首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Anti-apoptotic Bcl2 family proteins such as Bcl-x(L) protect cells from death by sequestering apoptotic molecules, but also contribute to normal neuronal function. We find in hippocampal neurons that Bcl-x(L) enhances the efficiency of energy metabolism. Our evidence indicates that Bcl-x(L)interacts directly with the β-subunit of the F(1)F(O)?ATP synthase, decreasing an ion leak within the F(1)F(O) ATPase complex and thereby increasing net transport of H(+) by F(1)F(O) during F(1)F(O) ATPase activity. By patch clamping submitochondrial vesicles enriched in F(1)F(O) ATP synthase complexes, we find that, in the presence of ATP, pharmacological or genetic inhibition of Bcl-x(L) activity increases the membrane leak conductance. In addition, recombinant Bcl-x(L) protein directly increases the level of ATPase activity of purified synthase complexes, and inhibition of endogenous Bcl-x(L) decreases the level of F(1)F(O) enzymatic activity. Our findings indicate that increased mitochondrial efficiency contributes to the enhanced synaptic efficacy found in Bcl-x(L)-expressing?neurons.  相似文献   

2.
Similar to ischemic preconditioning, diazoxide was documented to elicit beneficial bioenergetic consequences linked to cardioprotection. Inhibition of ATPase activity of mitochondrial F(0)F(1) ATP synthase may have a role in such effect and may involve the natural inhibitor protein IF(1). We recently documented, using purified enzyme and isolated mitochondrial membranes from beef heart, that diazoxide interacts with the F(1) sector of F(0)F(1) ATP synthase by promoting IF(1) binding and reversibly inhibiting ATP hydrolysis. Here we investigated the effects of diazoxide on the enzyme in cultured myoblasts. Specifically, embryonic heart-derived H9c2 cells were exposed to diazoxide and mitochondrial ATPase was assayed in conditions maintaining steady-state IF(1) binding (basal ATPase activity) or detaching bound IF(1) at alkaline pH. Mitochondrial transmembrane potential and uncoupling were also investigated, as well as ATP synthesis flux and ATP content. Diazoxide at a cardioprotective concentration (40 muM cell-associated concentration) transiently downmodulated basal ATPase activity, concomitant with mild mitochondria uncoupling and depolarization, without affecting ATP synthesis and ATP content. Alkaline stripping of IF(1) from F(0)F(1) ATP synthase was less in diazoxide-treated than in untreated cells. Pretreatment with glibenclamide prevented, together with mitochondria depolarization, inhibition of ATPase activity under basal but not under IF(1)-stripping conditions, indicating that diazoxide alters alkaline IF(1) release. Diazoxide inhibition of ATPase activity in IF(1)-stripping conditions was observed even when mitochondrial transmembrane potential was reduced by FCCP. The results suggest that diazoxide in a model of normoxic intact cells directly promotes binding of inhibitor protein IF(1) to F(0)F(1) ATP synthase and enhances IF(1) binding indirectly by mildly uncoupling and depolarizing mitochondria.  相似文献   

3.
We have studied the inhibitory effect of five polyphenols namely, resveratrol, piceatannol, quercetin, quercetrin, and quercetin-3-β-d glucoside on Escherichia coli ATP synthase. Recently published X-ray crystal structures of bovine mitochondrial ATP synthase inhibited by resveratrol, piceatannol, and quercetin, suggest that these compounds bind in a hydrophobic pocket between the γ-subunit C-terminal tip and the hydrophobic inside of the surrounding annulus in a region critical for rotation of the γ-subunit. Herein, we show that resveratrol, piceatannol, quercetin, quercetrin, or quercetin-3-β-d glucoside all inhibit E. coli ATP synthase but to different degrees. Whereas piceatannol inhibited ATPase essentially completely (~0 residual activity), inhibition by other compounds was partial with ~20% residual activity by quercetin, ~50% residual activity by quercetin-3-β-d glucoside, and ~60% residual activity by quercetrin or resveratrol. Piceatannol was the most potent inhibitor (IC50 ~14 μM) followed by quercetin (IC50 ~33 μM), quercetin-3-β-d glucoside (IC50 ~71 μM), resveratrol (IC50 ~94 μM), quercitrin (IC50 ~120 μM). Inhibition was identical in both F1Fo membrane preparations as well as in isolated purified F1. In all cases inhibition was reversible. Interestingly, resveratrol and piceatannol inhibited both ATPase and ATP synthesis whereas quercetin, quercetrin or quercetin-3-β-d glucoside inhibited only ATPase activity and not ATP synthesis.  相似文献   

