg protein, endonuclease III, exonuclease III, T4 endonuclease V) were quantified. Illumination of cell-free DNA in the presence of 2-HPT and 4-HPT gave rise to damage profiles characteristic for hydroxyl radicals, i.e. single-strand breaks and the various endonuclease-sensitive modifications were formed in the same ratios as after exposure to established hydroxyl radical sources. In contrast, HAT plus light gave rise to a completely different DNA damage profile, namely that characteristic for singlet oxygen. Experiments with various scavengers (t-butanol, catalase, superoxide dismutase) and in D2O as solvent confirmed that hydroxyl radicals are directly responsible for the DNA damage caused by photoexcited 2-HPT and 4-HPT, while the damage by HAT plus light is mediated by singlet oxygen and type I reactions. The type of DNA damage characteristic of hydroxyl radicals was also observed in L1210 mouse leukemia cells when treated with 2-HPT plus light or with H2O2 at 0 degrees C. t-Butanol (2%) inhibited the cellular DNA damage by approximately 50%. A dose of 2-HPT plus light that generated single-strand breaks at a frequency of 5 x 10(-7)/bp was associated with 50% cell survival. No DNA damage and cytotoxicity was observed after treatment with 2-HPT in the dark. We propose that 2-HTP and 4-HTP may serve as new agents to study the consequences of DNA damage induced by hydroxyl radicals in cells. In addition, the data provide direct evidence that hydroxyl radicals are ultimately responsible for the genotoxic effects caused by H2O2 in the dark.  相似文献   

15.
16.
Oxygen radicals are suspected as being a cause of the cellular damage that occurs at sites of inflammation. The phagocytic cells that accumulate in areas of inflammation produce superoxide, hydrogen peroxide, hydroxyl radical, and probably singlet oxygen in the extracellular fluid. The mechanism by which these oxygen molecules kill cells is unknown. To determine which of the oxygen species is responsible for the cellular killing, we exposed human fibroblasts in culture to oxygen radicals generated by the enzymatic action of xanthine oxidase upon acetaldehyde. Using the amount of chromium-51 released from labeled fibroblasts as an index of cellular death, we found that cells were protected only by interventions that reduce hydrogen peroxide concentration. Agents that inactivate superoxide, hydroxyl radical, and singlet oxygen were ineffective in limiting oxygen radical-induced cellular death.  相似文献   

17.
Light output from bioluminescent microorganisms is a highly sensitive reporter of their metabolic activity and therefore can be used to monitor in real time the effects of antimicrobials. Antimicrobial photodynamic therapy (aPDT) is receiving considerable attention for its potentialities as a new antimicrobial treatment modality. This therapy combines oxygen, a nontoxic photoactive photosensitizer, and visible light to generate reactive oxygen species (singlet oxygen and free radicals) that efficiently destroy microorganisms. To monitor this photoinactivation process, faster methods are required instead of laborious conventional plating and overnight incubation procedures. The bioluminescence method is a very interesting approach to achieve this goal. This review covers recent developments on the use of microbial bioluminescence in aPDT in the clinical and environmental areas.  相似文献   

18.
Reactive oxygen species generated by photosensitizers are efficacious remedy for tumor eradication. Eleven cycloimide derivatives of bacteriochlorin p (CIBCs) with different N-substituents at the fused imide ring and various substituents replacing the 3-acetyl group were evaluated as photosensitizers with special emphasis on structure-activity relationships. The studied CIBCs absorb light within a tissue transparency window (780-830 nm) and possess high photostability at prolonged light irradiation. The most active derivatives are 300-fold more phototoxic toward HeLa and A549 cells than the clinically used photosensitizer Photogem due to the substituents that improve intracellular accumulation (distribution ratio of 8-13) and provide efficient photoinduced singlet oxygen generation (quantum yields of 0.54-0.57). The substituents predefine selective CIBC targeting to lipid droplets, Golgi apparatus, and lysosomes or provide mixed lipid droplets and Golgi apparatus localization in cancer cells. Lipid droplets and Golgi apparatus are critically sensitive to photoinduced damage. The average lethal dose of CIBC-generated singlet oxygen per volume unit of cell was estimated to be 0.22 mM. Confocal fluorescence analysis of tissue sections of tumor-bearing mice revealed the features of tissue distribution of selected CIBCs and, in particular, their ability to accumulate in tumor nodules and surrounding connective tissues. Considering the short-range action of singlet oxygen, these properties of CIBCs are prerequisite to efficient antitumor photodynamic therapy.  相似文献   

19.
J. P. Knox  A. D. Dodge 《Planta》1985,164(1):30-34
Eosin, a known generator of singlet oxygen, applied to leaf discs of Pisum sativum L. sensitized the inhibition of photosynthesis. Analysis of partial photosynthetic electron-transport reactions and of the kinetics of variable chlorophyll fluorescence located the damage at photosystem II. This injury required the presence of oxygen and was also caused by the irradiation of eosin-treated leaf tissue with green light. The role of oxygen and photodynamic reactions in the susceptibility of photosystem II to damage by environmental stresses is discussed.Abbreviations DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - DCPIP 2,6-dichlorophenolindophenol - DPC 1,5-diphenylcarbazide - PSI photosystem I - PSII photosystem II - 1O2 singlet oxygen - Tricine N-[2-hydroxyl-3,1-bis(hydroxymethyl)ethyl]-glycine  相似文献   

20.
Oxygen consumption and diffusion effects in photodynamic therapy   总被引:19,自引:0,他引:19  
Effects of oxygen consumption in photodynamic therapy (PDT) are considered theoretically and experimentally. A mathematical model of the Type II mechanism of photooxidation is used to compute estimates of the rate of therapy-dependent in vivo oxygen depletion resulting from reactions of singlet oxygen (1O2) with intracellular substrate. Calculations indicate that PDT carried out at incident light intensities of 50 mW/cm2 may consume 3O2 at rates as high as 6-9 microM s-1. An approximate model of oxygen diffusion shows that these consumption rates are large enough to decrease the radius of oxygenated cells around an isolated capillary. Thus, during photoirradiation, cells sufficiently remote from the capillary wall may reside at oxygen tensions that are low enough to preclude or minimize 1O2-mediated damage. This effect is more pronounced at higher power densities and accounts for an enhanced therapeutic response in tumors treated with 360 J/cm2 delivered at 50 mW/cm2 compared to the same light dose delivered at 200 mW/cm2. The analysis further suggests that the oxygen depletion could be partially overcome by fractionating the light delivery. In a transplanted mammary tumor model, a regimen of 30-s exposures followed by 30-s dark periods produced significantly longer delays in tumor growth when compared to the continuous delivery of the same total fluence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号