首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 13 毫秒
1.
Soluble oligomers of human islet amyloid polypeptide (h-IAPP) are implicated in the initiation of beta-cell apoptosis leading to type 2 diabetes mellitus (T2DM). Cleavage of the h-IAPP included in an oligomer may provide a novel method for reducing the level of h-IAPP oligomers, offering a new therapeutic option for T2DM. From the combinatorial library of triazine derivatives prepared by exploiting the Co(III) complex of cyclen as the cleavage center for peptide bonds, eight compounds were selected as cleavage agents for oligomers of h-IAPP. After reaction with cleavage agents for 36 h at 37 degrees C and pH 7.50, up to 20 mol% of h-IAPP (initial concentration: 4.0 microM) was cleaved, although the target oligomers existed as transient species. Considerable activity was manifested at agent concentrations as low as 100 nM.  相似文献   

2.
Soluble oligomers of human islet amyloid polypeptide (h-IAPP) are believed to be the pathogenic species for type 2 diabetes mellitus. In search of the peptide-cleavage agent cleaving oligomers of h-IAPP with low affinity for polymeric aggregates of h-IAPP, a chemical library was constructed by using the Ugi condensation. From the library, a Co(III) complex was discovered to cleave soluble oligomers of h-IAPP in the presence of polymeric aggregates of h-IAPP without being captured by the aggregates considerably. The peptide-cleavage agent inhibited apoptosis of INS-1 cell by h-IAPP even in the presence of preformed polymeric aggregates of h-IAPP. This suggests that target-selective peptide-cleavage agents may be applied clinically not only to diabetes but also to various other amyloid diseases.  相似文献   

3.
Type 2 diabetes mellitus (T2DM) is characterized by a substantial reduction in β-cell mass and the amyloid fibrils which are formed by the aggregation of the human islet amyloid polypeptide (h-IAPP) in the islet of Langerhans. Cleavage agents with Co(III) cyclen as the catalytic group have been studied as a novel therapeutic option for T2DM patients. However, recent research has suggested that the cytotoxicity of h-IAPP might be mediated by interactions with Cu(II); furthermore, it has been shown in vitro that Cu(II) prevents h-IAPP from forming the β-sheet conformers. Therefore, we synthesized a cleavage agent using Cu(II) cyclen. The resulting cleaved fragments and estimated cleavage yield (8.3 mol %) were evaluated after incubation with h-IAPP.  相似文献   

4.
The Co(III) complex of 1,4,7,10-tetraazacyclododecane has been employed as the catalytic center of target-selective peptide-cleaving catalysts in previous studies. As new chelating ligands for the Co(III) ion in the peptide-cleaving catalysts, 1-oxo-4,7,10-triazacyclodedecane, 1-aryl-1,4,7,10-tetraazacyclodecane, and 7-aryl-1-oxo-4,7,10-triazacyclodecane were examined in the present study. A chemical library comprising 612 derivatives of the Co(III) complex of the new chelating ligands was constructed. The catalyst candidates were tested for their activity to cleave the soluble oligomers of amyloidogenic peptides amyloid β-42 and human islet amyloid polypeptide (h-IAPP), which are believed to be the pathogenic species for Alzheimer’s disease and type 2 diabetes mellitus, respectively. One derivative of the Co(III) complex of 1-aryl-1,4,7,10-tetraazacyclodecane was found to cleave the oligomers of h-IAPP. Cleavage products were identified and cleavage yields were measured at various catalyst concentrations for the action of the new catalyst. The present results reveal that effective catalytic drugs for amyloidoses may be obtained by using Co(III) complexes of various chelating ligands.  相似文献   

