首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To exhibit chemotaxis, the orientation of locomotion along a chemical gradient cells sense differences in concentrations of a chemotactic factor by detecting some difference in the occupancy of their chemotactic receptors. Thus chemotaxis is sensitive to the number of receptors present and might be used to evaluate the consequences of receptor down-regulation. The ability of rabbit peritoneal polymorphonuclear leukocytes (PMNs) to orient to a standard gradient at various concentrations of N-formylnorleucylleucylphenylalanine (FNLLP) was examined. The observed orientation was compared to that expected if the directional signal were proportional to a difference in the absolute number or the fractional number of receptors occupied. The receptor occupancy in varying gradients was calculated from the binding constant of FNLLP, 2 X 10(-8) M (Zigmond and Sullivan, 1979, J. Cell Biol. 82:517-527), and the receptor number (a) present initially or (b) present after down-regulation (Sullivan and Zigmond, 1980, J. Cell Biol. 85:703-711). The observed concentration dependence of cell orientation is similar to the change in the number of receptors occupied, the receptor number being corrected for down-regulated cells. The net effect of receptor loss appears to be a decreased sensitivity to gradients at high concentrations of peptide.  相似文献   

2.
Removal of surface sialic acid specifically inhibits human polymorphonuclear leukocyte (PMN) chemotactic responses to N-formyl-methionyl-leucyl-phenylalanine (FMLP). Neuraminidase-treated (NT)-PMN bound and internalized [3H]FMLP (used as receptor marker) as well as normal PMN. NT-PMN, however, retained more [3H]FMLP-associated radioactivity than normal PMN. Subcellular fractionation studies demonstrated that NT-PMN retained more sedimentable (100,000 X G for 180 min) [3H]FMLP-associated radioactivity within light Golgi-containing fractions than normal PMN. Furthermore, NT-PMN exhibited a defect in their ability to reexpress (or recycle) a population of FMLP receptors. Abnormal receptor recycling was associated with inhibition of FMLP-induced PMN chemotaxis. Thus, it appears that recycling of formyl peptide receptors may be necessary for optimal PMN chemotactic responses to FMLP. We postulate that removal of PMN surface sialic acid inhibits FMLP-induced PMN chemotaxis by blocking the reexpression (or recycling) of a population of formyl peptide receptors, perhaps by preventing trafficking of desialated receptors through a light Golgi pathway.  相似文献   

3.
Chemotaxis by leukocytes appears to be initiated by the binding of chemo-attractants to specific cell surface receptors. In other biological systems, the affinity and functional activity of membrane receptors are regulated by the local microviscosity. The present studies were undertaken to determine if the number and/or affinity of chemotactic factor receptors expressed on human polymorphonuclear leukocytes were similarly affected. Aliphatic alcohols and cis-vaccenic acid, agents known to decrease membrane microviscosity, were studied for their effects on the binding of the radiolabeled chemoattractant f-Met-Leu-[3H]Phe to human polymorphonuclear leukocytes. Butanol and propanol increased the number of f-Met-Leu-[3H]Phe binding sites approximately 1.5 fold. More dramatically, these same agents enhanced the affinity of the receptor by ten-fold, without affecting the specificity of the receptor. Similarly, cis-vaccenic acid enhanced both the number and affinity of this chemotactic factor receptor on human polymorphonuclear leukocytes contain cryptic receptors for the N-formylated peptide chemotactic factors, but more importantly that the affinity of these receptors can exist in more than one state and can be modulated by membrane microviscosity. Alterations of membrane fluidity in leukocytes during chemotaxis may be an important mechanism for regulating their sensitivity to chemoattractants.  相似文献   

