首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
An α-carbonic anhydrase (CA, EC 4.2.1.1) isolated from the living fossil sponge Astrosclera willeyana, Astrosclerin, was investigated for its inhibition profile with simple inorganic anions, complex anions and other small molecules known to interact with these zinc enzymes. Astrosclerin is a catalytically highly efficient enzyme, and is inhibited in the low micromolar range by sulfamide, sulfamic acid, phenylboronic acid and phenylarsonic acid, and in the submillimolar range by a variety of anions including fluoride, chloride, cyanate, thiocyanate, cyanide, hydrogen sulfide, bisulfate, stannate, perosmate, divanadate, perrhenate, perruthenate, selenocyanide, trithiocarbonate, diethyldithiocarbamate and iminodisulfonate. Less efficient Astrosclerin inhibitors were sulfate, bromide, iodide, azide, bicarbonate, carbonate, tetraborate and perchlorate (K(I)s of 5.11-30.6mM) whereas tetrafluoroborate was not at all inhibitory. Because Astrosclerin is involved in calcification processes in vivo, its anion inhibition profile may be important for future studies designed to shed light on the physiologic functions of α-CAs in marine organisms.  相似文献   

2.
An α-carbonic anhydrase (CA, EC 4.2.1.1) was purified and characterized kinetically from erythrocytes of the sturgeon Acipenser gueldenstaedti, an endangered species. The sturgeon enzyme (AgCA) showed kinetic parameters for the CO(2) hydration reaction comparable with those of the human erythrocytes enzyme hCA II, being a highly active enzyme, whereas its esterase activity with 4-nitrophenyl acetate as substrate was lower. Sulphonamide inhibitors (acetazolamide, sulphanilamide) strongly inhibited AgCA, whereas metal ions (Ag(+), Zn(2+), Cu(2+) and Co(2+)) were weak, millimolar inhibitors. Several widely used pesticides (2,4-dichlorophenol, dithiocarbamates, parathion and carbaryl) were also assayed as inhibitors of this enzyme. The dithiocarbamates were low micromolar AgCA inhibitors (IC(50) of 16-18 μM), whereas the other pesticides inhibited the enzyme with IC(50)s in the range of 102-398 μM. The wide use of dithiocarbamate pesticides may be one of the factors enhancing the vulnerability of this sturgeon species to pollutants.  相似文献   

3.
Carbonic anhydrase (CA; EC 4.2.1.1) was purified from the gill of the teleost fish Dicentrarchus labrax (European seabass). The purification procedure consisted of a single step affinity chromatography on Sepharose 4B-tyrosine-sulfanilamide. The enzyme was purified 84.9-fold with a yield of 58%, and a specific activity of 838.9 U/mg proteins. It has an optimum pH at 8.0; an optimum temperature at 10°C. The kinetic parameters of this enzyme were determined for its esterase activity, with 4-nitrophenyl acetate (NPA) as substrate. The following anions, H?NSO??, I?, SCN?, NO??, NO??, N??, Br?, Cl?, SO?2?, and F? showed inhibitory effects on the enzyme. Sulfamic acid, iodide, and thiocyanate exhibited the strongest inhibitory action, in the micromolar range (K(i)s of 87-187 μM). NO??, NO?? and N?? were moderate inhibitors, whereas other anions showed only weak actions. All tested anions inhibited the enzyme in a competitive manner. Our findings indicate that these anions inhibit the fish enzyme in a similar manner to other α-CAs from mammals investigated earlier, but the susceptibility to various anions differs significantly between the fish and mammalian CAs.  相似文献   

