首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Myxobacteria are common in terrestrial habitats and well known for their formation of fruiting bodies and production of secondary metabolites. We studied a cluster of myxobacteria consisting only of sequences of marine origin (marine myxobacteria cluster, MMC) in sediments of the North Sea. Using a specific PCR, MMC sequences were detected in North Sea sediments down to 2.2 m depth, but not in the limnetic section of the Weser estuary and other freshwater habitats. In the water column, this cluster was only detected on aggregates up to a few meters above the sediment surface, but never in the fraction of free-living bacteria. A quantitative real-time PCR approach revealed that the MMC constituted up to 13% of total bacterial 16S rRNA genes in surface sediments of the North Sea. In a global survey, including sediments from the Mediterranean Sea, the Atlantic, Pacific and Indian Ocean and various climatic regions, the MMC was detected in most samples and to a water depth of 4300 m. Two fosmids of a library from sediment of the southern North Sea containing 16S rRNA genes affiliated with the MMC were sequenced. Both fosmids have a single unlinked 16S rRNA gene and no complete rRNA operon as found in most bacteria. No synteny to other myxobacterial genomes was found. The highest numbers of orthologues for both fosmids were assigned to Sorangium cellulosum and Haliangium ochraceum. Our results show that the MMC is an important and widely distributed but largely unknown component of marine sediment-associated bacterial communities.  相似文献   

2.
Except for environmental 16S rRNA gene sequences, no information is available for members of the candidate division OP3. These bacteria appear to thrive in anoxic environments, such as marine sediments, hypersaline deep sea, freshwater lakes, aquifers, flooded paddy soils and methanogenic bioreactors. The 16S rRNA phylogeny suggests that OP3 belongs to the Planctomycetes/Verrucomicrobia/Chlamydiae (PVC) superphylum. Metagenomic fosmid libraries were constructed from flooded paddy soil and screened for 16S rRNA gene‐containing fragments affiliated with the PVC superphylum. The screening of 63 000 clones resulted in 23 assay‐positive fosmids, of which three clones were affiliated with OP3. The 16S rRNA gene sequence divergence between the fragments OP3/1, OP3/2 and OP3/3 ranges from 18% to 25%, indicating that they belong to different OP3 subdivisions. The 23S rRNA phylogeny confirmed the membership of OP3 in the PVC superphylum. Sequencing the OP3 fragments resulted in a total of 105 kb of genomic information and 90 ORFs, of which 47 could be assigned a putative function and 11 were conserved hypothetical. Using BLASTP searches, a high proportion of ORFs had best matches to homologues from Deltaproteobacteria, rather than to those of members of the PVC superphylum. On the fragment OP3/3, a cluster of nine ORFs was predicted to encode the bacterial NADH dehydrogenase I. Given the high proportion of homologues present in deltaproteobacteria and anoxic conditions in the natural environment of OP3 bacteria, the detection of NADH dehydrogenase I may suggest an anaerobic respiration mode. Oligonucleotide frequencies calculated for OP3/1, OP3/2 and OP/3 show high intraphylum correlations. This novel sequence information could therefore be used to identify OP3‐related fragments in large metagenomic data sets using marker gene‐independent procedures in the future. In addition to the OP3 fragments, a single metagenomic fragment affiliated with the candidate division BRC1 was obtained and analysed.  相似文献   

3.
High local and global diversity of Flavobacteria in marine plankton   总被引:1,自引:0,他引:1  
Members of the phylum Bacteroidetes are among the most abundant microbes in coastal marine waters, but it is unclear to which extent the diversity within this phylum is covered by currently available 16S rRNA gene sequence information. We, thus, obtained a comprehensive collection of sequence types affiliated with Bacteroidetes in coastal North Sea surface waters and we compared this local diversity with the available sequences of marine planktonic and other aquatic Bacteroidetes. Approximately 15% of > 600 clones from two libraries (August 2000, June 2001) were related to Bacteroidetes, specifically to the Flavobacteria. Local diversity appeared to be almost exhaustively sampled. However, the diversity of the two libraries virtually did not overlap, indicating a pronounced temporal variability of the planktonic Flavobacteria assemblage. The majority of sequence types represented novel phylogenetic lineages, adding 6-7% to the currently known genera and species of Bacteroidetes in marine waters. Different diversity estimators suggested that so far only approximately half of the global diversity of planktonic marine Bacteroidetes has been described. The data set moreover indicated that cultivation-independent techniques and isolation approaches have recovered almost equally sized and virtually non-overlapping fractions of the currently known diversity within this phylum. Interestingly, only 15% of genera of Bacteroidetes from various aquatic environments appear to occur in more than one habitat type.  相似文献   

