首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Talins and kindlins bind to the integrin β3 cytoplasmic tail and both are required for effective activation of integrin αIIbβ3 and resulting high-affinity ligand binding in platelets. However, binding of the talin head domain alone to β3 is sufficient to activate purified integrin αIIbβ3 in vitro. Since talin is localized to the cytoplasm of unstimulated platelets, its re-localization to the plasma membrane and to the integrin is required for activation. Here we explored the mechanism whereby kindlins function as integrin co-activators. To test whether kindlins regulate talin recruitment to plasma membranes and to αIIbβ3, full-length talin and kindlin recruitment to β3 was studied using a reconstructed CHO cell model system that recapitulates agonist-induced αIIbβ3 activation. Over-expression of kindlin-2, the endogenous kindlin isoform in CHO cells, promoted PAR1-mediated and talin-dependent ligand binding. In contrast, shRNA knockdown of kindlin-2 inhibited ligand binding. However, depletion of kindlin-2 by shRNA did not affect talin recruitment to the plasma membrane, as assessed by sub-cellular fractionation, and neither over-expression of kindlins nor depletion of kindlin-2 affected talin interaction with αIIbβ3 in living cells, as monitored by bimolecular fluorescence complementation. Furthermore, talin failed to promote kindlin-2 association with αIIbβ3 in CHO cells. In addition, purified talin and kindlin-3, the kindlin isoform expressed in platelets, failed to promote each other's binding to the β3 cytoplasmic tail in vitro. Thus, kindlins do not promote initial talin recruitment to αIIbβ3, suggesting that they co-activate integrin through a mechanism independent of recruitment.  相似文献   

2.
Acidic extracellular pH is characteristic of the cell microenvironment in several important physiological and pathological contexts. Although it is well established that acidic extracellular pH can have profound effects on processes such as cell adhesion and migration, the underlying molecular mechanisms are largely unknown. Integrin receptors physically connect cells to the extracellular matrix, and are thus likely to modulate cell responses to extracellular conditions. Here, we examine the role of acidic extracellular pH in regulating activation of integrin α(v)β(3). Through computational molecular dynamics simulations, we find that acidic extracellular pH promotes opening of the α(v)β(3) headpiece, indicating that acidic pH can thereby facilitate integrin activation. This prediction is consistent with our flow cytometry and atomic force microscope-mediated force spectroscopy assays of integrin α(v)β(3) on live cells, which both demonstrate that acidic pH promotes activation at the intact cell surface. Finally, quantification of cell morphology and migration measurements shows that acidic extracellular pH affects cell behavior in a manner that is consistent with increased integrin activation. Taken together, these computational and experimental results suggest a new and complementary mechanism of integrin activation regulation, with associated implications for cell adhesion and migration in regions of altered pH that are relevant to wound healing and cancer.  相似文献   

3.
A pathological hallmark of Alzheimer's disease (AD) is the aggregation of amyloid-β peptides (Aβ) into fibrils, leading to deposits in cerebral parenchyma and vessels known as cerebral amyloid angiopathy (CAA). Platelets are major players of hemostasis but are also implicated in AD. Recently we provided strong evidence for a direct contribution of platelets to AD pathology. We found that monomeric Aβ40 binds through its RHDS sequence to integrin αIIbβ3, and promotes the formation of fibrillar Aβ aggregates by the secretion of adenosine diphosphate (ADP) and the chaperone protein clusterin (CLU) from platelets. Here we investigated the molecular mechanisms of Aβ binding to integrin αIIbβ3 by using Aβ11 and Aβ16 peptides. These peptides include the RHDS binding motif important for integrin binding but lack the central hydrophobic core and the C-terminal sequence of Aβ. We observed platelet adhesion to truncated N-terminal Aβ11 and Aβ16 peptides that was not mediated by integrin αIIbβ3. Thus, no integrin outside-in signaling and reduced CLU release was detected. Accordingly, platelet mediated Aβ fibril formation was not observed. Taken together, the RHDS motif of Aβ is not sufficient for Aβ binding to platelet integrin αIIbβ3 and platelet mediated Aβ fibril formation but requires other recognition or binding motifs important for platelet mediated processes in CAA. Thus, increased understanding of the molecular mechanisms of Aβ binding to platelet integrin αIIbβ3 is important to understand the role of platelets in amyloid pathology.  相似文献   

