首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The age-related accumulation of mitochondrial DNA mutations has the potential to impair organ function and contribute to disease. In support of this hypothesis, accelerated mitochondrial mutagenesis is pathogenic in the mouse heart, and there is an increase in myocyte apoptosis. The current study sought to identify functional alterations in cell death signaling via mitochondria. Of particular interest is the mitochondrial permeability transition pore, opening of which can initiate cell death, while pore inhibition is protective. Here, we show that mitochondria from transgenic mice that develop mitochondrial DNA mutations have a marked inhibition of calcium-induced pore opening. Temporally, inhibited pore opening coincides with disease. Pore inhibition also correlates with an increase in Bcl-2 protein integrated into the mitochondrial membrane. We hypothesized that pore inhibition was mediated by mitochondrial Bcl-2. To test this hypothesis, we treated isolated mitochondria with Bcl-2 antagonistic peptides (derived from the BH3 domain of Bax or Bid). These peptides released the inhibition to pore opening. The data are consistent with a Bcl-2-mediated inhibition of pore opening. Thus, mitochondrial DNA mutations induce an adaptive-protective response in the heart that inhibits opening of the mitochondrial permeability pore.  相似文献   

2.
目的:研究心功能自然衰退过程中线拉体通透性转换孔(MPTP)开放改变规律及其相关机制.方法:检测不同月龄(3、6、9、12月龄)SD大鼠左室心功能;分离各月龄大鼠心肌线粒体,检测MPTP开放改变、线粒体Mn-SOD活性.结果:9月龄和12月龄大鼠心功能同3月龄大鼠相比均出现明显减退,表现为左室收缩压LVSP减小(P<0...  相似文献   

3.

Background

Mitochondrial impairment has been implicated in the pathogenesis of Huntington’s disease (HD). However, how mutant huntingtin impairs mitochondrial function and thus contributes to HD has not been fully elucidated. In this study, we used striatal cells expressing wild type (STHdhQ7/Q7) or mutant (STHdhQ111/Q111) huntingtin protein, and cortical neurons expressing the exon 1 of the huntingtin protein with physiological or pathological polyglutamine domains, to examine the interrelationship among specific mitochondrial functions.

Results

Depolarization induced by KCl resulted in similar changes in calcium levels without compromising mitochondrial function, both in wild type and mutant cells. However, treatment of mutant cells with thapsigargin (a SERCA antagonist that raises cytosolic calcium levels), resulted in a pronounced decrease in mitochondrial calcium uptake, increased production of reactive oxygen species (ROS), mitochondrial depolarization and fragmentation, and cell viability loss. The mitochondrial dysfunction in mutant cells was also observed in cortical neurons expressing exon 1 of the huntingtin protein with 104 Gln residues (Q104-GFP) when they were exposed to calcium stress. In addition, calcium overload induced opening of the mitochondrial permeability transition pore (mPTP) in mutant striatal cells. The mitochondrial impairment observed in mutant cells and cortical neurons expressing Q104-GFP was prevented by pre-treatment with cyclosporine A (CsA) but not by FK506 (an inhibitor of calcineurin), indicating a potential role for mPTP opening in the mitochondrial dysfunction induced by calcium stress in mutant huntingtin cells.

Conclusions

Expression of mutant huntingtin alters mitochondrial and cell viability through mPTP opening in striatal cells and cortical neurons.
  相似文献   

4.
Interactions of methylmercury (CH(3)HgCl) with non-energized mitochondria from rat liver (non-respiring mitochondria) have been investigated in this paper. It has been shown that CH(3)HgCl induces swelling in mitochondria suspended in a sucrose medium. Swelling has also been induced by detergent compounds and by phenylarsine, a chemical compound which induces opening of the permeant transition pore (MTP). Opening of the MTP is inhibited by means of cyclosporine A. Results indicate that the swelling induced by CH(3)HgCl, as in the case of phenylarsine, is inhibited by cyclosporine A and Mg(2+), while swelling induced by detergent compounds is not cyclosporine sensitive. This comparison suggests that CH(3)HgCl induces opening of a permeability transition pore (MTP). Since the opening of an MTP induces cell death, this interaction with MTP could be one of the causes of toxicity of CH(3)HgCl.  相似文献   