4.
N-Formylnorleucylleucylphenylalanine (f-Nle-LeuPhe) bound to rabbit peritoneal polymorphonuclear leukocytes at 4 degrees C exists in at least two compartments that can be differentiated by their off rates. The off rate of one compartment is similar to that of the receptor characterized previously, about 0.4 min-1 (Aswanikumar, S., Corcoran, B., Schiffmann, E., Day, A. R., Freer, R. J., Showell, H. J., Becker, E. L., and Pert, C. B. (1977) Biochem. Biophys. Res. Commun. 74, 810-817; Sullivan, S. J., and Zigmond, S. H. (1980) J. Cell Biol. 85, 703-711); the off rate of the second compartment is about 0.005 min-1. Lysis of the cells at 4 degrees C with 1% Triton does not affect the peptide release from either compartment. Accumulation of peptide at 4 degrees C into the fast off-rate compartment is rapid, reaching a plateau in about 5 min, while peptide in the slow off-rate compartment continues to increase for up to 4 h. The rate of accumulation in the slow off-rate compartment is approximately proportional to the amount of peptide bound to the fast off-rate compartment. Cells lysed at 4 degrees C before binding are still able to accumulate peptide into both compartments. Three possible models to explain the data are presented.  相似文献   

5.
Sensory adaptation of leukocytes to chemotactic peptides   总被引:23,自引:10,他引:13       下载免费PDF全文
The morphology and behavior of polymorphonuclear leukocytes (PMNs) were studied after rapid changes in the concentration of a chemotactic factor N-formylnorleucylleucylphenylalanine (f-NorleuLeuPhe) (Schiffmann et al., 1975, Proc. Natl. Acad. Sci. U. S. A. 72:1059--1062). After an increase in peptide concentration, the cells round, form lamellipodia or ruffles over most of their surface, and stop locomotion. These changes are transient. After a delay, the cells, still in the presence of peptide, withdraw most of the ruffles and resume locomotion, forming ruffles only at their front. Cells repeat the transient generalized ruffling upon further increase in peptide concentration. The behavioral changes occur over the same dose range as binding to a saturable receptor. The duration of the transient response after a concentration increase is roughly proportional to the increase in the number of cell receptors occupied as a result of the concentration change. Decreasing the concentration of peptide causes the cells to round transiently and form blebs before they recommence locomotion. The transient nature of these aspects of the cell's responsiveness to chemotactic factors appears to be due to adaptation by the cells. The ability to adapt to the concentration of a chemotactic factor may be important in leukocyte chemotaxis.  相似文献   

6.
TNF-alpha enhances polymorphonuclear responses to many stimuli, including chemotactic peptide FMLP. It also promotes expression of FMLP receptors and thus may prime polymorphonuclear neutrophils to this and other agonists by up-regulating signal recognition molecules. However, we find that the cytokine's actions on FMLP receptors lagged priming of FMLP-induced degranulation. Moreover, TNF-alpha enhanced degranulation responses to leukotriene B4 and platelet-activating factor but paradoxically down-regulated leukotriene B4 receptors and only transiently up-regulated platelet-activating factor receptors. Hence, TNF-alpha has pleiotropic effects on receptor expression; these effects diverge from priming; and a large part of the primed state must reflect enhancement of post-receptor events.  相似文献   

7.
When polymorphonuclear leukocytes (neutrophils) and soluble or particulate matter interact, the cells produce superoxide anions (O2-) and hydrogen peroxide (H2O2). The chemotactic peptide formylmethionyl-leucyl-phenylalanine (FMLP) induced a very weak response in normal neutrophils. The cellular response was changed, however, as a result of in vitro aging of the cells, i.e. the magnitude of the response was increased following storage of the cells at 22 degrees C for up to 120 min, in the absence of any stimulus, and before the addition of the peptide. When phorbol myristate acetate was used as a stimulus, there was a pronounced production of O2- and H2O2, but no change in magnitude as a result of in vitro aging. When neutrophil cytoplasts (granule-free vesicles of cytoplasm enclosed by plasmalemma) were exposed to the peptide FMLP of PMA, the vesicles produced both O2- and H2O2. There was, however, no increase in oxidative metabolite production in cytoplasts as a result of in vitro aging when either FMLP or PMA was used as a stimulus. The results thus indicate that mere incubation at room temperature primed the cells to increase their production of oxidative metabolites as a result of spontaneous exposure of hidden receptors. The fact that no such effects were observed with cytoplasts indicates that spontaneous receptor recruitment is a granule-dependent process.  相似文献   