4.
5.
Raborn J  Wang W  Luo BH 《Biochemistry》2011,50(12):2084-2091
The ability of αIIbβ3 to bind ligands and undergo outside-in signaling is regulated by three divalent cation binding sites in the β I domain. Specifically, the metal ion-dependent adhesion site (MIDAS) and the synergistic metal binding site (SyMBS) are thought to be required for ligand binding due to their synergy between Ca(2+) and Mg(2+). The adjacent to MIDAS (ADMIDAS) is an important ligand binding regulatory site that also acts as a critical link between the β I and hybrid domains for signaling. Mutations in this site have provided conflicting results for ligand binding and adhesion in different integrins. We have mutated the β3 SyMBS and ADMIDAS. The SyMBS mutant abolished ligand binding and outside-in signaling, but when an activating glycosylation mutation in the αIIb Calf 2 domain was introduced, the ligand binding affinity and signaling were restored. Thus, the SyMBS is important but not absolutely required for integrin bidirectional signaling. The ADMIDAS mutants showed reduced ligand binding affinity and abolished outside-in signaling, and the activating glycosylation mutation could fully restore integrin signaling of the ADMIDAS mutant. We propose that the ADMIDAS ion stabilizes the low-affinity state when the integrin headpiece is in the closed conformation, whereas it stabilizes the high-affinity state when the headpiece is in the open conformation with the swung-out hybrid domain.  相似文献   

6.
Two c[RGDfX] cyclopeptides, having either l- or d-morpholine-3-COOH (Mor) as the X amino acid were developed as ligands for αvβ3vβ5 integrins. Biological assays showed only d-Mor-containing cyclopentapeptide capable to bind αvβ3 integrin with a low nanomolar affinity according to a two-site model, thus revealing a connection between the configuration of Mor and the preferred binding to αvβ3 integrin. Conformational analysis showed different structural preferences for the two peptides induced by the two enantiomeric cyclic amino acids, suggesting a role of the stereochemistry of Mor on the overall peptide conformation and on the presentation of the pharmacophoric Arg and Asp side chains.  相似文献   

7.
A truncated form of the Agouti‐related protein (AgRP), a member of the cystine‐knot family, has shown promise as a scaffold for engineering novel peptides with new molecular recognition properties. In this study, we replaced a constrained six amino acid loop in AgRP with a nine amino acid loop containing an Arg–Gly–Asp integrin recognition motif, and randomized the neighboring residues to create a library of ~20 million AgRP variants. We displayed the AgRP mutants as fusions on the surface of yeast and used high‐throughput fluorescence‐activated cell sorting (FACS) to isolate peptides that bound specifically to the platelet integrin αIIbβ3, a clinically important target for the prevention and treatment of thrombosis. These AgRP peptides had equilibrium dissociation (KD) constants for αIIbβ3 integrin ranging from 60 to 90 nM, and did not bind to αvβ3, αvβ5, or α5β1 integrins. Using an alternate library screening strategy, we identified AgRP peptides that bound to both αIIbβ3 and αvβ3 integrins with KD values ranging from 40 to 70 nM and 20 to 30 nM, respectively, and did not bind to αvβ5 or α5β1 integrins. Unique consensus sequences were identified within both series of AgRP peptides suggesting alternative molecular recognition events that dictate different integrin binding specificities. In addition, the engineered AgRP peptides prevented platelet aggregation as well as or slightly better than the FDA‐approved cyclic peptide eptifibatide. Collectively, these data demonstrate that cystine‐knot peptides can be generated with high affinity and specificity to closely‐related integrins, and provide insights into molecular interactions between small, structured peptide ligands and their receptors. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
Summary The localization of glycoprotein (GP) IIb/IIIa (integrin IIb3) in both resting and thrombin-activated platelets was studied immunocytochemically. By the pre-embedding method where only the GP IIb/IIIa molecules on the surface of platelets were immunostained, the distribution of protein A-colloidal gold label was randomly distributed along the surface membrane of resting platelets at a density of 18.0±2.7 gold particles/m of membrane. At 15 s after stimulation by 0.1 U/ml of thrombin in an unstirred platelet suspension, the spheroid-shaped platelets with pseudopodia still had normal numbers of -granules, and the density of gold particles was 19.7±3.6 particles/m. At 5 min, the -granules were no longer present because of the release reaction, and the density of gold particles significantly increased (27.0±3.7 particles/m; p<0.01). In immunostained ultra-thin frozen sections, the gold particles were detected not only on the surface membrane, including the open canalicular system (OCS), but also on the -granule membranes of resting platelets. At 30 s after thrombin stimulation the -granules fused with the OCS, resulting in the formation of a swollen OCS, which still had gold particles on its membrane. At 5 min, the gold particles were detected on the membrane of the swollen OCS located near the surface membrane, while very few gold particles were present on the membrane of the OCS in the central part of the platelets. These results demonstrate that -granule membrane GPIIb/IIIa translocates to the surface membrane through the membrane of the OCS. Also the translocation of -granule membrane GPIIb/IIIa gives rise to an actual increase in GPIIb/IIIa on the surface membrane during the release reaction induced by thrombin.  相似文献   