5.
We have characterized the effects of the antimitotic drug paclitaxel (Taxol(TM)) on the Ca(2+) signaling cascade of terminally differentiated mouse pancreatic acinar cells. Using single cell fluorescence techniques and whole-cell patch clamping to record cytosolic Ca(2+) and plasma membrane Ca(2+)-dependent Cl(-) currents, we find that paclitaxel abolishes cytosolic Ca(2+) oscillations and in more than half of the cells it also induces a rapid, transient cytosolic Ca(2+) response. This response is not affected by removal of extracellular Ca(2+) indicating that paclitaxel releases Ca(2+) from an intracellular Ca(2+) store. Using saponin-permeabilized cells, we show that paclitaxel does not affect Ca(2+) release from an inositol trisphosphate-sensitive store. Furthermore, up to 15 min after paclitaxel application, there is no significant effect on either microtubule organization or on endoplasmic reticulum organization. The data suggest a non-endoplasmic reticulum source for the intracellular Ca(2+) response. Using the mitochondrial fluorescent dyes, JC-1 and Rhod-2, we show that paclitaxel evoked a rapid decline in the mitochondrial membrane potential and a loss of mitochondrial Ca(2+). Cyclosporin A, a blocker of the mitochondrial permeability transition pore, blocked both the paclitaxel-induced loss of mitochondrial Ca(2+) and the effect on Ca(2+) spikes. We conclude that paclitaxel exerts rapid effects on the cytosolic Ca(2+) signal via the opening of the mitochondrial permeability transition pore. This work indicates that some of the more rapidly developing side effects of chemotherapy might be due to an action of antimitotic drugs on mitochondrial function and an interference with the Ca(2+) signal cascade.  相似文献   

6.
The relationship between mitochondrial Ca2 transport and permeability transition pore (PTP) opening as well as the effects of mitochondrial energetic status on mitochondrial Ca2 transport and PTP opening were studied. The results showed that the calcium-induced calcium release from mitochondria (mClCR) induced PTP opening. Inhibitors for electron transport of respiratory chain inhibited mClCR and PTP opening. Partial recovery of electron transport in respiratory chain resulted in partial recovery of mClCR and PTP opening. mClCR and PTP opening were also inhibited by CCCP which eliminated transmembrane proton gradient. The results indicated that mitochondrial Ca2 transport and PTP opening are largely dependent on electron transport and energy coupling.  相似文献   

7.
The relationship between mitochondrial Ca2+ transport and permeability transition pore (PTP) opening as well as the effects of mitochondrial energetic status on mitochondrial Ca2+ transport and PTP opening were studied. The results showed that the calcium-induced calcium release from mitochondria (mCICR) induced PTP opening. Inhibitors for electron transport of respiratory chain inhibited mCICR and PTP opening. Partial recovery of electron transport in respiratory chain resulted in partial recovery of mCICR and PTP opening. mCICR and PTP opening were also inhibited by CCCP which eliminated transmembrane proton gradient. The results indicated that mitochondrial Ca2+ transport and PTP opening are largely dependent on electron transport and energy coupling.  相似文献   