4.
Representatives of all major metazoan lineages form biominerals. The molecular mechanisms that underlie this widespread and evolutionarily ancient ability are gradually being revealed for some lineages. However, until a wider range of metazoan biomineralization strategies are understood, the true diversity, and therefore the evolutionary origins of this process, will remain unknown. We have previously shown that the coralline demosponge, Astrosclera willeyana, in some way employs its endobiotic bacterial community to form its highly calcified skeleton. Here, using in situ hybridization and immunohistochemistry, we show that an ortholog of ATG8 (most likely a GABARAPL2/GATE-16 ortholog) is expressed in cells that construct the individual skeletal elements of the sponge. In TEM sections sponge cells can be observed to contain extensive populations of bacteria, and frequently possesses double-membrane structures which we interpret to be autophagosomes. In combination with our previous work, these findings support the hypothesis that the host sponge actively degrades a proportion of its bacterial community using an autophagy pathway, and uses the prokaryotic organic remains as a framework upon which calcification of the sponge skeleton is initiated.  相似文献   

5.
《Autophagy》2013,9(3):408-415
Representatives of all major metazoan lineages form biominerals. The molecular mechanisms that underlie this widespread and evolutionarily ancient ability are gradually being revealed for some lineages. However, until a wider range of metazoan biomineralization strategies are understood, the true diversity, and therefore the evolutionary origins of this process, will remain unknown. We have previously shown that the coralline demosponge, Astrosclera willeyana, in some way employs its endobiotic bacterial community to form its highly calcified skeleton. Here, using in situ hybridization and immunohistochemistry, we show that an ortholog of ATG8 (most likely a GABARAPL2/GATE-16 ortholog) is expressed in cells that construct the individual skeletal elements of the sponge. In TEM sections sponge cells can be observed to contain extensive populations of bacteria, and frequently possesses double-membrane structures which we interpret to be autophagosomes. In combination with our previous work, these findings support the hypothesis that the host sponge actively degrades a proportion of its bacterial community using an autophagy pathway, and uses the prokaryotic organic remains as a framework upon which calcification of the sponge skeleton is initiated.  相似文献   

6.
An α-carbonic anhydrase (CA, EC 4.2.1.1) has been recently cloned and characterized in the human pathogenic bacterium Vibrio cholerae, denominated VchCA (Del Prete et al. J. Med. Chem. 2012, 55, 10742). This enzyme shows a good catalytic activity for the CO2 hydration reaction, comparable to that of the human (h) isoform hCA I. Many inorganic anions and several small molecules were investigated as VchCA inhibitors. Inorganic anions such as cyanate, cyanide, hydrogen sulfide, hydrogen sulfite, and trithiocarbonate were effective VchCA inhibitors with inhibition constants in the range of 33–88 μM. Other effective inhibitors were diethyldithiocarbamate, sulfamide, sulfamate, phenylboronic acid and phenylarsonic acid, with KIs of 7–43 μM. Halides (bromide, iodide), bicarbonate and carbonate were much less effective VchCA inhibitors, with KIs in the range of 4.64–28.0 mM. The resistance of VchCA to bicarbonate inhibition may represent an evolutionary adaptation of this enzyme to living in an environment rich in this ion, such as the gastrointestinal tract, as bicarbonate is a virulence enhancer of this bacterium.  相似文献   

7.
A high activity α-carbonic anhydrase (CA, EC 4.2.1.1) has been purified from various tissues of the Antarctic seal Leptonychotes weddellii. The new enzyme, denominated lwCA, has a catalytic activity for the physiologic CO(2) hydration to bicarbonate reaction, similar to that of the high activity human isoform hCA II, with a k(cat) of 1.1×10(6) s(-1), and a k(cat)/K(m) of 1.4×10(8) M(-1) s(-1). The enzyme was highly inhibited by cyanate, thiocyanate, cyanide, bicarbonate, carbonate, as well as sulfamide, sulfamate, phenylboronic/phenylarsonic acids (K(I)s in the range of 46-100 μM). Many clinically used sulfonamides, such as acetazolamide, methazolamide, dorzolamide, brinzolamide and benzolamide were low nanomolar inhibitors, with K(I)s in the range of 5.7-67 nM. Dichlorophenamide, zonisamide, saccharin and hydrochlorothiazide were weaker inhibitors, with K(I)s in the range of 513-5390 nM. The inhibition profile with anions and sulfonamides of the seal enzyme was rather different from those of the human isoforms hCA I and II. The high sensitivity to bicarbonate inhibition of lwCA, unlike that of the human enzymes, may reflect an evolutionary adaptation to the deep water, high CO(2) partial pressure and hypoxic conditions in which Weddell seals spend much of their life.  相似文献   