4.
Bacteroidetes is one of the dominant phyla of ocean bacterioplankton, yet its diversity and population structure is poorly understood. To advance in the delineation of ecologically meaningful units within this group, we constructed near full‐length 16S rRNA gene clone libraries from contrasting marine environments in the NW Mediterranean. Based on phylogeny and the associated ecological variables (depth and season), 24 different Bacteroidetes clades were delineated. By considering their relative abundance (from iTag amplicon sequencing studies), we described the distribution patterns of each of these clades, delimiting them as Ecologically Significant Taxonomic Units (ESTUs). Spatially, there was almost no overlap among ESTUs at different depths. In deep waters there was predominance of Owenweeksia, Leeuwenhoekiella, Muricauda‐related genera, and some depth‐associated ESTUs within the NS5 and NS2b marine clades. Seasonally, multi‐annual dynamics of recurring ESTUs were present with dominance of some ESTUs within the NS4, NS5 and NS2b marine clades along most of the year, but with variable relative frequencies between months. A drastic change towards the predominance of Formosa‐related ESTUs and one ESTU from the NS5 marine clade was typically present after the spring bloom. Even though there are no isolates available for these ESTUs to determine their physiology, correlation analyses identified the environmental preference of some of them. Overall, our results suggest that there is a high degree of niche specialisation within these closely related clades. This work constitutes a step forward in disentangling the ecology of marine Bacteroidetes, which are essential players in organic matter processing in the oceans.  相似文献   

5.
The main goals of this work were to identify the metabolic pathways of the bacterial community in a lacustrine ecosystem and to establish links between taxonomic composition and the relative abundances of these metabolic pathways. For this purpose, we analysed a 16S rRNA gene library obtained by gene amplification together with a sequence library of both insert ends on c . 7700 fosmids. Whatever the library used, Actinobacteria was the most abundant bacterial group, followed by Proteobacteria and Bacteroidetes . Specific aquatic clades such as acI and acIV ( Actinobacteria ) or LD12 and GOBB-C201 ( Alphaproteobacteria ) were found in both libraries. From comparative analysis of metagenomic libraries, the metagenome of this lake was characterized by overrepresentation of genes involved in the degradation of xenobiotics mainly associated with Alphaproteobacteria . Actinobacteria were mainly related to metabolic pathways involved in nucleotide metabolism, cofactors, vitamins, energy, replication and repair. Betaproteobacteria appeared to be characterized by the presence of numerous genes implicated in environmental information processing (membrane transport and signal transduction) whereas glycan and carbohydrate metabolism pathways were overrepresented in Bacteroidetes . These results prompted us to propose hypotheses on the ecological role of these bacterial classes in lacustrine ecosystems.  相似文献   

6.
Marine Group A (MGA) is a deeply branching and uncultivated phylum of bacteria. Although their functional roles remain elusive, MGA subgroups are particularly abundant and diverse in oxygen minimum zones and permanent or seasonally stratified anoxic basins, suggesting metabolic adaptation to oxygen-deficiency. Here, we expand a previous survey of MGA diversity in O2-deficient waters of the Northeast subarctic Pacific Ocean (NESAP) to include Saanich Inlet (SI), an anoxic fjord with seasonal O2 gradients and periodic sulfide accumulation. Phylogenetic analysis of small subunit ribosomal RNA (16S rRNA) gene clone libraries recovered five previously described MGA subgroups and defined three novel subgroups (SHBH1141, SHBH391, and SHAN400) in SI. To discern the functional properties of MGA residing along gradients of O2 in the NESAP and SI, we identified and sequenced to completion 14 fosmids harboring MGA-associated 16S RNA genes from a collection of 46 fosmid libraries sourced from NESAP and SI waters. Comparative analysis of these fosmids, in addition to four publicly available MGA-associated large-insert DNA fragments from Hawaii Ocean Time-series and Monterey Bay, revealed widespread genomic differentiation proximal to the ribosomal RNA operon that did not consistently reflect subgroup partitioning patterns observed in 16S rRNA gene clone libraries. Predicted protein-coding genes associated with adaptation to O2-deficiency and sulfur-based energy metabolism were detected on multiple fosmids, including polysulfide reductase (psrABC), implicated in dissimilatory polysulfide reduction to hydrogen sulfide and dissimilatory sulfur oxidation. These results posit a potential role for specific MGA subgroups in the marine sulfur cycle.  相似文献   