8.
Calcium overload is suggested to play a fundamental role in the process of rod apoptosis in chemical-induced and inherited retinal degenerations. However, this hypothesis has not been tested directly. We developed an in vitro model utilizing isolated rat retinas to determine the mechanisms underlying Ca(2+)- and/or Pb(2+)-induced retinal degeneration. Confocal microscopy, histological, and biochemical studies established that the elevated [Ca(2+)] and/or [Pb(2+)] were localized to photoreceptors and produced rod-selective apoptosis. Ca(2+) and/or Pb(2+) induced mitochondrial depolarization, swelling, and cytochrome c release. Subsequently caspase-9 and caspase-3 were sequentially activated. Caspase-7 and caspase-8 were not activated. The effects of Ca(2+) and Pb(2+) were additive and blocked completely by the mitochondrial permeability transition pore (PTP) inhibitor cyclosporin A, whereas the calcineurin inhibitor FK506 had no effect. The caspase inhibitors carbobenzoxy-Leu-Glu-His-Asp-CH(2)F and carbobenzoxy-Asp-Glu-Val-Asp-CH(2)F, but not carbobenzoxy-Ile-Glu-Thr-Asp-CH(2)F, differentially blocked post-mitochondrial events. The levels of reduced and oxidized glutathione and pyridine nucleotides in rods were unchanged. Our results demonstrate that rod mitochondria are the target site for Ca(2+) and Pb(2+). Moreover, they suggest that Ca(2+) and Pb(2+) bind to the internal metal (Me(2+)) binding site of the PTP and subsequently open the PTP, which initiates the cytochrome c-caspase cascade of apoptosis in rods.  相似文献   

9.
Since emotional stress elicits brain activation, mitochondria should be a key component of stressed brain response. However, few studies have focused on mitochondria functioning in these conditions. In this work, we aimed to determine the effects of an acute restraint stress on rat brain mitochondrial functions, with a focus on permeability transition pore (PTP) functioning. Rats were divided into two groups, submitted or not to an acute 30‐min restraint stress (Stress, S‐group, vs. Control, C‐group). Brain was removed immediately after stress. Mitochondrial respiration and enzymatic activities (complex I, complex II, hexokinase) were measured. Changes in PTP opening were assessed by the Ca2+ retention capacity. Cell signaling pathways relevant to the coupling between mitochondria and cell function (adenosine monophosphate‐activated protein kinase, phosphatidylinositol 3‐kinase, glycogen synthase kinase 3 beta, MAPK, and cGMP/NO) were measured. The effect of glucocorticoids was also assessed in vitro. Stress delayed (43%) the opening of PTP and resulted in a mild inhibition of complex I respiratory chain. This inhibition was associated with significant stress‐induced changes in adenosine monophosphate‐activated protein kinase signaling pathway without changes in brain cGMP level. In contrast, glucocorticoids did not modify PTP opening. These data suggest a rapid adaptive mechanism of brain mitochondria in stressed conditions, with a special focus on PTP regulation.

  相似文献   


10.
Growing evidence suggest that, in the heart, sphingosine participates to contractile dysfunction by altering calcium transients and mitochondria function. However, mechanisms underlying sphingosine-induced cardiac mitochondria dysfunction are poorly understood. Here, we studied the effects of sphingosine on isolated cardiac mitochondria of either wild-type or Bcl-2 overexpressing transgenic mice. Sphingosine induced reductions in ADP-coupled respiration, membrane potential, mitochondrial cytochrome c content and ATP production, which were partially prevented by cyclosporine A and mitochondrial Bcl-2 overexpression. These data suggest that sphingosine promotes mitochondrial permeability transition pore opening, which may result in uncoupled respiration and participate in cardiac contractile dysfunction.  相似文献   

11.
The relationship between mitochondrial Ca2+ transport and permeability transition pore (PTP) opening as well as the effects of mitochondrial energetic status on mitochondrial Ca2+ transport and PTP opening were studied. The results showed that the calcium-induced calcium release from mitochondria (mCICR) induced PTP opening. Inhibitors for electron transport of respiratory chain inhibited mCICR and PTP opening. Partial recovery of electron transport in respiratory chain resulted in partial recovery of mCICR and PTP opening. mCICR and PTP opening were also inhibited by CCCP which eliminated transmembrane proton gradient. The results indicated that mitochondrial Ca2+ transport and PTP opening are largely dependent on electron transport and energy coupling.  相似文献   

