共查询到20条相似文献,搜索用时 15 毫秒
1.
Linder S 《Trends in cell biology》2007,17(3):107-117
Podosomes and invadopodia are unique actin-rich adhesions that establish close contact to the substratum but can also degrade components of the extracellular matrix. Accordingly, matrix degradation localized at podosomes or invadopodia is thought to contribute to cellular invasiveness in physiological and pathological situations. Cell types that form podosomes include monocytic, endothelial and smooth muscle cells, whereas invadopodia have been mostly observed in carcinoma cells. This review highlights important new developments in the field, discusses the common and divergent features of podosomes and invadopodia and summarizes current knowledge about matrix-degrading proteinases at these structures. 相似文献
2.
Cell surface localization of heparanase on macrophages regulates degradation of extracellular matrix heparan sulfate 总被引:2,自引:0,他引:2
Sasaki N Higashi N Taka T Nakajima M Irimura T 《Journal of immunology (Baltimore, Md. : 1950)》2004,172(6):3830-3835
Extravasation of peripheral blood monocytes through vascular basement membranes requires degradation of extracellular matrix components including heparan sulfate proteoglycans (HSPGs). Heparanase, the heparan sulfate-specific endo-beta-glucuronidase, has previously been shown to be a key enzyme in melanoma invasion, yet its involvement in monocyte extravasation has not been elucidated. We examined a potential regulatory mechanism of heparanase in HSPG degradation and transmigration through basement membranes in leukocyte trafficking using human promonocytic leukemia U937 and THP-1 cells. PMA-treated cells were shown to degrade 35S-sulfated HSPG in endothelial extracellular matrix into fragments of an approximate molecular mass of 5 kDa. This was not found with untreated cells. The gene expression levels of heparanase or the enzyme activity of the amount of cell lysates were no different between untreated and treated cells. Immunocytochemical staining with anti-heparanase mAb revealed pericellular distribution of heparanase in PMA-treated cells but not in untreated cells. Cell surface heparanase capped into a restricted area on PMA-treated cells when they were allowed to adhere. Addition of a chemoattractant fMLP induced polarization of the PMA-treated cells and heparanase redistribution at the leading edge of migration. Therefore a major regulatory process of heparanase activity in the cells seems to be surface expression and capping of the enzyme. Addition of the anti-heparanase Ab significantly inhibited enzymatic activity and transmigration of the PMA-treated cells, suggesting that the cell surface redistribution of heparanase is involved in monocyte extravasation through basement membranes. 相似文献
3.
Background
Cysteine cathepsins are normally found in the lysosomes where they are involved in intracellular protein turnover. Their ability to degrade the components of the extracellular matrix in vitro was first reported more than 25 years ago. However, cathepsins were for a long time not considered to be among the major players in ECM degradation in vivo. During the last decade it has, however, become evident that abundant secretion of cysteine cathepsins into extracellular milieu is accompanying numerous physiological and disease conditions, enabling the cathepsins to degrade extracellular proteins.Scope of view
In this review we will focus on cysteine cathepsins and their extracellular functions linked with ECM degradation, including regulation of their activity, which is often enhanced by acidification of the extracellular microenvironment, such as found in the bone resorption lacunae or tumor microenvironment. We will further discuss the ECM substrates of cathepsins with a focus on collagen and elastin, including the importance of that for pathologies. Finally, we will overview the current status of cathepsin inhibitors in clinical development for treatment of ECM-linked diseases, in particular osteoporosis.Major conclusions
Cysteine cathepsins are among the major proteases involved in ECM remodeling, and their role is not limited to degradation only. Deregulation of their activity is linked with numerous ECM-linked diseases and they are now validated targets in a number of them. Cathepsins S and K are the most attractive targets, especially cathepsin K as a major therapeutic target for osteoporosis with drugs targeting it in advanced clinical trials.General significance
Due to their major role in ECM remodeling cysteine cathepsins have emerged as an important group of therapeutic targets for a number of ECM-related diseases, including, osteoporosis, cancer and cardiovascular diseases. This article is part of a Special Issue entitled Matrix-mediated cell behaviour and properties. 相似文献4.