8.
Exposure to IFN-gamma increases the respiratory burst of polymorphonuclear leukocytes stimulated by the chemoattractant FMLP. However, the mechanism by which IFN-gamma alters the response to FMLP is unclear. We addressed the hypothesis that IFN-gamma enhances the response to FMLP by regulating the expression of elements of the formyl peptide receptor transmembrane-signaling pathway. HL-60 granulocytes were used as a model of FMLP transmembrane signaling. Formyl peptide receptor number and affinity were studied in isolated plasma membranes prepared from control HL-60 cells (CM) and cells exposed to IFN-gamma 100 U/ml for 24 h (IFN-M). Formyl peptide receptors were significantly increased on IFN-M compared with CM (1473 +/- 300 vs 3209 +/- 924). FMLP stimulates increased guanine nucleotide-binding protein (G protein) activation in IFN-M as evidenced by enhanced guanosine 5'-[gamma-thio]triphosphate binding and GTPase activity. Gi sub-unit content was increased in IFN-M as measured by pertussis toxin-catalyzed ADP-ribosylation and immunoblotting with antibodies against alpha i2 and alpha i3 G protein subunits. Guanosine 5'-[gamma-thio]triphosphate equilibrium binding demonstrated an increased number of G proteins coupled to formyl peptide receptors on IFN-M. We conclude that IFN-gamma increases expression of both formyl peptide receptors and G proteins coupled to these receptors, thereby enhancing FMLP-stimulated transmembrane signaling. Regulation of transmembrane signaling element expression may be a significant mechanism by which IFN-gamma regulates cellular functions.  相似文献   

9.
Chemotactic peptide receptor modulation in polymorphonuclear leukocytes   总被引:30,自引:15,他引:15       下载免费PDF全文
The binding of the chemotactic peptide N- formylnorleucylleucylphenylalanine (FNLLP) to its receptor on rabbit polymorphonuclear leukocytes (PMNs) modulates the number of available peptide receptors. Incubation with FNLLP decreases subsequent binding capacity, a phenomenon that has been termed receptor down regulation. Down regulation of the chemotactic peptide receptor is concentration dependent in both the rate and extent of receptor loss. The dose response parallels that of FNLLP binding to the recptor. The time- course is rapid; even at concentrations of FNLLP as low as 3 x 10(-9) M, the new equilibrium concentration of receptors is reached within 15 min. Down regulation is temperature dependent, but does occur even at 4 degrees C. Concomitant with down regulation, some of the peptide becomes irreversibly cell associated. At 4 degrees C, there is a small accumulation of nondissociable peptide that rapidly reaches a plateau. At higher temperatures, accumulation of nondissociable peptide continues after the rceptor number has reached equilibrium, and the amount accumulated can exceed the initial number of receptors by as much as 300%. The dose response of peptide uptake at 37 degrees C reflects that of binding, suggesting that it is receptor mediated. This uptake may occur via a pinocytosis mechanism. Although PMNs have not been considered to be pinocytic, the addition of FNLLP causes a fourfold stimulation of the rate of pinocytosis as measured by the uptake of [3H]sucrose.  相似文献   

10.
The study of polymorphonuclear neutrophil (PMN) surface receptor expression provides a means for the assessment of PMN function and state of cellular activation. In this study, we characterized binding of the chemotactic peptide FMLP to whole PMN, with particular attention to those variables that may account for the wide variation reported in the literature. These included avoidance of oxidized FMLP as a radioligand contaminant, determination of the optimal cold ligand concentration necessary for achieving minimal nonspecific binding throughout the range of radioligand concentrations used in saturation experiments (greater than or equal to 5 x 10(-5) M), avoidance of radioligand concentrations that equal or exceed receptor saturation and are not suitable for Scatchard analysis (greater than or equal to 60 to 80 nM), and avoidance of inadvertent receptor mobilization due to room temperature PMN isolation techniques and cell warming. PMN isolated and maintained at 4 degrees C expressed a single, high affinity population of FMLP receptors (approximately 6000 receptors per cell) with a KD of 15.5 nM. These characteristics, and in particular the single-affinity nature of the expressed FMLP receptor site, were derived from saturation experiments and confirmed with agonist competition studies. PMN subjected to room temperature isolation or 37 degrees C warming exhibited a 2.5-fold increase in FMLP receptor expression (approximately 15,000 receptors per cell) without changes in receptor affinity. These latter PMN, in correlation with increased receptor expression, had increased initial, maximal rates of FMLP-induced superoxide generation (10.2 vs 6.3 nmol/min/10(6) PMN for cells isolated and maintained at 4 degrees C) as a manifestation of their functional activation. The avoidance of inadvertent cellular activation during PMN isolation is essential to studies of PMN function, activation and the role of FMLP receptor expression/mobilization in these processes.  相似文献   