9.
In addition to its classical CD40 receptor, CD154 also binds to αIIbβ3, α5β1, and αMβ2 integrins. Binding of CD154 to these receptors seems to play a key role in the pathogenic processes of chronic inflammation. This investigation was aimed at analyzing the functional interaction of CD154 with CD40, αIIbβ3, and α5β1 receptors. We found that the binding affinity of CD154 for αIIbβ3 is ~4-fold higher than for α5β1. We also describe the generation of sCD154 mutants that lost their ability to bind CD40 or αIIbβ3 and show that CD154 residues involved in its binding to CD40 or αIIbβ3 are distinct from those implicated in its interaction to α5β1, suggesting that sCD154 may bind simultaneously to different receptors. Indeed, sCD154 can bind simultaneously to CD40 and α5β1 and biologically activate human monocytic U937 cells expressing both receptors. The simultaneous engagement of CD40 and α5β1 activates the mitogen-activated protein kinases, p38, and extracellular signal-related kinases 1/2 and synergizes in the release of inflammatory mediators MMP-2 and -9, suggesting a cross-talk between these receptors.  相似文献   

10.
Three divalent cation binding sites in the integrin β I domain have been shown to regulate ligand binding and adhesion. However, the degree of ligand binding and adhesion varies among integrins. The αLβ2 and α4β7 integrins show an increase in ligand binding affinity and adhesion when one of their ADMIDAS (adjacent to MIDAS, or the metal ion-dependent adhesion site) residues is mutated. By contrast, the α2β1, α5β1, and αIIbβ3 integrins show a decrease in binding affinity and adhesion when their ADMIDAS is mutated. Our study here indicated that integrin αVβ3 had lower affinity when the ADMIDAS was mutated. By comparing the primary sequences of these integrin subunits, we propose that one residue associated with the MIDAS (β3 Ala(252)) may account for these differences. In the β1 integrin subunit, the corresponding residue is also Ala, whereas in both β2 and β7 integrin subunits, it is Asp. We mutated the β3 residue Ala(252) to Asp and combined this mutant with mutations of one or two ADMIDAS residues. The mutant A252D showed reduced ligand binding affinity and adhesion. The ligand binding affinity and adhesion were increased when this A252D mutant was paired with mutations of one ADMIDAS residue. But when paired with mutations of two ADMIDAS residues the mutant nearly abolished ligand-binding ability, which was restored by the activating glycosylation mutation. Our study suggests that the variation of this residue contributes to the different ligand binding affinities and adhesion abilities among different integrin families.  相似文献   