The term "matrikines" was coined for designating peptides liberated by partial proteolysis of extracellular matrix macromolecules, which are able to regulate cell activities. Among these peptides, some of them may modulate proliferation, migration, protease production, or apoptosis. In this review, we summarize the activity of matrikines derived from elastin and interstitial or basement membrane collagens on the regulation of matrix metalloproteinases expression and/or activation, and on the plasminogen/plasmin system. Due to their activity, matrikines may play a significant role in physiological or pathological processes such as wound healing or tumor invasion. 相似文献
5.
Proteolytic degradation of extracellular matrix in tumor invasion 总被引:46,自引:0,他引:46
6.
Bharti S Inoue H Bharti K Hirsch DS Nie Z Yoon HY Artym V Yamada KM Mueller SC Barr VA Randazzo PA 《Molecular and cellular biology》2007,27(23):8271-8283
Invadopodia are Src-induced cellular structures that are thought to mediate tumor invasion. ASAP1, an Arf GTPase-activating protein (GAP) containing Src homology 3 (SH3) and Bin, amphiphysin, and RVS161/167 (BAR) domains, is a substrate of Src that controls invadopodia. We have examined the structural requirements for ASAP1-dependent formation of invadopodia and related structures in NIH 3T3 fibroblasts called podosomes. We found that both predominant splice variants of ASAP1 (ASAP1a and ASAP1b) associated with invadopodia and podosomes. Podosomes were highly dynamic, with rapid turnover of both ASAP1 and actin. Reduction of ASAP1 levels by small interfering RNA blocked formation of invadopodia and podosomes. Podosomes were formed in NIH 3T3 fibroblasts in which endogenous ASAP1 was replaced with either recombinant ASAP1a or ASAP1b. ASAP1 mutants that lacked the Src binding site or GAP activity functioned as well as wild-type ASAP1 in the formation of podosomes. Recombinant ASAP1 lacking the BAR domain, the SH3 domain, or the Src phosphorylation site did not support podosome formation. Based on these results, we conclude that ASAP1 is a critical target of tyrosine kinase signaling involved in the regulation of podosomes and invadopodia and speculate that ASAP1 may function as a coincidence detector of simultaneous protein association through the ASAP1 SH3 domain and phosphorylation by Src. 相似文献
7.
Kapadia C Ghosh MC Grass L Diamandis EP 《Biochemical and biophysical research communications》2004,323(3):1084-1090
The human kallikrein family is a group of 15 serine protease genes clustered on chromosome 19q13.4 and shares a high degree of homology. These proteolytic enzymes have diverse physiological functions in many different tissues. Growing evidence suggests that many kallikreins are differentially expressed in cancer and may play a role in metastasis. Human kallikrein gene 13 (KLK13) is a member of this family and codes for a trypsin-like, secreted serine protease (hK13) that is overexpressed in ovarian cancer patients. The aim of this study was to determine if hK13 can degrade extracellular matrix components. Recombinant hK13 was produced in yeast and purified using cation exchange and reverse-phase chromatography. The protein was used as an immunogen to generate mouse monoclonal antibodies. Enzymatic activity of hK13 was verified by using synthetic tri-peptide fluorogenic substrates and gelatin zymography. Active hK13 was incubated with biotinylated extracellular matrix (ECM) proteins and degradation was evaluated by Western blot analysis. hK13-secreting cancer cell lines were treated in a chemotaxis invasion chamber that was coated with various ECM proteins, to determine if hK13 plays a role in tumor cell migration and invasion. Assay with the synthetic substrates and zymography have shown that recombinant hK13 was enzymatically active. The Western blot results showed that hK13 was able to cleave the major components of the extracellular matrix. In the chemotaxis invasion chamber experiment, it was found that ovarian cancer cell lines that secreted hK13 and were treated with an hK13 neutralizing antibody migrated less than untreated cells. Human kallikrein13 may play a role in tissue remodeling and/or tumor invasion and metastasis. Targeting hK13 activity with neutralizing antibodies may have therapeutic applications. 相似文献
8.