4.
We examined the thymoquinone induced inhibition of purified F1 or membrane bound F1FO E. coli ATP synthase. Both purified F1 and membrane bound F1FO were completely inhibited by thymoquinone with no residual ATPase activity. The process of inhibition was fully reversible and identical in both membrane bound F1Fo and purified F1 preparations. Moreover, thymoquinone induced inhibition of ATP synthase expressing wild-type E. coli cell growth and non-inhibition of ATPase gene deleted null control cells demonstrates that ATP synthase is a molecular target for thymoquinone. This also links the beneficial dietary based antimicrobial and anticancer effects of thymoquinone to its inhibitory action on ATP synthase.  相似文献   

5.
The purified F0 part of the ATP synthase complex from Escherichia coli was incorporated into liposomes and chemically modified by various reagents. The modified F0-liposomes were assayed for H+ uptake and, after reconstitution with F1, for total and dicyclohexylcarbodiimide-sensitive ATPase activity. The water-soluble carbodiimide, 1-ethyl-3-(-3-dimethylaminopropyl)carbodiimide methiodide, (1.2 mM), inhibited H+ uptake to a great extent. Binding of F1 was almost unaffected, but the hydrolysis of ATP was uncoupled from H+ transport. This is reflected by the inhibition of dicyclohexylcarbodiimide-sensitive ATPase activity. Woodward's reagent K, N-ethyl-5-phenylisoxazolium-3'-sulfonate, inhibited both H+ uptake and total ATPase activity. Modification of arginine residues by phenylglyoxal (20 mM) was followed by inhibition of the F1 binding activity by 80% of the control. H+ translocation was reduced to 70%. Diethylpyrocarbonate (3 mM) exhibited a strong inhibiting effect on H+ uptake but not on F1 binding. Modification of tyrosine (by tetranitromethane) as well as lysine residues (by succinic anhydride) did not affect F0 functions. From the data presented we conclude that carboxyl-groups, different from the dicyclohexylcarbodiimide-binding site, are involved in H+ translocation through F0 and, in part, in the functional binding of F1. Furthermore, for the latter function, also arginine residues seem to be important. The role of histidine residues remains unclear at present.  相似文献   

6.
W Laubinger  P Dimroth 《Biochemistry》1988,27(19):7531-7537
The ATP synthase (F1F0) of Propionigenium modestum has been purified to a specific ATPase activity of 5.5 units/mg of protein, which is about 6 times higher than that of the bacterial membranes. Analysis by SDS gel electrophoresis indicated that in addition to the five subunits of the F1 ATPase, subunits of Mr 26,000 (a), 23,000 (b), and 7500 (c) have been purified. The ATPase activity of F1F0 was specifically activated about 10-fold by Na+ions. The enzyme was strongly inhibited by dicyclohexylcarbodiimide, venturicidin, tributyltin chloride, and azide. After incubation with [14C]dicyclohexylcarbodiimide, about 3-4 mol of the inhibitor was bound per 500,000 g of the enzyme. The radioactive label was specifically bound to submit c. These subunits form stable aggregates which resist dissociation by SDS at 100 degrees C. The monomer is formed upon heating with SDS to 121 degrees C or by extraction of the membranes with chloroform/methanol. The ATP synthase was incorporated into liposomes by a freeze-thaw-sonication procedure. The reconstituted proteoliposomes catalyzed the transport of Na+ions upon ATP hydrolysis. The transport was completely abolished by dicyclohexylcarbodiimide. Whereas monensin prevented the accumulation of Na+ions, the uptake rate was stimulated 4-5-fold in the presence of valinomycin or carbonyl cyanide m=chlorophenylhydrazone. These results indicate an electrogenic Na+ transport and also that it is a primary event and not accomplished by a H+-translocating ATP synthase in combination with a Na+/H+ antiporter.  相似文献   