5.
Blood glucose concentrations are maintained by insulin secreted from beta-cells located in the islets of Langerhans. There are approximately 2000 beta-cells per islet, and approximately one million islets of Langerhans scattered throughout the pancreas. The islet in type 2 diabetes mellitus (T2D) has deficient beta-cell mass due to increased beta-cell apoptosis and islet amyloid derived from islet amyloid polypeptide (IAPP). Accumulating evidence implicates toxic IAPP oligomers in the mediation of beta-cell apoptosis in T2D. Humans, monkeys, and cats express an amyloidogenic toxic form of IAPP and spontaneously develop diabetes characterized by islet amyloid deposits. However, longitudinal studies of islet pathology in humans are impossible, and studies in nonhuman primates and cats are costly and impractical. Rodent IAPP is not amyloidogenic, thus commonly used rodent models of diabetes do not recapitulate islet pathology in humans. To investigate the diabetogenic role of human IAPP (h-IAPP), several mouse models and, more recently, a rat model transgenic for h-IAPP have been developed. Studies in these models have revealed that the toxic effect of h-IAPP on beta-cell apoptosis demonstrates a threshold-dependent effect. Specifically, increasing h-IAPP transgene expression by breeding or induction of insulin resistance leads to increased beta-cell apoptosis and diabetes. These transgenic rodent models for h-IAPP provide an opportunity to elucidate the mechanisms responsible for h-IAPP-induced beta-cell apoptosis further and to test novel approaches to the prevention and treatment of T2D.  相似文献   

6.
Zinc is an essential trace element crucial for the function of more than 300 enzymes and it is important for cellular processes like cell division and apoptosis. Hence, the concentration of zinc in the human body is tightly regulated and disturbances of zinc homeostasis have been associated with several diseases including diabetes mellitus, a disease characterized by high blood glucose concentrations as a consequence of decreased secretion or action of insulin. Zinc supplementation of animals and humans has been shown to ameliorate glycemic control in type 1 and 2 diabetes, the two major forms of diabetes mellitus, but the underlying molecular mechanisms have only slowly been elucidated. Zinc seems to exert insulin-like effects by supporting the signal transduction of insulin and by reducing the production of cytokines, which lead to beta-cell death during the inflammatory process in the pancreas in the course of the disease. Furthermore, zinc might play a role in the development of diabetes, since genetic polymorphisms in the gene of zinc transporter 8 and in metallothionein (MT)-encoding genes could be demonstrated to be associated with type 2 diabetes mellitus. The fact that antibodies against this zinc transporter have been detected in type 1 diabetic patients offers new diagnostic possibilities. This article reviews the influence of zinc on the diabetic state including the molecular mechanisms, the role of the zinc transporter 8 and MT for diabetes development and the resulting diagnostic and therapeutic options.  相似文献   

7.
Chronic obstructive pulmonary disease, metabolic syndrome and diabetes mellitus are common and underdiagnosed medical conditions. It was predicted that chronic obstructive pulmonary disease will be the third leading cause of death worldwide by 2020. The healthcare burden of this disease is even greater if we consider the significant impact of chronic obstructive pulmonary disease on the cardiovascular morbidity and mortality. Chronic obstructive pulmonary disease may be considered as a novel risk factor for new onset type 2 diabetes mellitus via multiple pathophysiological alterations such as: inflammation and oxidative stress, insulin resistance, weight gain and alterations in metabolism of adipokines. On the other hand, diabetes may act as an independent factor, negatively affecting pulmonary structure and function. Diabetes is associated with an increased risk of pulmonary infections, disease exacerbations and worsened COPD outcomes. On the top of that, coexistent OSA may increase the risk for type 2 DM in some individuals. The current scientific data necessitate a greater outlook on chronic obstructive pulmonary disease and chronic obstructive pulmonary disease may be viewed as a risk factor for the new onset type 2 diabetes mellitus. Conversely, both types of diabetes mellitus should be viewed as strong contributing factors for the development of obstructive lung disease. Such approach can potentially improve the outcomes and medical control for both conditions, and, thus, decrease the healthcare burden of these major medical problems.  相似文献   