Sipes NS Feng Y Guo F Lee HO Chou FS Cheng J Mulloy J Zheng Y 《The Journal of biological chemistry》2011,286(42):36469-36477
Extracellular matrix (ECM) actively participates in normal cell regulation and in the process of tumor progression. The Rho GTPase Cdc42 has been shown to regulate cell-ECM interaction in conventional two-dimensional culture conditions by using dominant mutants of Cdc42 in immortalized cell lines that may introduce nonspecific effects. Here, we employ three-dimensional culture systems for conditional gene targeted primary mouse embryonic fibroblasts that better simulate the reciprocal and adaptive interactions between cells and surrounding matrix to define the role of Cdc42 signaling pathways in ECM organization. Cdc42 deficiency leads to a defect in global cell-matrix interactions reflected by a decrease in collagen gel contraction. The defect is associated with an altered cell-matrix interaction that is evident by morphologic changes and reduced focal adhesion complex formation. The matrix defect is also associated with a reduction in synthesis and activation of matrix metalloproteinase 9 (MMP9) and altered fibronectin deposition patterning. A Cdc42 mutant rescue experiment found that downstream of Cdc42, p21-activated kinase (PAK), but not Par6 or WASP, may be involved in regulating collagen gel contraction and fibronectin organization. Thus, in addition to the previously implicated roles in intracellular regulation of actin organization, proliferation, and vesicle trafficking, Cdc42 is essential in ECM remodeling in three dimensions. 相似文献
9.
Listeria monocytogenes is a facultative intracellular bacterial pathogen that can infect the placenta, a chimeric organ made of maternal and fetal cells. Extravillous trophoblasts (EVT) are specialized fetal cells that invade the uterine implantation site, where they come into direct contact with maternal cells. We have shown previously that EVT are the preferred site of initial placental infection. In this report, we infected primary human EVT with L. monocytogenes. EVT eliminated ~80% of intracellular bacteria over 24-hours. Bacteria were unable to escape into the cytoplasm and remained confined to vacuolar compartments that became acidified and co-localized with LAMP1, consistent with bacterial degradation in lysosomes. In human placental organ cultures bacterial vacuolar escape rates differed between specific trophoblast subpopulations. The most invasive EVT-those that would be in direct contact with maternal cells in vivo-had lower escape rates than trophoblasts that were surrounded by fetal cells and tissues. Our results suggest that EVT present a bottleneck in the spread of L. monocytogenes from mother to fetus by inhibiting vacuolar escape, and thus intracellular bacterial growth. However, if L. monocytogenes is able to spread beyond EVT it can find a more hospitable environment. Our results elucidate a novel aspect of the maternal-fetal barrier. 相似文献
10.
H A Chapman M M Ehrhardt G Crombie L K Duffy 《Journal of biochemical and biophysical methods》1988,15(5):283-289
This report describes a method for determining specifically and sensitively the degradation of the elastin component within complicated extracellular matrices in vitro. Extracellular matrices rich in elastin were metabolically labeled with [3H]lysine during 3 week cultures of smooth muscle cells under ascorbate-free conditions in vitro. Elastin was quantitated on the basis of labeled desmosine/isodesmosine in the matrices as determined by a cation-exchange HPLC program utilizing a Beckman 6300 amino acid analyzer. The net loss of desmosine/isodesmosine during co-culture of human macrophages with the matrices was then used to assay cellular elastin degradation. This method allows for the production of reproducibly labeled matrices and compares favorably with previously described techniques of elastin degradation by live cells in vitro. 相似文献
11.