7.
At the optimal pH for growth (pH 10.5), alkalophilic Bacillus firmus RAB, an obligate aerobe, exhibits normal rates of oxidative phosphorylation despite the low transmembrane proton electrochemical gradient, about -60 mV (delta psi = -180 mV and delta pH = +120 mV). This bioenergetic problem might be resolved by use of an Na+ coupled ATP synthase; otherwise an F1F0-ATPase must be able to utilize low driving forces in this organism. The ATPase activity was extracted from everted membrane vesicles by low ionic strength treatment and purified to homogeneity by hydrophobic interaction chromatography and sucrose density gradient centrifugation. The ATPase preparation had the characteristic F1-ATPase subunit structure, with Mr values of 51,500 (alpha), 48,900 (beta), 34,400 (gamma), 23,300 (delta), and 14,500 (epsilon); the identity of the alpha and beta subunits was confirmed by immunoblotting with anti-beta of Escherichia coli and anti-B. firmus RAB F1. Methanol and octyl glucoside, agents that stimulated the low basal membrane ATPase activity 10- to 12-fold, dramatically elevated the MgATPase activity of the purified F1, more than 150-fold, to 50 mumol min-1 mg protein-1. Anti-F1 inhibited membrane ATPase activity greater than or equal to 80%. The membranes exhibited no Na+-stimulated or vanadate-sensitive ATPase activity when prepared in the absence or presence of Na+ or ATP. These findings, which are consistent with previous studies, establish that in alkalophilic bacteria, ATP hydrolysis, and presumably ATP synthesis is catalyzed by an F1F0-ATPase rather than a Na+ ATPase.  相似文献   

8.
9.
Yeast mitochondrial ATP synthase has three regulatory proteins, ATPase inhibitor, 9K protein, and 15K protein. The 9K protein binds directly to purified F1-ATPase, as does the ATPase inhibitor, but the 15K protein does not [Hashimoto, T. et al. (1987) J. Biochem. 102, 685-692]. In the present study, we found that 15K protein bound to purified F1F0-ATPase, forming an equimolar complex with the enzyme. The apparent dissociation constant was calculated to be 1.4 x 10(-5) M. The ATPase inhibitor and 9K protein also bound to F1F0-ATPase in the presence of ATP and Mg2+, and the dissociation constants of their bindings were about 3 X 10(-6) M. They bound to the enzyme competitively in the absence of 15K protein, but in its presence, they bound in equimolar amounts to the enzyme. The ATP-hydrolyzing activity of the enzyme-ligand complex was greatly influenced by the order of bindings of ATPase inhibitor and 9K protein: when the ATPase inhibitor was bound first, the activity of the enzyme was inhibited completely and was not restored by 9K protein, but when 9K protein was added first, the activity was inhibited only partially even after equimolar binding of the ATPase inhibitor to the enzyme. These observations strongly suggest that the 15K protein binds to the F0 part and functions to hold the ATPase inhibitor or 9K protein on the F1 subunit.  相似文献   

10.
Ahmad Z  Senior AE 《FEBS letters》2006,580(2):517-520
Inhibition of ATPase activity of Escherichia coli ATP synthase by magnesium fluoride (MgFx) was studied. Wild-type F(1)-ATPase was inhibited potently, albeit slowly, when incubated with MgCl(2), NaF, and NaADP. The combination of all three components was required. Reactivation of ATPase activity, after removal of unbound ligands, occurred with half-time of approximately 14 h at 22 degrees C and was quasi-irreversible at 4 degrees C. Mutant F(1)-ATPases, in which catalytic site residues involved in transition state formation were modified, were found to be resistant to inhibition by MgFx. The data demonstrate that MgFx in combination with MgADP behaves as a tight-binding transition state analog in E. coli ATP synthase.  相似文献   

11.
Vertebrate retinal rod outer segments (OS) consist of a stack of disks surrounded by the plasma membrane, where phototransduction takes place. Energetic metabolism in rod OS remains obscure. Literature described a so-called Mg2+-dependent ATPase activity, while our previous results demonstrated the presence of oxidative phosphorylation (OXPHOS) in OS, sustained by an ATP synthetic activity. Here we propose that the OS ATPase and ATP synthase are the expression of the same protein, i.e., of F1Fo-ATP synthase. Imaging on bovine retinal sections showed that some OXPHOS proteins are expressed in the OS. Biochemical data on bovine purified rod OS, characterized for purity, show an ATP synthase activity, inhibited by classical F1Fo-ATP synthase inhibitors. Moreover, OS possess a pH-dependent ATP hydrolysis, inhibited by pH values below 7, suggestive of the functioning of the inhibitor of F1 (IF1) protein. WB confirmed the presence of IF1 in OS, substantiating the expression of F1Fo ATP synthase in OS. Data suggest that the OS F1Fo ATP synthase is able to hydrolyze or synthesize ATP, depending on in vitro or in vivo conditions and that the role of IF1 would be pivotal in the prevention of the reversal of ATP synthase in OS, for example during hypoxia, granting photoreceptor survival.  相似文献   