11.
In vitro, ligand occupancy of αvβ3 integrin induces phosphorylation of Dap12, which is essential for osteoclast function. Like mice deleted of only αvβ3, Dap12−/− mice exhibited a slight increase in bone mass, but Dap12−/− mice, lacking another ITAM protein, FcRγ, were severely osteopetrotic. The mechanism by which FcRγ compensates for Dap12 deficiency is unknown. We find that co-deletion of FcRγ did not exacerbate the skeletal phenotype of β3−/− mice. In contrast, β3/Dap12 double-deficient (DAP/β3−/−) mice (but not β1/Dap12 double-deficient mice) were profoundly osteopetrotic, reflecting severe osteoclast dysfunction relative to those lacking αvβ3 or Dap12 alone. Activation of OSCAR, the FcRγ co-receptor, rescued Dap12−/− but not DAP/β3−/−osteoclasts. Thus, the absence of αvβ3 precluded compensation for Dap12 deficiency by FcRγ. In keeping with this, Syk phosphorylation did not occur in OSCAR-activated DAP/β3−/− osteoclasts. Thus, FcRγ requires the osteoclast αvβ3 integrin to normalize the Dap12-deficient skeleton.  相似文献   

12.
The specific binding of RGD cyclic peptide with integrin αvβ3 attracts great research interest for tumor-targeting drug delivery. Herein, we designed and synthesized a series of dual-ring RGD-peptide derivatives as a drug carrier for αvβ3 targeting. Three novel peptides showed excellent cell adhesion inhibition effect, in which, P3 exhibited 7-fold enhancement in IC50 compared with cyclo(RGDfK). Drug-loaded cytotoxicity experiment and imaging experiment indicated that such dual-cyclic RGD peptides have good tumor targeting effects. This work provides a new strategy for the design of novel RGD peptides.  相似文献   

13.
The discovery, synthesis and preliminary SAR of a novel class of non-peptidic antagonists of the αv-integrins αvβ3 and αvβ5 is described. High-throughput screening of an extensive series of ECLiPS? compound libraries led to the identification of compound 1 as a dual inhibitor of the αv-integrins αvβ3 and αvβ5. Optimization of compound 1 involving, in part, introduction of two novel constraints led to the discovery of compounds 15a and 15b with reduced PSA and much improved potency for both the αvβ3 and αvβ5 integrins. Compounds 15a and 15b were shown to have promising activity in functional cellular assays and compound 15a also exhibited a promising Caco-2 permeability profile.  相似文献   

14.
The purpose of this study was to determine how dexamethasone (DEX) regulates the expression and activity of αvβ3 integrin. FACS analysis showed that DEX treatment induced expression of an activated αvβ3 integrin. Its expression remained high as long as DEX was present and continued following DEX removal. FACS analysis showed that the upregulation of αvβ3 integrin was the result of an increase in the expression of the β3 integrin subunit. By real time qPCR, DEX treatment induced a 6.2-fold increase (p < 0.04) in β3 integrin mRNA by day 2 compared to control and remained elevated for 6 days of treatment and then an additional 10 days once the DEX was removed. The increase in β3 integrin mRNA levels required only 1 day of DEX treatment to increase levels for 4 days in the absence of DEX. In contrast, DEX did not alter β1 integrin mRNA or protein levels. The DEX-induced upregulation of β3 integrin mRNA was partly due to an increase in its half-life to 60.7 h from 22.5 h in control cultures (p < 0.05) and could be inhibited by RU486 and cycloheximide, suggesting that DEX-induced de novo protein synthesis of an activation factor was needed. The calcineurin inhibitors cyclosporin A (CsA) and FK506 inhibited the DEX induced increase in β3 integrin mRNA. In summary, the DEX-induced increase in β3 integrin is a secondary glucocorticoid response that results in prolonged expression of αvβ3 integrin and the upregulation of the β3 integrin subunit through the calcineurin/NFAT pathway.  相似文献   

15.
A murine monoclonal antibody (mAb) 3C7 against integrin αIIbβ3 was previously obtained as a potential antithrombotic agent in our laboratory. The epitope of 3C7 is a specific conformation of the αIIbβ3 complex, but not either of the two subunits, which makes it different from abciximab, a supplementary antibody drug used in percutaneous coronary intervention which has a cross-reaction with other integrins sharing the β3 subunit. To reduce the human anti-mouse antibody reactions of 3C7, the variable regions of this antibody were cloned and fused with the constant counterparts of human IgG1. Two vectors of light and heavy chains were constructed and co-transfected into CHO-dhfr ? cells. The chimeric antibody c3C7 was purified and the properties of c3C7 were compared with 3C7. Identical to its parent antibody 3C7, c3C7 binds to the αIIbβ3 complex, but not to either of the subunits. The K d value of c3C7 was in the same order of magnitude as 3C7 (1.570?±?0.326 vs 0.780?±?0.182 nmol/L). Human platelet aggregation induced by adenosine diphosphate was effectively inhibited by c3C7 in a dose-dependent manner. In conclusion, after the modification, c3C7 retained the properties of its parent mAb with no loss of its biological activity. Therefore, c3C7 has the potential to become a novel agent for the treatment of thrombosis.  相似文献   