7.
The high genomic G+C group of Actinobacteria possesses a variety of physiological and metabolic properties, and exhibits diverse lifestyles and ecological distribution. In recent years, Actinobacteria have been found to frequently dominate samples obtained from freshwater samples. Furthermore, phylogenetic analyses have shown that 16S rRNA genes from uncultured actinobacterial freshwater samples cluster in four distinct lineages. While these lineages are abundant, little is known about them and currently no pure‐culture representatives or genomic fragments of them are available. In a screen of a genomic library from the moderately eutrophic freshwater Lake Kinneret, five fosmid clones containing actinobacterial genomic fragments were found. Three ~40 kb genomic fragments were chosen for sequencing. Fosmids K003 and K005 showed high similarity and were affiliated with the acIV actinobacterial freshwater lineage. Fosmid K004 was affiliated with the highly abundant acI lineage. A comparative genomic analysis revealed high synteny between the two freshwater clones K003 and K005 but a lower synteny between these two and the K004 fosmid. Fosmids K003 and K005 share an identical arrangement of arginine biosynthesis gene while K004 showed a slightly different arrangement by lacking the argF gene. Fosmid Ant4E12, an Antarctic actinobacterial clone, showed a higher synteny with K003/5 than K004 and a similar arginine operon, but in a different genomic context. The Clusters of Orthologous Groups categories assignment of the three fosmids yielded genes that were mostly involved in amino acid and nucleotide metabolism, as well as transport and ribosomal RNA translation, structure and biogenesis. These genomic fragments represent the first sequences to be published from these lineages, providing a cornerstone for future work on this environmentally dominant group.  相似文献   

8.
Bacterial communities associated with the brown alga Laminaria saccharina from the Baltic Sea and from the North Sea were investigated using denaturing gradient gel electrophoresis and 16S rRNA gene clone libraries. The rhizoid, cauloid, meristem and phyloid revealed different 16S rRNA gene denaturing gradient gel electrophoresis banding patterns indicating a specific association of bacterial communities with different parts of the alga. Associations with cauloid and meristem were more specific, while less specific associations were obtained from the old phyloid. In addition, seasonal and geographical differences in the associated communities were observed. Results from 16S rRNA gene libraries supported these findings. Bacterial phylotypes associated with the alga were affiliated with the Alphaproteobacteria (nine phylotypes), Gammaproteobacteria (nine phylotypes) and the Bacteroidetes group (four phylotypes). A number of bacteria associated with other algae and other marine macroorganisms were among the closest relatives of phylotypes associated with L. saccharina.  相似文献   

9.
During our study of the 16S rRNA gene sequence-based archaeal diversity of a deep-sea site located at a 3000 m depth at the Antarctic Polar Front, we detected several phylotypes ascribed to already known Group II and III Euryarchaeota, and a cluster of distinct sequences that branched off at the base of haloarchaea. The position of this lineage (marine Group IV) was very robust using distance (neighbour-joining) and maximum-likelihood methods. Subsequently, we designed specific primers for the detection of this archaeal group in other marine environments using polymerase chain reaction amplification and sequence comparison. Group IV archaea were found in the Antarctic area (across a gradient from the Southern ocean to the South Atlantic), and also in North Atlantic and Mediterranean waters. In all oceanic locations, Group IV archaea were never detected in surface waters, but were vertically distributed in the deepest part of the water column.  相似文献   