8.
The α-carbonic anhydrase gene from Helicobacter pylori strain 26695 has been cloned and sequenced. The full-length protein appears to be toxic to Escherichia coli, so we prepared a modified form of the gene lacking a part that presumably encodes a cleavable signal peptide. This truncated gene could be expressed in E. coli yielding an active enzyme comprising 229 amino acid residues. The amino acid sequence shows 36% identity with that of the enzyme from Neisseria gonorrhoeae and 28% with that of human carbonic anhydrase II. The H. pylori enzyme was purified by sulfonamide affinity chromatography and its circular dichroism spectrum and denaturation profile in guanidine hydrochloride have been measured. Kinetic parameters for CO2 hydration catalyzed by the H. pylori enzyme at pH 8.9 and 25°C are kcat=2.4×105 s−1, KM=17 mM and kcat/KM=1.4×107 M−1 s−1. The pH dependence of kcat/KM fits with a simple titration curve with pKa=7.5. Thiocyanate yields an uncompetitive inhibition pattern at pH 9 indicating that the maximal rate of CO2 hydration is limited by proton transfer between a zinc-bound water molecule and the reaction medium in analogy to other forms of the enzyme. The 4-nitrophenyl acetate hydrolase activity of the H. pylori enzyme is quite low with an apparent catalytic second-order rate constant, kenz, of 24 M−1 s−1 at pH 8.8 and 25°C. However, with 2-nitrophenyl acetate as substrate a kenz value of 665 M−1 s−1 was obtained under similar conditions.  相似文献   

9.
The newly discovered thermophilic bacterium Sulfurihydrogenibium yellowstonense YO3AOP1 encodes an α-carbonic anhydrases (CAs, EC 4.2.1.1) which is highly catalytically active and thermostable. Here we report the inhibition of this enzyme, denominated SspCA, with inorganic and complex anions and other molecules interacting with zinc proteins. SspCA was inhibited in the micromolar range by diethyldithiocarbamate, sulfamide, sulfamic acid, phenylboronic and phenylarsonic acid, trithiocarbonate and selenocyanide (K(I)s of 4-70μM) and in the submillimolar one by iodide, cyanide, (thio)cyanate, hydrogen sulfide, azide, nitrate, nitrite, many complex anions incorporating heavy metal ions and iminodisulfonate (K(I)s of 0.48-0.86mM). SspCA was not substantially inhibited by bicarbonate and carbonate, hydrogensulfite and peroxidisulfate (K(I)s in the range of 21.1-84.6mM). The exceptional thermostability and lack of strong affinity for hydrogensulfide, bicarbonate, and carbonate make this enzyme an interesting candidate for biotechnological applications of enzymatic CO(2) fixation.  相似文献   

10.
The δ-carbonic anhydrase (CA, EC 4.2.1.1) TweCA from the marine diatom Thalassiosira weissflogii has recently been cloned, purified and its activity/inhibition with anions investigated. Here we report the first sulfonamide/sulfamate inhibition study of a δ-class CA. Among the 40 such compounds investigated so far, 3-bromosulfanilamide, acetazolamide, ethoxzolamide, dorzolamide and brinzolamide were the most effective TweCA inhibitors detected, with KIs of 49.6–118 nM. Many simple aromatic sulfonamides as well as dichlorophenamide, benzolamide, topiramate, zonisamide, indisulam and valdecoxib were medium potency inhibitors, (KIs of 375–897 nM). Saccharin and hydrochlorothiazide were ineffective inhibitors of the δ-class enzyme, with KIs of 4.27–9.20 μM. The inhibition profile of the δ-CA is very different from that of α-, β- and γ-CAs from different organisms. Although no X-ray crystal structure of this enzyme is available, we hypothesize that as for other CA classes, the sulfonamides inhibit the enzymatic activity by binding to the Zn(II) ion from the δ-CA active site.  相似文献   