8.
Evidence is reviewed supporting the presence of an inherited structural defect in the plasma membranes of somatic cells of humans who have type 2 diabetes mellitus and sodium-sensitive essential hypertension. This magnesium-binding defect (MgBD) consists of a decreased content of tightly bound Mg2+ ion in the cell membrane and limits the amount of Mg2+ that enters the cell, some of which combines with ATP4-, produced by the cell, to form MgATP2-, the currency of metabolic energy. Consequently, in both prediabetes and overt diabetes, the intracellular concentration of the interdependent Mg2+ and MgATP2- ions is significantly less than normal. These 2 ions are required as cofactors and (or) substrates for some 300 enzyme systems in human metabolism, many of which are involved with insulin. Thus the decreased activities of particular ones of these enzyme systems due to the decreased intracellular [Mg2+] and its dependent [MgATP2-] are responsible for (i) insulin resistance and (ii) decreased insulin secretion and (or) production, the 2 pathophysiological processes required for the occurrence of type 2 diabetes mellitus. These 2 processes can account for all of the morbid symptoms associated with this disease. Thus, the decreased intracellular concentration of the interdependent Mg2+ and MgATP2- ions constitutes the etiology of genetic predisposition to type 2 diabetes mellitus and can be corrected by 2 identified peptide Mg2+-binding promoters that are derived from the carboxyl terminal of the tachykinin substance P and occur in normal blood plasma. Decreased intracellular [Mg2+] and [MgATP2-] can also result from a dietary deficiency of magnesium or from an abnormal accumulation of saturated fatty acids in cell membranes, which inhibits the entrance of Mg2+ into the cell; thus it is also the etiology not only of diabetes caused by magnesium deficiency, but also of the "lipotoxic" type 2 diabetes mellitus. Although these pathologies cannot be corrected by the Mg2+-binding promoters, they can be corrected, respectively, by dietary magnesium supplementation or by exercise plus dietary caloric and lipid restriction. Theoretically, the disease syndrome containing type 2 diabetes mellitus may involve approximately 30% of the population.  相似文献   

9.
Diabetes mellitus is one of the most common metabolic diseases worldwide and its prevalence is rapidly increasing. Due to its chronic nature (diabetes mellitus can be treated but as yet not cured) and its serious complications, it is one of the most expensive diseases with regard to total health care costs per patient. The elevated blood glucose levels in diabetes mellitus are caused by a defect in production and/or secretion of the polypeptide hormone insulin, which normally promotes glucose-uptake in cells. Insulin is produced by the pancreatic 'beta-cells' in the 'islets of Langerhans', which lie distributed within the exocrine pancreatic tissue. In type 2 diabetes mellitus, the initial defect in the pathogenesis of the disease in most of the patients is believed to be 'insulin resistance'. Hyperglycemia (clinically overt diabetes mellitus) will not develop as long as the body is able to produce enough insulin to compensate for the reduced insulin action. When this compensation fails ('beta-cell failure') blood glucose levels will become too high. In this review, we discuss one of the mechanisms that have been implicated in the development of beta-cell failure, i.e. amyloid formation in the pancreatic islets. This islet amyloid is a characteristic histopathological feature of type 2 diabetes mellitus and both in vitro and in vivo studies have revealed that its formation causes death of islet beta-cells. Being a common pathogenic factor in an otherwise heterogeneous disease, islet amyloidosis is an attractive novel target for therapeutic intervention in type 2 diabetes mellitus.  相似文献   

10.
Diabetes mellitus is a global disease, and the number of patients with it is increasing. Of various agents for treatment, those that directly act on muscle are currently attracting attention because muscle is one of the main tissues in the human body, and its metabolism is decreased in type II diabetes. In this study, we found that hydroxylamine (HA) enhances glucose uptake in C2C12 myotubes. Analysis of HA’s mechanism revealed the involvement of IRS1, PI3 K and Akt that is related to the insulin signaling pathway. Further investigation about the activation mechanism of insulin receptor or IRS1 by HA may provide a way to develop a novel anti-diabetic agent alternating to insulin.  相似文献   

11.
Diabetes mellitus and obesity are one of the most common health issues spread throughout world and raised the medical attention to find the new effective agents to treat these disease state. Occurrence of the drug resistance to the insulin and leptin receptor is also challenging major issues. The molecules that can overcome this resistance problem could be effective for the treatment of both type II diabetes and obesity. Protein Tyrosine Phosphatase (PTP) has emerged as new promising targets for therapeutic purpose in recent years. Protein Tyrosine Phosphatase 1B (PTP 1B) act as a negative regulator of insulin and leptin receptor signalling pathways. Several approaches have been successfully applied to find out potent and selective inhibitors. This article reviews PTP 1B inhibitors; natural, synthetic and semi-synthetic that showed inhibition towards enzyme as a major target for the management of type II diabetes. These studies could be contributing the future development of PTP 1B inhibitors as drugs.  相似文献   