12.
Dysregulation of Ca2+ has long been implicated to be important in cell injury. A Ca2+-linked process important in necrosis and apoptosis (or necrapoptosis) is the mitochondrial permeability transition (MPT). In the MPT, large conductance permeability transition (PT) pores open that make the mitochondrial inner membrane abruptly permeable to solutes up to 1500 Da. The importance of Ca2+ in MPT induction varies with circumstance. Ca2+ overload is sufficient to induce the MPT. By contrast after ischemia-reperfusion to cardiac myocytes, Ca2+ overload is the consequence of bioenergetic failure after the MPT rather than its cause. In other models, such as cytotoxicity from Reye-related agents and storage-reperfusion injury to liver grafts, Ca2+ appears to be permissive to MPT onset. Lastly in oxidative stress, increased mitochondrial Ca2+ and ROS generation act synergistically to produce the MPT and cell death. Thus, the exact role of Ca2+ for inducing the MPT and cell death depends on the particular biologic setting.  相似文献   

13.
Rapid entry of Ca(2+) or Zn(2+) kills neurons. Mitochondria are major sites of Ca(2+)-dependent toxicity. This study examines Zn(2+)-initiated mitochondrial cell death signaling. 10 nm Zn(2+) induced acute swelling of isolated mitochondria, which was much greater than that induced by higher Ca(2+) levels. Zn(2+) entry into mitochondria was dependent upon the Ca(2+) uniporter, and the consequent swelling resulted from opening of the mitochondrial permeability transition pore. Confocal imaging of intact neurons revealed entry of Zn(2+) (with Ca(2+)) to cause pronounced mitochondrial swelling, which was far greater than that induced by Ca(2+) entry alone. Further experiments compared the abilities of Zn(2+) and Ca(2+) to induce mitochondrial release of cytochrome c (Cyt-c) or apoptosis-inducing factor. In isolated mitochondria, 10 nm Zn(2+) exposures induced Cyt-c release. Induction of Zn(2+) entry into cortical neurons resulted in distinct increases in cytosolic Cyt-c immunolabeling and in cytosolic and nuclear apoptosis-inducing factor labeling within 60 min. In comparison, higher absolute [Ca(2+)](i) rises were less effective in inducing release of these factors. Addition of the mitochondrial permeability transition pore inhibitors cyclosporin A and bongkrekic acid decreased Zn(2+)-dependent release of the factors and attenuated neuronal cell death as assessed by trypan blue staining 5-6 h after the exposures.  相似文献   

14.
Adenine nucleotide translocase-porin-hexokinase complex isolated from rat brain, when reconstituted into phospholipid-cholesterol vesicles, exhibits all properties of the mitochondrial permeability transition pore [Beutner, G., Rück, A., Riede, B., Welte, W. and Brdiczka, D. (1996) FEBS Lett. 396, 189-195]. In the present work, the effect of long-chain fatty acids on such reconstituted pore was examined. Opening of the pore was measured by leakage of either malate or fluorescein sulphonate entrapped inside the vesicles. It was found that myristate and oleate in the presence of 50 or 100 microM Ca(2+) produced a partial release of the probes in a dose-dependent way. A dicarboxylic fatty acid analogue, that appeared inactive as protonophore in intact mitochondria, exerted no effect on pore opening in the reconstituted system. 100 microM Ca(2+) alone was without effect. Pore opening by fatty acids in the reconstituted system was partly prevented by cyclosporin A. The pore opening also occurred when the vesicles were incubated in the presence of pancreatic phospholipase A(2). In this case, the opening was decreased by cyclosporin A or serum albumin. These results indicate that long-chain fatty acids elicit opening of the permeability transition pore reconstituted in phospholipid vesicles in a similar way as in intact mitochondria [Wi&ecedil;ckowski, M.R. and Wojtczak, L. (1998) FEBS Lett. 423, 339-342].  相似文献   

