首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
LPS potently induces dendritic cell maturation and the production of proinflammatory cytokines, such as IL-12, by activation of Toll-like receptor 4 (TLR4). Since IL-12 is important for the generation and maintenance of Th1 responses and may also inhibit Th2 cell generation from naive CD4 T cell precursors, it has been inferred that TLR4 signaling would have similar effects via the induction of IL-12 secretion. Surprisingly, we found that TLR4-defective mice subjected to sensitization and pulmonary challenge with a protein allergen had reductions in airway inflammation with eosinophils, allergen-specific IgE levels, and Th2 cytokine production, compared with wild-type mice. These reduced responses were attributable, at least in part, to decreased dendritic cell function: Dendritic cells from TLR4-defective mice expressed lower levels of CD86, a costimulatory molecule important for Th2 responses. They also induced less Th2 cytokine production by antigenically naive CD4 T cells in vitro and mediated diminished CD4 T cell Ag-specific pulmonary inflammation in vivo. These results indicate that TLR4 is required for optimal Th2 responses to Ags from nonpathogenic sources and suggest a role for TLR4 ligands, such as LPS derived from commensal bacteria or endogenously derived ligands, in maturation of the innate immune system before pathogen exposure.  相似文献   

2.
To be able to colonize its host, invading Salmonella enterica serovar Typhimurium must disrupt and severely affect host-microbiome homeostasis. Here we report that S. Typhimurium induces acute infectious colitis by inhibiting peroxisome proliferator-activated receptor gamma (PPARγ) expression in intestinal epithelial cells. Interestingly, this PPARγ down-regulation by S. Typhimurium is independent of TLR-4 signaling but triggers a marked elevation of host innate immune response genes, including that encoding the antimicrobial peptide lipocalin-2 (Lcn2). Accumulation of Lcn2 stabilizes the metalloproteinase MMP-9 via extracellular binding, which further aggravates the colitis. Remarkably, when exposed to S. Typhimurium, Lcn2-null mice exhibited a drastic reduction of the colitis and remained protected even at later stages of infection. Our data suggest a mechanism in which S. Typhimurium hijacks the control of host immune response genes such as those encoding PPARγ and Lcn2 to acquire residence in a host, which by evolution has established a symbiotic relation with its microbiome community to prevent pathogen invasion.  相似文献   

3.
4.
BACKGROUND: T helper cell polarisation is important under chronic immune stimulatory conditions and drives the type of the evolving immune response. Mice treated with superantigens in vivo display strong effects on Th subset differentiation. The aim of the study was to detect the intrinsic capacity of T cells to polarise under various ex vivo conditions. METHODS: Purified CD4+ T cells obtained from super-antigen-treated mice were cultured under Th polarising conditions in vitro. By combining intracellular cytokine staining and subsequent flow cytometric analysis with quantitative cytokine measurements in culture supernatants by enzyme-linked immunosorbent assay (ELISA), the differential Th polarising capacity of the treatment can be detected in a qualitative and quantitative manner. RESULTS AND CONCLUSIONS: BALB/c mice were shown to be biased to develop strong Th2 polarised immune responses using Th0 stimulation of purified CD4+ T cells from phosphate-buffered saline-treated mice. Nevertheless, our analysis methodology convincingly showed that even in these mice, Toxic Shock Syndrome Toxin-1 treatment in vivo resulted in a significantly stronger Th1 polarising effect than control treatment. Our results indicate that populations of Th cells can be assessed individually for their differential Th1 or Th2 maturation capacity in vivo by analysing robust in vitro polarisation cultures combined with intracellular cytokine staining and ELISA.  相似文献   