10.
Authigenic carbonates represent a significant microbial sink for methane, yet little is known about the microbiome responsible for the methane removal. We identify carbonate microbiomes distributed over 21 locations hosted by seven different cold seeps in the Pacific and Atlantic Oceans by carrying out a gene-based survey using 16S rRNA- and mcrA gene sequencing coupled with metagenomic analyses. Based on 16S rRNA gene amplicon analyses, these sites were dominated by bacteria affiliated to the Firmicutes, Alpha- and Gammaproteobacteria. ANME-1 and -2 archaeal clades were abundant in the carbonates yet their typical syntrophic partners, sulfate-reducing bacteria, were not significantly present. Based on mcrA amplicon analyses, the Candidatus Methanoperedens clades were also highly abundant. Our metagenome analysis indicated that methane oxidizers affiliated to the ANME-1 and -2, may be capable of performing complete methane- and potentially short-chain alkane oxidation independently using oxidized sulfur and nitrogen compounds as terminal electron acceptors. Gammaproteobacteria are hypothetically capable of utilizing oxidized nitrogen compounds and may be involved in syntrophy with methane-oxidizing archaea. Carbonate structures represent a window for a more diverse utilization of electron acceptors for anaerobic methane oxidation along the Atlantic and Pacific Margin.Subject terms: Microbiology, Biogeochemistry  相似文献   

11.
The phylogenetic diversity of Bacteria and Archaea within a biodegraded, mesothermic petroleum reservoir in the Schrader Bluff Formation of Alaska was examined by two culture-independent methods based on fosmid and small-subunit rRNA gene PCR clone libraries. Despite the exclusion of certain groups by each method, there was overall no significant qualitative difference in the diversity of phylotypes recovered by the two methods. The resident Bacteria belonged to at least 14 phylum-level lineages, including the polyphyletic Firmicutes , which accounted for 36.2% of all small-subunit rRNA gene-containing (SSU+) fosmid clones identified. Members of uncultured divisions were also numerous and made up 35.2% of the SSU+ fosmid clones. Clones from domain Archaea accounted for about half of all SSU+ fosmids, suggesting that their cell numbers were comparable to those of the Bacteria in this microbial community. In contrast to the Bacteria , however, nearly all archaeal clones recovered by both methods were related to methanogens, especially acetoclastic methanogens, while the plurality of bacterial fosmid clones was affiliated with Synergistes -like acetogenic Firmicutes that possibly degrade longer-chain carboxylic acid components in the crude oil to acetate. These data suggest that acetate may be a key intermediary metabolite in this subsurface anaerobic food chain, which leads to methane production as the primary terminal electron sink.  相似文献   

12.
Recent studies of oil fields have shown that the microbial diversity is represented by bacteria and archaea of wide distribution, and that many of these organisms have potential to metabolize organic and inorganic compounds. Biodegradation processes in oil industry are of great relevance, since it may be related with the loss of petroleum quality and can bring problems during production. The aim of this study was to compare the microbial communities present in biodegraded (GMR75) and non-biodegraded (PTS1) terrestrial oils from the Potiguar Basin (RN, Brazil) by using cultivation (microbial enrichments and isolation) and molecular approaches (16S rRNA gene libraries). The cultivated microorganisms recovered were affiliated with the phyla Actinobacteria, Firmicutes and Proteobacteria. Both bacterial 16S rRNA gene libraries revealed a great diversity, encompassing representatives from 8 different phyla (Actinobacteria, Bacteroidetes, Deferribacteres, Spirochaetes, Firmicutes, Proteobacteria, Thermotogae and Synergistetes) for the GMR75 sample, and from 5 different phyla (Actinobacteria, Chloroflexi, Firmicutes, Proteobacteria and Thermotoga) for the PTS1 sample. The archaeal 16S rRNA gene library was obtained only for GMR75 oil and all phylotypes were affiliated with the family Methanomicrobiaceae. Diversity results suggest that methanogenesis is the dominant terminal process for hydrocarbon degradation in GMR oil field, driven by anaerobic biodegradation.  相似文献   