16.
Through interaction with the active site of αvβ3 integrin, tumstatin T7 peptide inhibits both the angiogenesis and the proliferation of tumour cells. In this work, docking in conjunction with molecular dynamics simulation was used to explore the binding mode of T7 peptide and αvβ3 integrin. The binding mode analysis revealed that the residues Ser90, Arg91, Asp93 and Tyr94 in T7 peptide, and (α)-Asp150, (β)-Arg214, (α)-Asp148 (α)-Gln214 and (α)-Glu123 in the active site of αvβ3 integrin were most likely the key interaction sites. The hydroxyl of Tyr94 coordinates αvβ3 via a Mn2+ ion, revealing that Mn2+ is also an important factor for the interaction. The insight into these key interaction sites not only suggests that the active site of αvβ3 integrin can bind to molecules through multiple binding mechanisms, but also provides some useful information for structure-based drug design.  相似文献   

17.
18.
Compounds containing a quinuclidine scaffold are promising drug candidates for pharmacological management of the central nervous system (CNS) pathologies implicating nAChRs. We have carried out binding affinity and in-silico docking studies of arylmethylene quinuclidine-like derivatives at the α4β2 receptor using in-vitro receptor binding assay and comparative modeling, respectively. We found that introducing a hydrogen-bond acceptor into the 3-benzylidene quinuclidine derivative resulted in a 266-fold increase in binding affinity and confers agonism properties. By contrast, addition of a phenyl group to 3-benzylidene quinuclidine derivative only results in an 18-fold increase in binding affinity, without conferring agonism. We also found that docking into the orthosteric binding site of the α4β2 nAChR is consistent with the fact that the basic nitrogen atom donates a hydrogen-bond to the carbonyl group of the highly conserved Trp-149, as initially observed by Dougherty and co-workers.1 The experimentally-observed trend in binding affinity at both α4β2 and α3β4 nAChRs was accurately and independently confirmed by quantum mechanics (QM)-polarized docking. The reduction in binding affinity to the α3β4 subtype primarily results from a dampening of both coulombic and cation–π interactions.  相似文献   

19.
The design of conjugates displaying simultaneously high selectivity and high affinity for different subtypes of integrins is a current challenge. The arginine-glycine-aspartic acid amino acid sequence (RGD) is one of the most efficient short peptides targeting these receptors. We report herein the development of linear and cyclic fluoro-C-glycoside“RGD” conjugates, taking advantage of the robustness and hydrophilicity of C-glycosides. As attested by in vitro evaluation, the design of these C-glyco“RGD” with a flexible three-carbon triazolyl linker allows distinct profiles towards αIIbβ3 and αvβ3 integrins. Molecular-dynamics simulations confirm the suitability of cyclic C-glyco-c(RGDfC) to target αvβ3 integrin. These C-glyco”RGD” could become promising biological tools in particular for Positron Emission Tomography imaging.  相似文献   

20.
Integrin αvβ3 is most likely the foremost modulator of angiogenesis among all known integrins. Recombinant disintegrin DisBa-01, originally obtained from snake venom glands, binds to αvβ3, thereby significantly inhibiting adhesion and generating in vivo anti-metastatic ability. However, its function in mediator production is not clear. Here, we observed that the mediators VEGF-A, IL-8, and TGF-β are not produced by human umbilical vein endothelial cells (HUVEC cell line) or monocyte/macrophage cells (SC cell line) when cells adhered to vitronectin. However, when exposed to DisBa-01, HUVECs produced higher levels of TGF-β, and SC cells produced higher levels of VEGF-A. Nonetheless, HUVECs also showed an enhancement of apoptosis after losing adherence when exposed to disintegrin, which is a characteristic of anoikis. We propose that disintegrin DisBa-01 could be used to modulate integrin αvβ3 functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号