12.
A study of the genetic determination of latent autoimmune diabetes of adults (LADA) is conducted on data consisting of clinical and genealogical data on 51 patients with LADA, 400 patients with insulin-dependent diabetes mellitus (type 1 diabetes mellitus), and 504 patients with insulin-independent diabetes mellitus (type 2 diabetes mellitus), along with relatives of these patients (first degree of consanguinity). Testing of the Smith model revealed the genetic independence of LADA and both type 1 and type 2 diabetes mellitus. A study of genetic heterogeneity in accordance with the Smith model showed that LADA shares roughly the same number of common genes with type 1 diabetes mellitus and with type 2 diabetes mellitus, which also determines the clinical course of this form of diabetes. The inheritance of LADA is described by parameters of a polygenic threshold model. Within the framework of this model, it is found that genetic factors are responsible for 60.4% of the development of the disease.  相似文献   

13.
Results from previous studies suggest that adiponectin levels are associated with risk factors for cardiovascular disease and type 2 diabetes mellitus; however, the genetic and/or environmental components of this relationship have not been characterized. The aims of this study were (1) to assess the presence of pleiotropy between adiponectin levels and risk factors for cardiovascular disease and (2) to study the association of circulating levels of adiponectin with risk factors for cardiovascular disease in the absence and presence of obesity in Mexican American adults from the San Antonio Family Heart Study. Body composition and circulating levels of adiponectin, leptin, and lipid subfractions and measurements of glucose metabolism were measured in 898 subjects. The mean and standard error of the circulating levels of adiponectin was 8.7 +/- 3.2 microg/ml. Bivariate quantitative analyses between adiponectin levels and phenotypes related to cardiovascular disease and type 2 diabetes mellitus were conducted using the variance decomposition approach implemented in SOLAR. A second analysis in unrelated subjects compared these risk factors between sex- and age-matched lean and obese subjects with high and low adiponectin levels. We found significant evidence of pleiotropy (i.e., shared genetic effects) between plasma levels of adiponectin and well-established risk factors for cardiovascular disease and type 2 diabetes mellitus. Individuals with low adiponectin levels per body weight had more adverse risk profiles. These findings offer new insights into the genetic connection between increasing adiposity and risk for cardiovascular disease and type 2 diabetes mellitus, and they suggest that adiponectin may be an important risk factor for the development of these conditions.  相似文献   

14.
This study aims to evaluate the significance of the changes of erythrocyte reduced glutathione (GSH) in the course of diabetes mellitus including the pre-diabetes stage and cardiovascular disease co-morbidity. A total of 222 participants (female:male, 107:115) were selected and their erythrocyte GSH levels were measured. The participants were divided into four groups: (i) control; (ii) those with blood glucose level > or =5.6 mmol/l but < 6.9 mmol/l as pre-diabetes mellitus with no other pathology; (iii) diabetes without co-morbidity; and (iv) those with diabetes mellitus and cardiovascular disease. Statistical analysis was by ANOVA followed by a Fisher's LSD post hoc test. We observed that GSH concentration was significantly different between groups (P < 0.04). The Fisher's post hoc test indicated significant differences in erythrocyte GSH levels between the pre-diabetes mellitus and diabetes mellitus groups compared to control (P < 0.005 and P < 0.05, respectively). A statistically significant change (P < 0.001) involving an initial fall followed by a rise in erythrocyte GSH levels was observed when diabetes mellitus and diabetes mellitus+cardiovascular disease groups were combined and assessed with respect to period of diabetes. We conclude that oxidative stress is already present in the pre-diabetes stage as determined by the fall in GSH, representing the initial phase of oxidative stress in diabetes mellitus progression. This finding provides evidence that antioxidant markers such as GSH could be a useful tool for pre-diabetes mellitus screening.  相似文献   