13.
Bacteria of the phyla Proteobacteria and Bacteroidetes are known to be the most prominent heterotrophic organisms in marine surface waters. In order to investigate the occurrence of these phyla in a coastal environment, the tidal flat ecosystem German Wadden Sea, we analyzed a clone library of PCR-amplified and sequenced 16S rRNA gene fragments and isolated 46 new strains affiliated with these phyla from the water column with various polymers and complex media as substrates. The phylogenetic affiliation of these strains was analyzed on the basis of sequenced 16S rRNA gene fragments. Subsequently, a comprehensive phylogenetic analysis of Proteobacteria and Bacteroidetes including available sequences from oxic habitats of earlier studies of this ecosystem was performed. Sequences of the earlier studies were derived from isolation approaches and from denaturing gradient gel electrophoresis (DGGE) analyses of environmental samples and high dilution steps of MPN (most probable number) cultures. The majority of the 265 sequences included in this analysis affiliated with alpha-Proteobacteria (45.3%), gamma-Proteobacteria (31.7%), and Bacteroidetes (16.2%). Almost 7% belong to the delta-Proteobacteria and several of these clones affiliated with the Myxococcales, a group comprising obligate aerobic organisms. Within the alpha- and gamma-Proteobacteria specific clusters were identified including isolates from high dilution steps of dilution cultures and/or clones from the clone library or DGGE gels, implying a high abundance of some of these organisms. Within the gamma-Proteobacteria a new cluster is proposed, which consists of marine surface-attached organisms. This SAMMIC (Surface Attached Marine MICrobes) cluster comprises only uncultured phylotypes and exhibits a global distribution. Overall, the analysis indicates that Proteobacteria and Bacteroidetes of the Wadden Sea have a surprisingly high diversity, presumably a result of the signature of this ecosystem as a melting pot at the land-sea interface and comprising a great habitat variety.  相似文献   

14.
Erwin PM  Thacker RW 《Molecular ecology》2008,17(12):2937-2947
Cyanobacteria are common members of sponge-associated bacterial communities and are particularly abundant symbionts of coral reef sponges. The unicellular cyanobacterium Synechococcus spongiarum is the most prevalent photosynthetic symbiont in marine sponges and inhabits taxonomically diverse hosts from tropical and temperate reefs worldwide. Despite the global distribution of S. spongiarum , molecular analyses report low levels of genetic divergence among 16S ribosomal RNA (rRNA) gene sequences from diverse sponge hosts, resulting either from the widespread dispersal ability of these symbionts or the low phylogenetic resolution of a conserved molecular marker. Partial 16S rRNA and entire 16S–23S rRNA internal transcribed spacer (ITS) genes were sequenced from cyanobacteria inhabiting 32 sponges (representing 18 species, six families and four orders) from six geographical regions. ITS phylogenies revealed 12 distinct clades of S. spongiarum that displayed 9% mean sequence divergence among clades and less than 1% sequence divergence within clades. Symbiont clades ranged in specificity from generalists to specialists, with most (10 of 12) clades detected in one or several closely related hosts. Although multiple symbiont clades inhabited some host sponges, symbiont communities appear to be structured by both geography and host phylogeny. In contrast, 16S rRNA sequences were highly conserved, exhibiting less than 1% sequence divergence among symbiont clades. ITS gene sequences displayed much higher variability than 16S rRNA sequences, highlighting the utility of ITS sequences in determining the genetic diversity and host specificity of S. spongiarum populations among reef sponges. The genetic diversity of S. spongiarum revealed by ITS sequences may be correlated with different physiological capabilities and environmental preferences that may generate variable host–symbiont interactions.  相似文献   

15.
16.
Planktonic crenarchaeotes are present in high abundance in Antarctic winter surface waters, and they also make up a large proportion of total cell numbers throughout deep ocean waters. To better characterize these uncultivated marine crenarchaeotes, we analyzed large genome fragments from individuals recovered from a single Antarctic picoplankton population and compared them to those from a representative obtained from deeper waters of the temperate North Pacific. Sequencing and analysis of the entire DNA insert from one Antarctic marine archaeon (fosmid 74A4) revealed differences in genome structure and content between Antarctic surface water and temperate deepwater archaea. Analysis of the predicted gene products encoded by the 74A4 sequence and those derived from a temperate, deepwater planktonic crenarchaeote (fosmid 4B7) revealed many typical archaeal proteins but also several proteins that so far have not been detected in archaea. The unique fraction of marine archaeal genes included, among others, those for a predicted RNA-binding protein of the bacterial cold shock family and a eukaryote-type Zn finger protein. Comparison of closely related archaea originating from a single population revealed significant genomic divergence that was not evident from 16S rRNA sequence variation. The data suggest that considerable functional diversity may exist within single populations of coexisting microbial strains, even those with identical 16S rRNA sequences. Our results also demonstrate that genomic approaches can provide high-resolution information relevant to microbial population genetics, ecology, and evolution, even for microbes that have not yet been cultivated.  相似文献   