11.
We cloned, expressed, purified, and determined the kinetic constants of the recombinant α-carbonic anhydrase (rec-MgaCA) identified in the mantle tissue of the bivalve Mediterranean mussel, Mytilus galloprovincialis. In metazoans, the α-CA family is largely represented and plays a pivotal role in the deposition of calcium carbonate biominerals. Our results demonstrated that rec-MgaCA was a monomer with an apparent molecular weight of about 32?kDa. Moreover, the determined kinetic parameters for the CO2 hydration reaction were kcat?=??4.2?×?105?s?1 and kcat/Km of 3.5?×?107?M?1 ×s?1. Curiously, the rec-MgaCA showed a very similar kinetic and acetazolamide inhibition features when compared to those of the native enzyme (MgaCA), which has a molecular weight of 50?kDa. Analysing the SDS-PAGE, the protonography, and the kinetic analysis performed on the native and recombinant enzyme, we hypothesised that probably the native MgaCA is a multidomain protein with a single CA domain at the N-terminus of the protein. This hypothesis is corroborated by the existence in mollusks of multidomain proteins with a hydratase activity. Among these proteins, nacrein is an example of α-CA multidomain proteins characterised by a single CA domain at the N-terminus part of the entire protein.  相似文献   

12.
The genome of the pathogenic bacterium Vibrio cholerae encodes for three carbonic anhydrases (CAs, EC 4.2.1.1) belonging to the α-, β- and γ-classes. VchCA, the α-CA from this species was investigated earlier, whereas the β-class enzyme, VchCAβ was recently cloned, characterized kinetically and its X-ray crystal structure reported by this group. Here we report an inhibition study with sulfonamides and one sulfamate of this enzyme. The best VchCAβ inhibitors were deacetylated acetazolamide and methazolamide and hydrochlorothiazide, which showed inhibition constants of 68.2–87.0 nM. Other compounds, with medium potency against VchCAβ, (KIs in the range of 275–463 nM), were sulfanilamide, metanilamide, sulthiame and saccharin whereas the clinically used agents such as acetazolamide, methazolamide, ethoxzolamide, dorzolamide, zonisamide and celecoxib were micromolar inhibitors (KIs in the range of 4.51–8.57 μM). Identification of potent and possibly selective inhibitors of VchCA and VchCAβ over the human CA isoforms, may lead to pharmacological tools useful for understanding the physiological role(s) of this under-investigated enzymes.  相似文献   

13.
The β-carbonic anhydrases (CAs, EC 4.2.1.1) from the pathogenic bacterium Clostridium perfringens (CpeCA) was recently characterised kinetically and for its anion inhibition profile. In the search of effective CpeCA inhibitors, possibly useful to inhibit the growth/pathogenicity of this bacterium, we report here an inhibition study of this enzyme with a panel of aromatic, heterocyclic and sugar sulphonamides/sulphamates. Some sulphonamides, such as acetazolamide, ethoxzolamide, dichlorophenamide, dorzolamide, sulthiame and 4-(2-hydroxymethyl-4-nitrophenyl-sulphonamido)ethylbenzenesulphonamide were effective CpeCA inhibitors, with KIs in the range of 37.4–71.6?nM. Zonisamide and saccharin were the least effective such inhibitors, whereas many other aromatic and heterocyclic sulphonamides were moderate – weak inhibitors with KIs ranging between 113 and 8755?nM. Thus, this study provides the basis for developing better clostridial enzyme inhibitors with potential as antiinfectives with a new mechanism of action.  相似文献   