Baldassarre M Ayala I Beznoussenko G Giacchetti G Machesky LM Luini A Buccione R 《European journal of cell biology》2006,85(12):1217-1231
The degradation of extracellular matrix (ECM) by proteases is crucial in physiological and pathological cell invasion alike. In vitro, degradation occurs at specific sites where invasive cells make contact with the ECM via specialized plasma membrane protrusions termed invadopodia. Here we present an extensive morpho-functional analysis of invadopodia actively engaged in ECM degradation and show that they are actin comet-based structures, not unlike the well-known bacteria-propelling actin tails. The relative mapping of the basic molecular components of invadopodia to actin tails is also provided. Finally, a live-imaging analysis of invadopodia highlights the intrinsic long-term stability of the structures coupled to a highly dynamic actin turnover. The results offer new insight into the tight coordination between signalling, actin remodelling and trafficking activities occurring at sites of focalized ECM degradation by invadopodia. In conclusion, invadopodia-associated actin comets are a striking example of consistently arising, spontaneous expression of actin-driven propulsion events that also represent a valuable experimental paradigm. 相似文献
12.
《Matrix biology》2019
Cysteine cathepsins have been for a long time considered to execute mainly nonspecific bulk proteolysis in the endolysosomal system. However, this view has been changing profoundly over the last decade as cathepsins were found in the cytoplasm, nucleus and in the extracellular milieu. Cathepsins are currently gaining increased attention largely because of their extracellular roles associated with disease development and progression. While kept under tight control under physiological conditions, their dysregulated and elevated activity in the extracellular milieu are distinctive hallmarks of numerous diseases such as various cancers, inflammatory disorders, rheumatoid arthritis, bone disorders and heart diseases. In this review, we discuss cysteine cathepsins with a major focus on their extracellular roles and extracellular proteolytic targets beyond degradation of the extracellular matrix. We further highlight the perspectives of cathepsin research and novel avenues in cathepsin-based diagnostic and therapeutic applications. 相似文献
13.
Cornfine S Himmel M Kopp P El Azzouzi K Wiesner C Krüger M Rudel T Linder S 《Molecular biology of the cell》2011,22(2):202-215
Podosomes are actin-based matrix contacts in a variety of cell types, most notably monocytic cells, and are characterized by their ability to lyse extracellular matrix material. Besides their dependence on actin regulation, podosomes are also influenced by microtubules and microtubule-dependent transport processes. Here we describe a novel role for KIF9, a previously little-characterized member of the kinesin motor family, in the regulation of podosomes in primary human macrophages. We find that small interfering RNA (siRNA)/short-hairpin RNA-induced knockdown of KIF9 significantly affects both numbers and matrix degradation of podosomes. Overexpression and microinjection experiments reveal that the unique C-terminal region of KIF9 is crucial for these effects, presumably through binding of specific interactors. Indeed, we further identify reggie-1/flotillin-2, a signaling mediator between intracellular vesicles and the cell periphery, as an interactor of the KIF9 C-terminus. Reggie-1 dynamically colocalizes with KIF9 in living cells, and, consistent with KIF9-mediated effects, siRNA-induced knockdown of reggies/flotillins significantly impairs matrix degradation by podosomes. In sum, we identify the kinesin KIF9 and reggie/flotillin proteins as novel regulators of macrophage podosomes and show that their interaction is critical for the matrix-degrading ability of these structures. 相似文献
14.
Ma S Yang D Li D Tang B Sun M Yang Y 《Biochemical and biophysical research communications》2011,(2):321-327
Tenascin-C (TN-C) might aggravate left ventricular remodeling after myocardial infarction (MI). Our previous study demonstrated that ventricular remodeling after MI is linked with the degradation of fibronectin (FN). The aim of the present study was to determine whether cardiac extracellular matrix TN-C deposition after MI requires FN degradation. We found that treatment with angiotensin (ANG) II significantly down-regulated FN while remarkably up-regulated TN-C in co-cultured cardiomyocytes and fibroblasts. Inhibitors of matrix metalloproteinase (MMP)-2, MMP-3 or MMP-9 significantly attenuated ANG II-induced loss of FN and obviously blunted ANG II-induced re-expression of TN-C in co-cultured cells. Moreover, FN fragments dose-dependently induced the deposition of TN-C. In addition, MI induced a significant reduction of FN protein expression and a marked elevation of TN-C expression level at day 7 after MI compared with the sham group. The present findings suggest that cardiac TN-C matrix deposition after MI is induced by FN degradation, which is dependent on the activation of MMPs. These findings might contribute to gain mechanistic insights into the regulation of TN-C formation after MI. 相似文献
15.