15.
Sulfite oxidase (SO) deficiency is biochemically characterized by the accumulation of sulfite, thiosulfate and S-sulfocysteine in tissues and biological fluids of the affected patients. The main clinical symptoms include severe neurological dysfunction and brain abnormalities, whose pathophysiology is still unknown. The present study investigated the in vitro effects of sulfite and thiosulfate on mitochondrial homeostasis in rat brain mitochondria. It was verified that sulfite per se, but not thiosulfate, decreased state 3, CCCP-stimulated state and respiratory control ratio in mitochondria respiring with glutamate plus malate. In line with this, we found that sulfite inhibited the activities of glutamate and malate (MDH) dehydrogenases. In addition, sulfite decreased the activity of a commercial solution of MDH, that was prevented by antioxidants and dithiothreitol. Sulfite also induced mitochondrial swelling and reduced mitochondrial membrane potential, Ca2 + retention capacity, NAD(P)H pool and cytochrome c immunocontent when Ca2 + was present in the medium. These alterations were prevented by ruthenium red, cyclosporine A (CsA) and ADP, supporting the involvement of mitochondrial permeability transition (MPT) in these effects. We further observed that N-ethylmaleimide prevented the sulfite-elicited swelling and that sulfite decreased free thiol group content in brain mitochondria. These findings indicate that sulfite acts directly on MPT pore containing thiol groups. Finally, we verified that sulfite reduced cell viability in cerebral cortex slices and that this effect was prevented by CsA. Therefore, it may be presumed that disturbance of mitochondrial energy homeostasis and MPT induced by sulfite could be involved in the neuronal damage characteristic of SO deficiency.  相似文献   

16.
Journal of Bioenergetics and Biomembranes - S-adenosylmethionine (AdoMet) predominantly accumulates in tissues and biological fluids of patients affected by liver dysmethylating diseases,...  相似文献   

17.
The purpose of this study was to determine whether regular exercise (treadmill running, 10 wk) alters the susceptibility of rat isolated heart mitochondria to Ca(2+)-induced permeability transition pore (PTP) opening and whether this could be associated with changes in the modulation of PTP opening by selected physiological effectors. Basal leak-driven and ADP-stimulated respiration in the presence of substrates for complex I, II, and IV were not affected by training. Fluorimetric studies revealed that in the control and exercise-trained groups, the amount of Ca(2+) required to trigger PTP opening was greater in the presence of complex II vs. I substrates (230 +/- 12 vs. 134 +/- 7 nmol Ca(2+)/mg protein, P < 0.01; pooled average of control and trained groups). In addition, with a substrate feeding the complex II, training increased by 45% (P < 0.01) the amount of Ca(2+) required to trigger PTP opening both in the presence and absence of the PTP inhibitor cyclosporin A. However, membrane potential, reactive oxygen species production, NAD(P)H ratio, and Ca(2+) uptake kinetics were not different in mitochondria from both groups. Together, these results suggest the existence of a substrate-specific regulation of the PTP in heart mitochondria and suggest that regular exercise results in a reduced sensitivity to Ca(2+)-induced PTP opening in presence of complex II substrates.  相似文献   