5.
This study tested the hypothesis that activation of β2-adrenoceptors on DCs influences NOD2 signaling along with its cross-talk with Toll-like receptor-2 resulting in altered Th cell priming ability. Th17 cells are a newly discovered lineage of CD4(+) T cells involved in defense against extracellular bacteria and also implicated in autoimmune disorders. Initiation and polarization of the adaptive immune response is controlled by innate immune recognition mediated by DCs. Previous studies demonstrated that adrenergic receptors modulate cytokine production by DCs and affect their Th cell priming ability. We show that the β2-adrenoceptor agonist salbutamol enhanced IL-6 production in murine bone marrow-derived DCs stimulated with the nucleotide-binding oligomerization domain 2 ligand muramyl dipeptide. However, when the Toll-like receptor-2 ligand Pam3CysSK4 was added, salbutamol inhibited IL-12 but did not alter IL-6 and IL-23 expression. Gene expression analysis showed that salbutamol inhibited the p40 subunit as well as IL-12p35, while IL-23p19 and IL-6 were stimulated. Therefore, β2-adrenoceptors modulated cytokine production resulting in a Th17 cell priming cytokine pattern. Indeed, when antigen-pulsed DCs stimulated by muramyl dipeptide or Pam3CysSK4+muramyl dipeptide in the presence of salbutamol were used for in vivo immunization, the resulting Th17/Th1 cell ratio was increased as evaluated by IL-17 and IFN-γ production. In addition, intradermal injection of norepinephrine along with Pam3CysSK4+muramyl dipeptide increased the Th17 response to an immunogenic protein and this effect was reversed by a β2-adrenoceptor antagonist. Thus, β2-adrenoceptors may be involved in the regulation of defense against extracellular bacteria and the pathogenesis of inflammatory diseases.  相似文献   

6.
7.
Schistosoma mansoni infection in the mouse has been shown to be accompanied by a down-regulation in parasite-Ag- and mitogen-induced Th1 cytokine secretion (IL-2 and IFN-gamma) with a simultaneous increase in the production of Th2 cytokines (IL-4, IL-5, and IL-10), suggesting a generalized imbalance in lymphocyte function. In the present study, we examined whether infection with S. mansoni would also influence the character of immune responses to a non-parasite Ag, sperm whale myoglobin (SwMb). When spleen cells (SC) from schistosome-infected SwMb-immunized animals were stimulated with SwMb, their production of IL-2 and IFN-gamma per CD4+ cell was found to be significantly reduced (by 45% and 59%, respectively) compared with the responses observed in immunized uninfected animals. Moreover, SwMb-induced secretion of IL-4 per CD4+ cell was increased threefold in SC cultures from infected mice. No myoglobin-induced IL-5 was detected in the same cultures. Addition to SC cultures of a neutralizing mAb specific for IL-10 partly restored the suppressed IFN-gamma response to SwMb seen in infected mice, suggesting a role for IL-10 in the observed down-regulation. S. mansoni-infected mice also showed an impaired antibody response to SwMb, with levels ranging from 10% to 27% of those observed in uninfected mice, although no differences in IgG isotype were evident. Taken together, these results suggest that infection with S. mansoni induces a down-regulation of Th1 responses and elevation of Th2 responses to unrelated foreign immunogens as well as to parasite Ag themselves. One implication of these findings is that helminth-infected individuals may have altered cell-mediated immune function to other microbial agents.  相似文献   

8.
9.
10.
Neisseria meningitidis is a human pathogen responsible for life-threatening inflammatory diseases. Meningococcal penicillin-binding proteins (PBPs) and particularly PBP2 are involved in bacterial resistance to β-lactams. Here we describe a novel function for PBP2 that activates human and mouse dendritic cells (DC) in a time and dose-dependent manner. PBP2 induces MHC II (LOGEC50 = 4.7 μg/ml ± 0.1), CD80 (LOGEC50 = 4.88 μg/ml ± 0.15) and CD86 (LOGEC50 = 5.36 μg/ml ± 0.1). This effect was abolished when DCs were co-treated with anti-PBP2 antibodies. PBP2-treated DCs displayed enhanced immunogenic properties in vitro and in vivo. Furthermore, proteins co-purified with PBP2 showed no effect on DC maturation. We show through different in vivo and in vitro approaches that this effect is not due to endotoxin contamination. At the mechanistic level, PBP2 induces nuclear localization of p65 NF-kB of 70.7 ± 5.1% cells versus 12 ± 2.6% in untreated DCs and needs TLR4 expression to mature DCs. Immunoprecipitation and blocking experiments showed thatPBP2 binds TLR4. In conclusion, we describe a novel function of meningococcal PBP2 as a pathogen associated molecular pattern (PAMP) at the host-pathogen interface that could be recognized by the immune system as a danger signal, promoting the development of immune responses.  相似文献   