Dynamin participates in focal extracellular matrix degradation by invasive cells 总被引:10,自引:0,他引:10 下载免费PDF全文
Baldassarre M Pompeo A Beznoussenko G Castaldi C Cortellino S McNiven MA Luini A Buccione R 《Molecular biology of the cell》2003,14(3):1074-1084
The degradation of extracellular matrix (ECM) by matrix metalloproteases is crucial in physiological and pathological cell invasion alike. Degradation occurs at specific sites where invasive cells make contact with the ECM via specialized plasma membrane protrusions termed invadopodia. Herein, we show that the dynamin 2 (Dyn2), a GTPase implicated in the control of actin-driven cytoskeletal remodeling events and membrane transport, is necessary for focalized matrix degradation at invadopodia. Dynamin was inhibited by using two approaches: 1) expression of dominant negative GTPase-impaired or proline-rich domain-deleted Dyn2 mutants; and 2) inhibition of the dynamin regulator calcineurin by cyclosporin A. In both cases, the number and extension of ECM degradation foci were drastically reduced. To understand the site and mechanism of dynamin action, the cellular structures devoted to ECM degradation were analyzed by correlative confocal light-electron microscopy. Invadopodia were found to be organized into a previously undescribed ECM-degradation structure consisting of a large invagination of the ventral plasma membrane surface in close spatial relationship with the Golgi complex. Dyn2 seemed to be concentrated at invadopodia. 相似文献
16.
Alban Gaultier Margaret Hollister Irene Reynolds En-hui Hsieh Steven L. Gonias 《Matrix biology》2010,29(1):22-30
Low density lipoprotein receptor-related protein (LRP1) is an endocytic receptor for diverse proteases, protease inhibitors, and other plasma membrane proteins, including the urokinase receptor (uPAR). LRP1 also functions in cell-signaling and regulates gene expression. The goal of this study was to determine whether LRP1 regulates remodeling of provisional extracellular matrix (ECM) by fibroblasts. To address this problem, we utilized an in vitro model in which type I collagen was reconstituted and overlaid with fibronectin. Either the collagen or fibronectin was fluorescently-labeled. ECM remodeling by fibroblasts deficient in LRP1, uPAR, or MT1-MMP was studied. MT1-MMP was required for efficient remodeling of the deep collagen layer but not involved in fibronectin remodeling. Instead, fibronectin was remodeled by a system that required urokinase-type plasminogen activator (uPA), uPAR, and exogenously-added plasminogen. LRP1 markedly inhibited fibronectin remodeling by regulating cell-surface uPAR and plasminogen activation. LRP1 also regulated remodeling of the deep collagen layer but not by controlling MT1-MMP. Instead, LRP1 deficiency or inhibition de-repressed a secondary pathway for collagen remodeling, which was active in MT1-MMP-deficient cells but not in uPAR-deficient cells. These results demonstrate that LRP1 regulates ECM remodeling principally by repressing pathways that require plasminogen activation by uPA in association with uPAR. 相似文献
17.