15.
Endothelin (ET) and bone morphogenic proteins (BMP) have been implicated in the development of micro- and macrovascular complications of type 2 diabetes mellitus due to atherosclerosis. This study investigated vascular BMP-expression during early development of experimental autoimmune diabetes mellitus and whether ET(A) receptors are involved in its regulation, using the selective ET(A) receptor antagonist BSF461314. Specificity of BSF461314 was confirmed through ET-mediated p44/42 mitogen-activated protein kinase (ERK1/2) phosphorylation experiments. For animal studies, non-obese diabetic (NOD) and control mice at 16 weeks of age were treated with BSF461314 for 6 weeks. Plasma glucose levels were measured before and after treatment and vascular gene expression of BMP-2, BMP-7, and BMP-type II receptor was determined in the aorta by quantitative real-time polymerase chain reaction analysis. At the beginning of the study in all animals, plasma glucose levels were within the normal range. After 6 weeks gene expression of vascular BMP-2, BMP-7 and BMP-type II receptor was almost doubled in NOD mice compared with non-diabetic controls (p < 0.05). Concomitant treatment with BSF461314 significantly reduced expression of all BMPs and lowered plasma glucose levels in NOD mice close to controls (all p < 0.05 versus untreated). In conclusion, vascular BMP-2, BMP-7, and BMP-type II receptor expression is upregulated in early stages of autoimmune diabetes mellitus. The data further indicate that ET(A) receptors inhibit diabetes-associated activation of vascular BMPs and regulate plasma glucose levels suggesting that ET(A) receptors might provide a new therapeutic target to interfere with the early development of atherosclerosis in patients with type 1 diabetes mellitus.  相似文献   

16.

Although antidiabetic agents have been developed to target one or more of the core defects of type 2 diabetes mellitus (T2DM), many patients do not achieve glycemic goals. Inhibition of the sodium-glucose cotransporter 2 (SGLT2) induces glycosuria, reduces glucose toxicity and improves insulin sensitivity and β-cell function. As the mechanism of action of SGLT2 inhibitors is different from other agents and completely insulin-independent, the use of these drugs might potentially be efficacious alone or in combination with any other antidiabetic drug, including insulin. Dapagliflozin is a highly selective and reversible SGLT2 inhibitor approved for use in adult patients with T2DM as monotherapy in patients intolerant of metformin or as adjunctive therapy in patients inadequately controlled on existing antidiabetic medications, including insulin. A literature search conducted using PubMed identified key publications related to the use of dapagliflozin in the treatment of patients with diabetes mellitus. No date limits were applied. This review focuses on the safety and efficacy of this SGLT2 inhibitor. Dapagliflozin produces dose-related reductions in glycosylated hemoglobin (HbA1c) as monotherapy and as add-on to other antidiabetic agents, with significant reductions in body weight. Hypoglycemia is uncommon. Preliminary data from a phase 2 pharmacokinetic/pharmacodynamic study suggest that dapagliflozin may also improve glycemic control in patients with type 1 diabetes mellitus. Clinical trials published to date show that dapagliflozin is safe and effective as monotherapy or as an add-on to insulin or oral antidiabetic agents in patients with T2DM.

  相似文献   

17.
《遗传学报》2022,49(4):364-376
The soaring global prevalence of diabetes makes it urgent to explore new drugs with high efficacy and safety. Nanomaterial-derived bioactive agents are emerging as one of the most promising candidates for biomedical application. In the present study, we investigated the anti-diabetic effects of a functionalized gadofullerene (GF) using obese db/db and non-obese mouse model of type 2 diabete mellitus (MKR) mouse type 2 diabetes mellitus (T2DM) models. In both mouse models, the diabetic phenotypes, including hyperglycemia, impaired glucose tolerance, and insulin sensitivity, were ameliorated after two or four weeks of intraperitoneal administration of GF. GF lowered blood glucose levels in a dose-dependent manner. Importantly, the restored blood glucose levels could persist ten days after withdrawal of GF treatment. The hepatic AKT/GSK3β/FoxO1 pathway is shown to be the main target of GF for rebalancing gluconeogenesis and glycogen synthesis in vivo and in vitro. Furthermore, GF treatment significantly reduced weight gain of db/db mice with reduced hepatic fat storage by the inhibition of de novo lipogenesis through mTOR/S6K/SREBP1 pathway. Our data provide compelling evidence to support the promising application of GF for the treatment of T2DM.  相似文献   