14.
A β-carbonic anhydrases (CAs, EC 4.2.1.1) was recently cloned, purified and characterized kinetically in the pathogen Clostridium perfringens. We report here the first inhibition study of this enzyme (CpeCA). CpeCA was poorly inhibited by iodide and bromide, and was inhibited with KIs in the range of 1–10 mM by a range of anions such as (thio)cyanate, azide, bicarbonate, nitrate, nitrite, hydrogensulfite, hydrogensulfide, stannate, tellurate, pyrophosphate, divanadate, tetraborate, peroxydisulfate, sulfate, iminodisulfonate and fluorosulfonate. Better inhibitory power, with KIs of 0.36–1.0 mM, was observed for cyanide, carbonate, selenate, selenocyanide, trithiocarbonate and diethyldithiocarbamate, whereas the best CpeCA inhibitors were sulfamate, sulfamide, phenylboronic acid and phenylarsonic acid, which had KIs in the range of 7–75 μM. This study thus provides the basis for developing better clostridial enzyme inhibitors with potential as antiinfectives with a new mechanism of action.  相似文献   

15.
Abstract

The antimalarial drugs are of fundamental importance in the control of malaria, especially for the lack of efficient treatments and acquired resistance to the existing drugs. For this reason, there is a continuous work in identifying novel, less toxic and effective chemotherapies as well as new therapeutic targets against the causative agents of malaria. In this context, a superfamily of metalloenzymes named carbonic anhydrases (CAs, EC 4.2.1.1) has aroused a great interest as druggable enzymes to limit the development of Plasmodium falciparum gametocytes. CAs catalyze a common reaction in all life domains, the carbon dioxide hydration to bicarbonate and protons (CO2?+?H2O ? HCO3-?+?H+). P. falciparum synthesizes pyrimidines de novo starting from HCO3-, which is generated from CO2 through the action of the η-CA identified in the genome of the protozoan. Here, we propose a procedure for the preparation of a wider portion of the protozoan η-CA, named PfCAdom (358 amino acid residues), with respect to the truncated form prepared by Krungkrai et al. (PfCA1, 235 amino acid residues). The results evidenced that the recombinant PfCAdom, produced as a His-tag fusion protein, was 2.7 times more active with respect the truncated form PfCA1.  相似文献   

16.
The inhibition of the δ-class carbonic anhydrase (CAs, EC 4.2.1.1) from the diatom Thalassiosira weissflogii, TweCAδ, was investigated using a panel of 36 mono- and di-thiocarbamates chemotypes that have recently been shown to inhibit mammalian and pathogenic CAs belonging to the α- and β-classes. TweCAδ was not significantly inhibited by most of such compounds (KI values above 20 µM). However, some aliphatic, heterocyclic, and aromatic mono and di-thiocarbamates inhibited TweCAδ in the low micromolar range. For some compounds incorporating the piperazine ring, TweCAδ was effectively inhibited (KIs from 129 to 791?nM). The most effective inhibitors identified in this study were 3,4-dimethoxyphenyl-ethyl-mono-thiocarbamate (KI of 67.7?nM) and the R-enantiomer of the nipecotic acid di-thiocarbamate (KI of 93.6?nM). Given that the activity and inhibition of this class of enzyme have received limited attention until now, this study provides new molecular probes and information for investigating the role of δ-CAs in the carbon fixation processes in diatoms, which are responsible for significant amounts of CO2 taken from the atmosphere by these marine organisms.  相似文献   

17.
The Rv3588c gene product of Mycobacterium tuberculosis, a β-carbonic anhydrase (CA, EC 4.2.1.1) denominated here mtCA 2, shows the highest catalytic activity for CO2 hydration (kcat of 9.8 × 105 s?1, and kcat/Km of 9.3 × 107 M?1 s?1) among the three β-CAs encoded in the genome of this pathogen. A series of sulfonamides/sulfamates was assayed for their interaction with mtCA 2, and some diazenylbenzenesulfonamides were synthesized from sulfanilamide/metanilamide by diazotization followed by coupling with amines or phenols. Several low nanomolar mtCA 2 inhibitors have been detected among which acetazolamide, ethoxzolamide and some 4-diazenylbenzenesulfonamides (KIs of 9–59 nM). As the Rv3588c gene was shown to be essential to the growth of M. tuberculosis, inhibition of this enzyme may be relevant for the design of antituberculosis drugs possessing a novel mechanism of action.  相似文献   