12.
We describe here purification and biochemical characterization of the F(1)F(o)-ATP synthase from the thermoalkaliphilic organism Bacillus sp. strain TA2.A1. The purified enzyme produced the typical subunit pattern of an F(1)F(o)-ATP synthase on a sodium dodecyl sulfate-polyacrylamide gel, with F(1) subunits alpha, beta, gamma, delta, and epsilon and F(o) subunits a, b, and c. The subunits were identified by N-terminal protein sequencing and mass spectroscopy. A notable feature of the ATP synthase from strain TA2.A1 was its specific blockage in ATP hydrolysis activity. ATPase activity was unmasked by using the detergent lauryldimethylamine oxide (LDAO), which activated ATP hydrolysis >15-fold. This activation was the same for either the F(1)F(o) holoenzyme or the isolated F(1) moiety, and therefore latent ATP hydrolysis activity is an intrinsic property of F(1). After reconstitution into proteoliposomes, the enzyme catalyzed ATP synthesis driven by an artificially induced transmembrane electrical potential (Deltapsi). A transmembrane proton gradient or sodium ion gradient in the absence of Deltapsi was not sufficient to drive ATP synthesis. ATP synthesis was eliminated by the electrogenic protonophore carbonyl cyanide m-chlorophenylhydrazone, while the electroneutral Na(+)/H(+) antiporter monensin had no effect. Neither ATP synthesis nor ATP hydrolysis was stimulated by Na(+) ions, suggesting that protons are the coupling ions of the ATP synthase from strain TA2.A1, as documented previously for mesophilic alkaliphilic Bacillus species. The ATP synthase was specifically modified at its c subunits by N,N'-dicyclohexylcarbodiimide, and this modification inhibited ATP synthesis.  相似文献   

13.
Angiostatin binds to endothelial cell (EC) surface F(1)-F(0) ATP synthase, leading to inhibition of EC migration and proliferation during tumor angiogenesis. This has led to a search for angiostatin mimetics specific for this enzyme. A naturally occurring protein that binds to the F1 subunit of ATP synthase and blocks ATP hydrolysis in mitochondria is inhibitor of F1 (IF1). The present study explores the effect of IF1 on cell surface ATP synthase. IF1 protein bound to purified F(1) ATP synthase and inhibited F(1)-dependent ATP hydrolysis consistent with its reported activity in studies of mitochondria. Although exogenous IF1 did not inhibit ATP production on the surface of EC, it did conserve ATP on the cell surface, particularly at low extracellular pH. IF1 inhibited ATP hydrolysis but not ATP synthesis, in contrast to angiostatin, which inhibited both. In cell-based assays used to model angiogenesis in vitro, IF1 did not inhibit EC differentiation to form tubes and only slightly inhibited cell proliferation compared with angiostatin. From these data, we conclude that inhibition of ATP synthesis is necessary for an anti-angiogenic outcome in cell-based assays. We propose that IF1 is not an angiostatin mimetic, but it can serve a protective role for EC in the tumor microenvironment. This protection may be overridden in a concentration-dependent manner by angiostatin. In support of this hypothesis, we demonstrate that angiostatin blocks IF1 binding to ATP synthase and abolishes its ability to conserve ATP. These data suggest that there is a relationship between the binding sites of IF1 and angiostatin on ATP synthase and that IF1 could be employed to modulate angiogenesis.  相似文献   

14.
Import of tRNAs into the mitochondria of the kinetoplastid protozoon Leishmania requires the tRNA-dependent hydrolysis of ATP leading to the generation of membrane potential through the pumping of protons. Subunit RIC1 of the inner membrane RNA import complex is a bi-functional protein that is identical to the alpha-subunit of F1F0 ATP synthase and specifically binds to a subset (Type I) of importable tRNAs. We show that recombinant, purified RIC1 is a Type I tRNA-dependent ATP hydrolase. The activity was insensitive to oligomycin, sensitive to mutations within the import signal of the tRNA, and required the cooperative interaction between the ATP-binding and C-terminal domains of RIC1. The ATPase activity of the intact complex was inhibited by anti-RIC1 antibody, while knockdown of RIC1 in Leishmania tropica resulted in deficiency of the tRNA-dependent ATPase activity of the mitochondrial inner membrane. Moreover, RIC1 knockdown extracts failed to generate a membrane potential across reconstituted proteoliposomes, as shown by a rhodamine 123 uptake assay, but activity was restored by adding back purified RIC1. These observations identify RIC1 as a novel form of the F1 ATP synthase alpha-subunit that acts as the major energy transducer for tRNA import.  相似文献   