18.
The World Health Organization (WHO) predicts there will be 300 million people world-wide with diabetes mellitus by 2025. Currently it is estimated that there are 20 and 60 million people suffering from diabetes mellitus in North America and Europe, respectively. Within this huge population of diabetic persons approximately 50% will develop some form of sensory polyneuropathy, which involves the dying back of distal axons and a failure of axons to regenerate. This leads to incapacitating pain, sensory loss and poor wound healing. The end result is lower extremity amputation with approximately 90,000 diabetes-related amputations occurring each year in North America and the expectation of a 5-fold increase over the next 10 years due to increased incidence of type 2 diabetes. Abnormal neuronal Ca(2+) homeostasis and impaired mitochondrial function have been implicated in numerous CNS and PNS diseases including diabetic sensory neuropathy. The endoplasmic reticulum (ER), in part, regulates cellular Ca(2+) homeostasis and this process is linked to regulation of mitochondrial function and activity of anti-apoptotic signal transduction pathways. Here we review the current state of research regarding role of Ca(2+) dyshomeostasis and mitochondrial physiology in neuronal dysfunction in diabetes. The central impact of diabetes-induced alteration of Ca(2+) handling on sensory neurone function is discussed and related to abnormal ER performance. New results are presented showing suboptimal Ca(2+) concentration in the ER lumen in association with reduced SERCA2 expression in sensory neurones from type 1 diabetic rats. We hypothesize that deficits in neurotrophic factor support, specifically linked to diabetes-induced lowered expression of insulin and neurotrophin-3, triggers alterations of sensory neurone phenotype that are critical for the development of abnormal Ca(2+) homeostasis and associated mitochondrial dysfunction. The role of hyperglycaemia in diabetes is also discussed and we propose that high glucose concentration may impact at other sites to contribute to the heterogeneous aetiology of nerve damage in diabetes.  相似文献   

19.
Diabetes mellitus (DM) is a multi-factorial disease which is characterized by hyperglycaemia, lipoprotein abnormalities and oxidative stress. This study evaluated effect of oral vitamin C administration on basal metabolic rate and lipid profile of alloxan-induced diabetic rats. Vitamin C was administered at 200 mg/kg body wt. by gavage for four weeks to diabetic rats after which the resting metabolic rate and plasma lipid profile was determined. The results showed that vitamin C administration significantly (P<0.01) reduced the resting metabolic rate in diabetic rats; and also lowered plasma triglyceride, total cholesterol and low-density lipoprotein cholesterol. These results suggest that the administration of vitamin C in this model of established diabetes mellitus might be beneficial for the restoration of basal metabolic rate and improvement of lipid profile. This may at least in part reduce the risk of cardiovascular events seen in diabetes mellitus.  相似文献   

20.
We investigated whether ethnic differences in handgrip strength, a marker of poor muscle strength and quality, is a potential cause of ethnic disparities in type 2 diabetes mellitus. We included 2086 Dutch, 2216 South Asian Surinamese, 2084 African Surinamese, 1786 Ghanaian, 2223 Turkish and 2199 Moroccan origin participants from the HELIUS study. We analyzed ethnic differences in handgrip strength, and its association with type 2 diabetes mellitus using logistic regression analyses adjusted for socio-demographic factors, body composition and lifestyle factors. Additionally, we investigated whether handgrip strength explained the ethnic differences in type 2 diabetes mellitus. We found that handgrip strength differed significantly across ethnic groups. After full adjustment, we found an inverse association with type 2 diabetes mellitus (OR 0.95; 95% CI 0.92–0.97) that did not differ substantially between ethnic groups, men and among women, and lean and overweight individuals. The association was not affected by the measure used to define type 2 diabetes mellitus, but was attenuated by exclusion of people with known diabetes. The ethnic differences in type 2 diabetes mellitus were not explained by handgrip strength (e.g. the OR for the South Asian Surinamese vs. Dutch changed from 5.03; 3.69–6.68 to 4.87; 3.57–6.65). In conclusion, we found large ethnic differences in handgrip strength and a consistent association of low handgrip strength with prevalent type 2 diabetes mellitus. This suggests that handgrip strength may be investigated as a target for intervention or a marker to identify people at risk of type 2 diabetes mellitus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号