18.
A α-carbonic anhydrase (CA, EC 4.2.1.1) has been purified and characterized biochemically from the mollusk Mytilus galloprovincialis. As in most mollusks, this α-CA is involved in the biomineralization processes leading to the precipitation of calcium carbonate in the mussel shell. The new enzyme had a molecular weight of 50?kDa, which is roughly two times higher than that of a monomeric α-class enzyme. Thus, Mytilus galloprovincialis α-CA is either a dimer, or similar to the Tridacna gigas CA described earlier, may have two different CA domains in its polypeptide chain. The Mytilus galloprovincialis α-CA sequence contained the three His residues acting as zinc ligands and the gate-keeper residues present in all α-CAs (Glu106-Thr199), but had a Lys in position 64 and not a His as proton shuttling residue, being thus similar to the human isoform hCA III. This probably explains the relatively low catalytic activity of Mytilus galloprovincialis α-CA, with the following kinetic parameters for the CO2 hydration reaction: kcat =?4.1?×?105 s?1 and kcat/Km of 3.6?×?107 M?1 × s?1. The enzyme activity was poorly inhibited by the sulfonamide acetazolamide, with a KI of 380?nM. This study is one of the few describing in detail the biochemical characterization of a molluskan CA and may be useful for understanding in detail the phylogeny of these enzymes, their role in biocalcification processes and their potential use in the biomimetic capture of the CO2.  相似文献   

19.
A recombinant carbonic anhydrase (CA, EC 4.2.1.1) from the soil-dwelling bacterium Enterobacter sp. B13 was cloned and purified by Co2+ affinity chromatography. Bioinformatic analysis showed that the new enzyme (denominated here B13-CA) belongs to the β-class CAs and to possess 95% homology with the ortholog enzyme from Escherichia coli encoded by the can gene, whereas its sequence homology with the other such enzyme from E. coli (encoded by the cynT gene) was of 33%. B13-CA was characterized kinetically as a catalyst for carbon dioxide hydration to bicarbonate and protons. The enzyme shows a significant catalytic activity, with the following kinetic parameters at 20?°C and pH of 8.3: kcat of 4.8?×?105?s?1 and kcat/Km of 5.6?×?107 M?1?×?s?1. This activity was potently inhibited by acetazolamide which showed a KI of 78.9?nM. Although only this compound was investigated for the moment as B13-CA inhibitor, further studies may reveal new classes of inhibitors/activators of this enzyme which may show biomedical or environmental applications, considering the posssible role of this enzyme in CaCO3 biomineralization processes.  相似文献   

20.
Abstract

Diatom genome sequences clearly reveal the presence of different systems for HCO3? uptake. Carbon-concentrating mechanisms (CCM) based on HCO3? transport and a plastid-localized carbonic anhydrase (CA, EC 4.2.1.1) appear to be more probable than the others because CAs have been identified in the genome of many diatoms. CAs are key enzymes involved in the acquisition of inorganic carbon for photosynthesis in phytoplankton, as they catalyze efficiently the interconversion between carbon dioxide and bicarbonate. Five genetically distinct classes of CAs exist, α-, β-, γ-, δ- and ζ and all of them are metalloenzymes. Recently we investigated for the first time the catalytic activity and inhibition of the δ-class CA from the marine diatom Thalassiosira weissflogii, named TweCA. This enzyme is an efficient catalyst for the CO2 hydration and its inhibition profile with sulfonamide/sulfamate and anions have also been investigated. Here, we report the detailed biochemical characterization and chemico-physical properties of the δ-CA of T. weissflogii. The δ-CA encoding gene was cloned and expressed in Artic Express cells and the recombinant protein purified to homogeneity. Interesting to note that TweCA has no intrinsic esterase activity with 4-nitrophenyl acetate (pNpA) as substrate although the phylogenetic analysis showed that δ-CAs are closer to the α-CAs than to the other classes of such enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号