15.
Boltz KW  Frasch WD 《Biochemistry》2005,44(27):9497-9506
In Escherichia coli F(1)F(o) ATP synthase, gammaT273 mutants that eliminate the ability to form a hydrogen bond to betaV265 were incapable of ATP synthase-dependent growth and ATPase-dependent proton pumping, had very low rates of ATPase activity catalyzed by purified F(1), and had significantly decreased sensitivity to inhibition by Mg(2+)-ADP-AlF(n) species, while gammaT273D and gammaT273N mutants which maintained or increased the hydrogen bond strength maintained or increased catalytic activity. The betaP262G mutation that increases the potential flexibility of the rigid sleeve that surrounds the gamma subunit C-terminus also virtually eliminated ATPase activity and susceptibility to Mg(2+)-ADP-AlF(n) inhibition. The gammaE275 mutants that retained the ability to form the betaV265 hydrogen bond had higher ATPase activity than those that eliminated the hydrogen bond. These results provide evidence that the ability to form hydrogen bonds between betaV265 and the gamma subunit C-terminus contributes significantly to the rate-limiting step of catalysis and to the ability of the F(1)F(o) ATP synthase to use a proton gradient to drive ATP synthesis. The loss of activity observed with betaP262G may result from increased flexibility conferred by glycine that decreases the efficiency of communication between the gamma subunit-betaV265 hydrogen bonds and the Walker B aspartate at the catalytic site. The partial loss of coupling observed with gammaT273 mutants that eliminate the betaV265 hydrogen bond is consistent with participation of this hydrogen bond in the escapement mechanism for ATP synthesis in which interactions between the gamma subunit and (alphabeta)(3) ring prevent rotation until the empty catalytic site binds substrate.  相似文献   

16.
It was shown previously that the ATP synthase complex of bovine heart mitochondria contains an essential set of thiols or dithiols in its membrane sector (F0), whose modification by various reagents results in uncoupling [Yagi, T., and Hatefi, Y. (1984) Biochemistry 23, 2449-2455]. The sensitivity to modifiers was increased by membrane energization, and the uncoupling was reversed by membrane-permeable thiol compounds when modifiers other than alkylating agents were used to uncouple. The present paper demonstrates that there exists in the F0 of bovine ATP synthase another set of essential thiols, whose modification results in reversible inhibition of ATPase activity. These thiols are most susceptible to modification by mercurials (p-chloromercuribenzoate greater than p-chloromercuribenzene sulfonate) and do not appear to be modified by N-ethylmaleimide. The reversible modification of these thiols by mercurials protects the ATP synthase against irreversible inhibition in F0 by N,N-dicyclohexylcarbodiimide. The possible location of these two sets of thiols in the F0 of bovine ATP synthase is discussed.  相似文献   

17.
An ATPase was newly identified on the inner face of the plasma membrane of the extremely halophilic archaebacterium Halobacterium halobium. The enzyme was released into an alkaline EDTA solution and purified by several chromatographic steps in the presence of sulfate at 1 M or over. The molecular weight of the native enzyme was around 320,000; it is most likely composed of two pairs (alpha 2 beta 2) of 86,000 (alpha) and 64,000 (beta) subunits. The enzyme hydrolyzed ATP and other nucleoside triphosphates but neither ADP nor AMP. The enzyme required divalent cations, among which Mn2+ was most effective (Mg2+ activated 35% of Mn2+). The ATPase activity was optimum at pH between 5.5 and 6, particularly in a nearly saturated Na2SO4 (or Na2SO3) solution, while it was very low in a chloride salt solution even at 4 M at any pH. The Km value for ATP was 1.4 mM and the K1 value for ADP (competitive to ATP) was 0.08 mM. Neither azide (a specific inhibitor for F0F1-and F1-ATPase) nor vanadate (for E1E2-ATPase) inhibited the enzyme. The ATPase was stable at high concentrations of sulfate. At low concentrations of salts, or at low temperatures even in high NaCl concentrations, the enzyme was inactivated. Although the ATPase isolated here from halobacterial membrane has such unusual characteristics, it is the most probable candidate for the (catalytic part of) halobacterial ATP synthase, which differs from F0F1-ATPase/synthase (Mukohata et al. (1986) J. Biochem. 99, 1-8; Mukohata and Yoshida (1987) J. Biochem. 101, 311-318).  相似文献   