11.
12.
13.

Background

Granulomatous and fibrosing inflammation in response to parasite eggs is the main pathology that occurs during infection with Schistosoma spp. CD4+ T cells play critical roles in both host immune responses against parasitic infection and immunopathology in schistosomiasis,and coordinate many types of immune cells that contribute to fibrosis. ICOSL plays an important role in controlling specific aspects of T cell activation, differentiation, and function. Previous work has suggested that ICOS is essential for Th17 cell development. However, the immunopathogenesis of this pathway in schistosomiasis fibrosisis still unclear.

Methodology/Principal Findings

Using models of schistosomiasis in ICOSL KO and the C57BL/6 WT mice, we studied the role of the ICOSL/ICOS interaction in the mediation of the Th17 response in host granulomatous inflammation, particularly in liver fibrosis during S. japonicum infection, and investigated the immune responses and pathology of ICOSL KO mice in these models. The results showed that ICOSL KO mice exhibited improved survival, reduced liver granulomatous inflammation around parasite eggs, markedly inhibited hepatic fibrosis development, lower levels of Th17-related cytokines (IL-17/IL-21), Th2-related cytokines (IL-4/IL-6/IL-10), a pro-fibrotic cytokine (IL-13), and TGF-β1, but higher level of Th1-related cytokine (IFN-γ) compared to wild-type (WT) mice. The reduced progression of fibrogenesis was correlated with the down-regulation of Th17 and Th2 and the elimination of ICOSL/ICOS interactions.

Conclusions/Significance

Our findings suggest that IL-17-producing cells contribute to the hepatic granulomatous inflammation and subsequent fibrosis. Importantly, there was a clearly positive correlation between the presence of IL-17-producing cells and ICOS expression in ICOSL KO mice, and additional results indicated that Th17 was involved in the pathological tissue remodeling in liver fibrosis induced by schistosomiasis.  相似文献   

14.
To address whether a functional dichotomy exists between CD80 and CD86 in naive T cell activation in vivo, we administered anti-CD80 or CD86 blocking mAb alone or in combination to mice with parent-into-F(1) graft-vs-host disease (GVHD). In this model, the injection of naive parental T cells into unirradiated F(1) mice results in either a Th1 cytokine-driven, cell-mediated immune response (acute GVHD) or a Th2 cytokine-driven, Ab-mediated response (chronic GVHD) in the same F(1) recipient. Combined CD80/CD86 blockade beginning at the time of donor cell transfer mimicked previous results seen with CTLA4Ig and completely abrogated either acute or chronic GVHD by preventing the activation and maturation of donor CD4(+) T cells as measured by a block in acquisition of memory marker phenotype and cytokine production. Similar results were seen with selective CD86 blockade; however, the degree of CD4 inhibition was always less than that seen with combined CD80/CD86 blockade. A more striking effect was seen with selective CD80 blockade in that chronic GVHD was converted to acute GVHD. This effect was associated with the induction of Th1 cytokine production, donor CD8(+) T cell activation, and development of antihost CTL. The similarity of this effect to that reported for selective CTLA4 blockade suggests that CD80 is a critical ligand for CTLA4 in mediating the down-regulation of Th1 responses and CD8(+) T cell activation. In contrast, CD86 is critical for the activation of naive CD4(+) T cells in either a Th1 or a Th2 cytokine-mediated response.  相似文献   