18.
Inhibition of Na(+)/H(+) exchanger 1 (NHE1) reduces cardiac ischemia-reperfusion (I/R) injury and also cardiac hypertrophy and failure. Although the mechanisms underlying these NHE1-mediated effects suggest delay of mitochondrial permeability transition pore (MPTP) opening, and reduction of mitochondrial-derived superoxide production, the possibility of NHE1 blockade targeting mitochondria has been incompletely explored. A short-hairpin RNA sequence mediating specific knock down of NHE1 expression was incorporated into a lentiviral vector (shRNA-NHE1) and transduced in the rat myocardium. NHE1 expression of mitochondrial lysates revealed that shRNA-NHE1 transductions reduced mitochondrial NHE1 (mNHE1) by ~60%, supporting the expression of NHE1 in mitochondria membranes. Electron microscopy studies corroborate the presence of NHE1 in heart mitochondria. Immunostaining of rat cardiomyocytes also suggests colocalization of NHE1 with the mitochondrial marker cytochrome c oxidase. To examine the functional role of mNHE1, mitochondrial suspensions were exposed to increasing concentrations of CaCl(2) to induce MPTP opening and consequently mitochondrial swelling. shRNA-NHE1 transduction reduced CaCl(2)-induced mitochondrial swelling by 64 ± 4%. Whereas the NHE1 inhibitor HOE-642 (10 μM) decreased mitochondrial Ca(2+)-induced swelling in rats transduced with nonsilencing RNAi (37 ± 6%), no additional HOE-642 effects were detected in mitochondria from rats transduced with shRNA-NHE1. We have characterized the expression and function of NHE1 in rat heart mitochondria. Because mitochondria from rats injected with shRNA-NHE1 present a high threshold for MPTP formation, the beneficial effects of NHE1 inhibition in I/R resulting from mitochondrial targeting should be considered.  相似文献   

19.
Mitochondrial permeability transition pore (mPTP) plays a central role in alterations of mitochondrial structure and function leading to neuronal injury relevant to aging and neurodegenerative diseases including Alzheimer's disease (AD). mPTP putatively consists of the voltage-dependent anion channel (VDAC), the adenine nucleotide translocator (ANT) and cyclophilin D (CypD). Reactive oxygen species (ROS) increase intra-cellular calcium and enhance the formation of mPTP that leads to neuronal cell death in AD. CypD-dependent mPTP can play a crucial role in ischemia/reperfusion injury. The interaction of amyloid beta peptide (Aβ) with CypD potentiates mitochondrial and neuronal perturbation. This interaction triggers the formation of mPTP, resulting in decreased mitochondrial membrane potential, impaired mitochondrial respiration function, increased oxidative stress, release of cytochrome c, and impaired axonal mitochondrial transport. Thus, the CypD-dependent mPTP is directly linked to the cellular and synaptic perturbations observed in the pathogenesis of AD. Designing small molecules to block this interaction would lessen the effects of Aβ neurotoxicity. This review summarizes the recent progress on mPTP and its potential therapeutic target for neurodegenerative diseases including AD. This article is part of a Special Issue entitled: Misfolded Proteins, Mitochondrial Dysfunction, and Neurodegenerative Diseases.  相似文献   

20.
Damaged DNA-binding activity comprises two major protein components, DDB1 and DDB2, which are implicated in the repair of ultraviolet (UV) radiation-induced DNA damage. The possible role of DDB2 as a determinant of cellular sensitivity to UV was investigated. The abundance of DDB2 in UV-resistant HeLa cell lines was increased compared with that in the parental UV-sensitive cells. Stable transfection of the resistant cells with DDB2 antisense cDNA resulted in marked depletion of DDB2 protein and restored cellular sensitivity to UV-induced apoptosis. Whereas the extent of UV-induced activation of apoptosis executioners, including DNA fragmentation factor, and caspase-3 were reduced in the UV-resistant cells compared with those apparent in the sensitive cells, depletion of DDB2 from the resistant cells restored the normal activation patterns for these proteins. In contrast, overexpressing DDB2 in DDB2-depleted cells with recombinant adenovirus, which carries ddb2 cDNA, markedly inhibited the extent of UV-induced activation of DNA fragmentation factor, and caspase-3. Interestingly, a mutated form of DDB2, which is defective in interacting with DDB1 and binding to UV-damaged DNA, also markedly inhibited the activation of apoptosis executioners. These results indicate that DDB2 is a modulator of UV-induced apoptosis, and that UV resistance can be overcome by inhibition of DDB2. The findings also suggest that modulation of UV-induced apoptosis by DDB2 may be independent of DNA repair.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号