18.
Dimerization or oligomerization of ATP synthase has been proposed to play an important role for mitochondrial cristae formation and to be involved in regulating ATP synthase activity. We found comparable oligomycin-sensitive ATPase activity for monomeric and oligomeric ATP synthase suggesting that oligomerization/monomerization dynamics are not directly involved in regulating ATP synthase activity. Binding of the natural IF1 inhibitor protein has been shown to induce dimerization of F1-subcomplexes. This suggested that binding of IF1 might also dimerize holo ATP synthase, and possibly link dimerization and inhibition. Analyzing mitochondria of human rho zero cells that contain mitochondria but lack mitochondrial DNA, we identified three subcomplexes of ATP synthase: (i) F1 catalytic domain, (ii) F1-domain with bound IF1, and (iii) F1-c subcomplex with bound IF1 and a ring of subunits c. Since both IF1 containing subcomplexes were present in monomeric state and exhibited considerably reduced ATPase activity as compared to the third subcomplex lacking IF1, we postulate that inhibition and induction of dimerization of F1-subcomplexes by IF1 are independent events. F1-subcomplexes were also found in mitochondria of patients with specific mitochondrial disorders, and turned out to be useful for the clinical differentiation between various types of mitochondrial biosynthesis disorders. Supramolecular associations of respiratory complexes, the "respirasomes", seem not to be the largest assemblies in the structural organization of the respiratory chain, as suggested by differential solubilization of mitochondria and electron microscopic analyses of whole mitochondria. We present a model for a higher supramolecular association of respirasomes into a "respiratory string".  相似文献   

19.
Cell envelope vesicles of Halobacterium halobium synthesize ATP by utilizing base-acid transition (an outside acidic pH jump) under optimal conditions (1 M NaCl, 80 mM MgCl2, pH 6.8) even in the presence of azide (a specific inhibitor of F0F1-ATPase) (Mukohata & Yoshida (1987) J. Biochem. 101, 311-318). An azide-insensitive ATPase was isolated from the inner face of the vesicle membrane, and shown to hydrolyze ATP under very specific conditions (1.5 M Na2SO4, 10 mM MnCl2, pH 5.8) (Nanba & Mukohata (1987) J. Biochem. 102, 591-598). This ATPase activity could also be detected when the vesicle components were solubilized by detergent. The relationship between ATP synthesis and the membrane-bound ATPase was investigated by modification of the vesicles with 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole (NBD-Cl) or N-ethylmaleimide (NEM). The inhibition pattern of ATP synthesis in the modified vesicles and that of ATP hydrolysis of the solubilized modified vesicles were compared under the individual optimum conditions. The inhibition patterns were almost identical, suggesting that the ATP synthesis and hydrolysis are catalyzed by a single enzyme complex. The ATP synthase includes the above ATPase (300-320 kDa), which is composed of two pairs of 86 and 64 kDa subunits. This is a novel H+-translocating ATP synthase functioning in the extremely halophilic archaebacterium. This "archae-ATP-synthase" differs from F0F1-ATPase/synthase, which had been thought to be ubiquitous among all respiring organisms on our biosphere.  相似文献   

20.
Inhibition of the yeast F(0)F(1)-ATP synthase by the regulatory peptides IF1 and STF1 was studied using intact mitochondria and submitochondrial particles from wild-type cells or from mutants lacking one or both peptides. In intact mitochondria, endogenous IF1 only inhibited uncoupled ATP hydrolysis and endogenous STF1 had no effect. Addition of alamethicin to mitochondria readily made the mitochondrial membranes permeable to nucleotides, and bypassed the kinetic control exerted on ATP hydrolysis by the substrate carriers. In addition, alamethicin made the regulatory peptides able to cross mitochondrial membranes. At pH 7.3, F(0)F(1)-ATPase, initially inactivated by either endogenous IF1 or endogenous STF1, was completely reactivated hours or minutes after alamethicin addition, respectively. Previous application of a membrane potential favored the release of endogenous IF1 and STF1. These observations showed that IF1 and STF1 can fully inhibit ATP hydrolysis at physiological concentrations and are sensitive to the same effectors. However, ATP synthase has a much lower affinity for STF1 than for IF1, as demonstrated by kinetic studies of ATPase inhibition in submitochondrial particles by externally added IF1 and STF1 at pHs ranging from 5.5 to 8.0. Our data do not support previously proposed effects of STF1, like the stabilization of the IF1-F(0)F(1) complex or the replacement of IF1 on its binding site in the presence of the proton-motive force or at high pH, and raise the question of the conditions under which STF1 could regulate ATPase activity in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号