17.
Planktonic crenarchaeotes are present in high abundance in Antarctic winter surface waters, and they also make up a large proportion of total cell numbers throughout deep ocean waters. To better characterize these uncultivated marine crenarchaeotes, we analyzed large genome fragments from individuals recovered from a single Antarctic picoplankton population and compared them to those from a representative obtained from deeper waters of the temperate North Pacific. Sequencing and analysis of the entire DNA insert from one Antarctic marine archaeon (fosmid 74A4) revealed differences in genome structure and content between Antarctic surface water and temperate deepwater archaea. Analysis of the predicted gene products encoded by the 74A4 sequence and those derived from a temperate, deepwater planktonic crenarchaeote (fosmid 4B7) revealed many typical archaeal proteins but also several proteins that so far have not been detected in archaea. The unique fraction of marine archaeal genes included, among others, those for a predicted RNA-binding protein of the bacterial cold shock family and a eukaryote-type Zn finger protein. Comparison of closely related archaea originating from a single population revealed significant genomic divergence that was not evident from 16S rRNA sequence variation. The data suggest that considerable functional diversity may exist within single populations of coexisting microbial strains, even those with identical 16S rRNA sequences. Our results also demonstrate that genomic approaches can provide high-resolution information relevant to microbial population genetics, ecology, and evolution, even for microbes that have not yet been cultivated.  相似文献   

18.
19.
On-going studies of phytoplankton-bacterioplankton interactions at the long-term ecological research site Helgoland Roads have indicated that many of the heterotrophic bacterial taxa have not yet been cultivated. A high-throughput approach combining whole cell matrix-assisted laser desorption ionization – time of flight mass spectroscopy with 16S rRNA gene sequencing was applied to the spring bloom of 2016. Aiming at an assessment of cultivability during a spring bloom, cultivation on solid marine media had to be used since dilution to extinction would not have been feasible for a high-throughput approach, as performed in this study. A total of 5023 isolates were obtained from nine weekly samples on eight different solid media between the early-bloom and post-bloom periods. Most of the 4136 strains identified affiliated with Bacteroidetes (13.3%), Gammaproteobacteria (26.9%), Alphaproteobacteria (40.6%) and Actinobacteria (6.7%). Of the 271 operational phylogenetic units (OPUs) identified, 13 are likely to represent novel genera and 143 novel species. A comparison with 16S rRNA gene tag data indicated that most of the isolates were rather rare in surface waters, with the exception of five OPUs affiliating with Rhodobacteraceae, Polaribacter, Psychromonas and Pseudoalteromonas. The effort yielded many novel isolates, yet most of the abundant heterotrophic bacteria still remained elusive. The large strain collection obtained will not only provide insights into the succession of the cultivable fraction of the bacterioplankton, but also enable fine-tuned taxonomic and physiological follow-up studies for improving our knowledge on heterotrophic bacteria in North Sea waters.  相似文献   

20.
The majority of microorganisms in natural environments are difficult to cultivate, but their genes can be studied via metagenome libraries. To enhance the chances that these genes become expressed we here report the construction of a broad-host-range plasmid vector (pRS44) for fosmid and bacterial artificial chromosome (BAC) cloning. pRS44 can be efficiently transferred to numerous hosts by conjugation. It replicates in such hosts via the plasmid RK2 origin of replication, while in Escherichia coli it replicates via the plasmid F origin. The vector was found to be remarkably stable due to the insertion of an additional stability element ( parDE ). The copy number of pRS44 is adjustable, allowing for easy modifications of gene expression levels. A fosmid metagenomic library consisting of 20 000 clones and BAC clones with insert sizes up to 200 kb were constructed. The 16S rRNA gene analysis of the fosmid library DNA confirmed that it represents a variety of microbial species. The entire fosmid library and the selected BAC clones were transferred to Pseudomonas fluorescens and Xanthomonas campestris (fosmids only), and heterologous proteins from the fosmid library were confirmed to be expressed in P. fluorescens . To our knowledge no other reported vector system has a comparable potential for functional screening across species barriers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号