Pan S Wang R Zhou X Corvera J Kloc M Sifers R Gallick GE Lin SH Kuang J 《The EMBO journal》2008,27(15):2077-2090
Alix (ALG-2-interacting protein X), a cytoplasmic adaptor protein involved in endosomal sorting and actin cytoskeleton assembly, is required for the maintenance of fibroblast morphology. As Alix has sequence similarity to adhesin in Entamoeba histolytica, and we observed that Alix is secreted, we determined whether extracellular Alix affects fibroblast morphology. Here, we demonstrate that secreted Alix is deposited on the substratum of non-immortalized WI38 fibroblasts. Antibody binding to extracellular Alix retards WI38 cell adhesion and spreading on fibronectin and vitronectin. Alix knockdown in WI38 cells reduces spreading and fibronectin assembly, and the effect is partially complemented by coating recombinant Alix on the cell substratum. Immortalized NIH/3T3 fibroblasts deposit less Alix on the substratum and have defects in α5β1-integrin functions. Coating recombinant Alix on the culture substratum for NIH/3T3 cells promotes α5β1-integrin-mediated cell adhesions and fibronectin assembly, and these effects require the aa 605–709 region of Alix. These findings demonstrate that a sub-population of Alix localizes extracellularly and regulates integrin-mediated cell adhesions and fibronectin matrix assembly. 相似文献
18.
Podosomes are transient cell surface structures essential for degradation of extracellular matrix during cell invasion. Protein kinase C (PKC) is involved in the regulation of podosome formation; however, the roles of individual PKC isoforms in podosome formation and proteolytic function are largely unknown. Recently, we reported that PDBu, a PKC activator, induced podosome formation in normal human bronchial epithelial cells. Here, we demonstrate that phorbol-12,13-dibutyrate (PDBu)-induced podosome formation is mainly mediated through redistribution of conventional PKCs, especially PKCα, from the cytosol to the podosomes. Interestingly, although blocking atypical PKCζ did not affect PDBu-induced podosome formation, it significantly reduced matrix degradation at podosomes. Inhibition of PKCζ reduced recruitment of matrix metalloprotease 9 (MMP-9) to podosomes and its release and activation. Downregulation of MMP-9 by small interfering RNA (siRNA) or neutralization antibody also significantly reduced matrix degradation. The regulatory effects of PKCζ on matrix degradation and recruitment of MMP-9 to podosomes were PKCζ kinase activity dependent. PDBu-induced recruitment of PKCζ and MMP-9 to podosomes was blocked by inhibition of novel PKC with rottlerin or PKCδ siRNA. Our data suggest that multiple PKC isozymes form a signaling cascade that controls podosome formation and dynamics and MMP-9 recruitment, release, and activation in a coordinated fashion. 相似文献
19.
20.
Chancey AL Gardner JD Murray DB Brower GL Janicki JS 《American journal of physiology. Heart and circulatory physiology》2005,289(1):H316-H321
There are fundamental differences between males and females with regard to susceptibility to heart disease. Although numerous animal models of heart failure have demonstrated that premenopausal females are afforded cardioprotection and, therefore, fare better in the face of cardiac disease than their male counterparts, many questions as to how this occurs still exist. Recently, we showed that 1) increased mast cell density is associated with adverse ventricular remodeling and 2) chemically induced mast cell degranulation using compound 48/80 resulted in remarkable changes in matrix metalloproteinase (MMP) activity, cardiac collagen structure, and cardiac diastolic function in normal male rats. With the known gender differences in cardiac disease in mind, we sought to examine the effects of chemically induced cardiac mast cell degranulation in isolated, blood-perfused hearts of intact female rats, ovariectomized female rats, and ovariectomized female rats treated with 17beta-estradiol. In response to mast cell degranulation, no significant differences in cardiac function, MMP-2 activity, or collagen volume fraction were observed between intact female rats and ovariectomized female rats treated with estrogen. In the ovariectomized female group, a significant rightward shift in the left ventricular pressure-volume relation, accompanied by a marked 133% increase in active MMP-2 values over that in the intact female group, was noted after treatment with compound 48/80 (P < or = 0.05), along with a significant reduction in collagen volume fraction below control (0.46 +/- 0.23 vs. 0.73 +/- 0.13%, P < or = 0.05). These findings indicate that estrogen's cardioprotective role can be partially mediated by its effects on cardiac mast cells, MMPs, and the extracellular matrix. 相似文献