15.
Mycobacterium tuberculosis, an etiological agent of pulmonary tuberculosis, causes significant morbidity and mortality worldwide. Pathogenic mycobacteria survive in the host by subverting host innate immunity. Dendritic cells (DCs) are professional antigen-presenting cells that are vital for eliciting immune responses to infectious agents, including pathogenic mycobacteria. DCs orchestrate distinct Th responses based on the signals they receive. In this perspective, deciphering the interactions of the proline-glutamic acid/proline-proline-glutamic acid (PE/PPE) family of proteins of M. tuberculosis with DCs assumes significant pathophysiological attributes. In this study, we demonstrate that Rv1917c (PPE34), a representative member of the proline-proline-glutamic-major polymorphic tandem repeat family, interacts with TLR2 and triggers functional maturation of human DCs. Signaling perturbations implicated a critical role for integrated cross-talk among PI3K-MAPK and NF-κB signaling cascades in Rv1917c-induced maturation of DCs. However, this maturation of DCs was associated with a secretion of high amounts of anti-inflammatory cytokine IL-10, whereas Th1-polarizing cytokine IL-12 was not induced. Consistent with these results, Rv1917c-matured DCs favored secretion of IL-4, IL-5, and IL-10 from CD4+ T cells and contributed to Th2-skewed cytokine balance ex vivo in healthy individuals and in patients with pulmonary tuberculosis. Interestingly, the Rv1917c-skewed Th2 immune response involved induced expression of cyclooxygenase-2 (COX-2) in DCs. Taken together, these results indicate that Rv1917c facilitates a shift in the ensuing immunity toward the Th2 phenotype and could aid in immune evasion by mycobacteria.  相似文献   

16.
17.
18.
Interferon regulatory factor 1 (IRF1) is a member of IRF-family that was discovered to activate promoters in type I interferon (IFN) genes. It is shown to play functionally diverse role in the regulation of the immune system. In this report, the porcine IRF1 cDNA were cloned and a 7500 bp genomic DNA structure was identified. The putative IRF1 protein included 322 amino acids. Alignment and phylogenetic analysis of the predicted porcine IRF1 amino acids sequence with its homologies of other species show high identity (over 88%). Tissues expression of IRF1 mRNA was observed by RT-PCR, the results revealed IRF1 gene expressed widely in all analyzed tissues. Using the radiation hybrid panel, the porcine IRF1 gene was mapped to porcine chromosome 2 and closely linked to the locus IL4 (LOD = 7.09, 57cR). A SNP in exon2 of porcine IRF1 gene was demonstrated by sequencing and PCR–RFLP analysis. The further association analysis indicated that the SNP was significant associate with level of IFN-γ (day 20) in serum (P = 0.0001) and the ratio of IFN-γ to IL10 (day 20; day 35) in serum (P = 0.0165; P = 0.0095). The results suggested that the porcine IRF1 gene is strong candidate gene for these immune traits in pig.  相似文献   

19.
20.
Our previous studies demonstrated that HSV-2 infection up-regulates TLR4 expression and induces NF-kB activity, thereby facilitating innate immune response in human cervical epithelial cells. This process requires involvement of TLR4 adaptors, Mal and MyD88. In the current study, we found that HSV-2 infection increases levels of phosphoryalted IRF3 and IRF7, then regulating expression of type I IFN. As expected, these changes induced by HSV-2 infection depended upon TLR4. Knockdown of TRIF and/or TRAM by siRNAs indicated that TRIF/TRAM might be involved in expression of IFN-β. Our results demonstrate for the first time that IRF3 and IRF7 are both involved in inducing TLR4-dependent IFN-β expression in response to HSV-2 in its primary infected genital epithelial cells. Thus, TLR4-Mal/MyD88 and TLR4-TRIF/TRAM signaling may synergize and/or cooperate in innate immune response of cervical epithelial cells to HSV-2 infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号