11.
Previously, we reported that a derivative of wheat germ agglutinin (termed WGA-D) specifically inhibits human polymorphonuclear leukocyte (PMN) chemotaxis to FMLP by blocking reexpression (or recycling) of formyl peptide receptors. WGA-D (? formyl peptide receptor probe) binds to a protein on the PMN membrane that exhibits the same m.w. as the formyl peptide receptor. Since clustering (i.e., capping) of ligand-receptor complexes most likely precedes their internalization, we examined the ability of normal and stimulated PMN to cap fluoresceinated WGA-D. We found that, in contrast to capping of fluoresceinated Con A, PMN cap WGA-D in a chemotactic factor-specific fashion. Fluoresceinated WGA-D (5.0 to 20 micrograms/ml) alone did not induce either PMN shape changes (i.e., activation) or capping. Both FMLP (1 to 1000 nM) and human C5a (0.1 to 1.0 nM) induced PMN to polarize and to cap bound WGA-D, in a concentration-dependent fashion. Interestingly, leukotriene B4 (LTB4) (5.0 nM), while inducing the same degree of PMN polarization as FMLP (100 nM) and C5a (0.5 nM), failed to induce PMN to cap bound WGA-D. In contrast, FMLP (100 nM), C5a (0.5 nM), and LTB4 (5.0 nM) induced PMN to cap bound fluoresceinated Con A (10 micrograms/ml) to the same extent. The effect of suboptimal concentrations of FMLP and C5a on capping of WGA-D by PMN was additive. LTB4 did not enhance either FMLP or C5a-induced capping of WGA-D by PMN. Also, FMLP and C5a (but not LTB4) were capable of inducing both desensitization and cross-desensitization of WGA-D capping by PMN. Studies using rhodamine-labeled WGA-D and a fluoresceinated analog of FMLP revealed that both capped to the same place on the PMN membrane. Thus, the data suggest that WGA-D binds to a site on the PMN membrane that is either the FMLP receptor or very closely associated with it.  相似文献   

12.
This investigation was undertaken to clarify the mechanism by which purified recombinant human granulocyte-macrophage colony stimulating factor (GM-CSF) potentiates neutrophil oxidative responses triggered by the chemotactic peptide, FMLP. Previous studies have shown that GM-CSF priming of neutrophil responses to FMLP is induced relatively slowly, requiring 90 to 120 min of incubation in vitro, is not associated with increased levels of cytoplasmic free Ca2+, but is associated with up-regulation of cell-surface FMLP receptors. We have confirmed these findings and further characterized the process of GM-CSF priming. We found that the effect of GM-CSF on neutrophil oxidative responsiveness was induced in a temperature-dependent manner and was not reversed when the cells were washed extensively to remove the growth factor before stimulation with FMLP. Extracellular Ca2+ was not required for functional enhancement by GM-CSF and GM-CSF alone effected no detectable alteration in the 32P-labeled phospholipid content of neutrophils during incubation in vitro. Our data indicate that GM-CSF exerts its influence on neutrophils by accelerating a process that occurs spontaneously and results in up-regulation of both cell-surface FMLP receptors and oxidative responsiveness to FMLP. Thus, the results demonstrate that, with respect to oxidative activation, circulating endstage polymorphonuclear leukocytes are nonresponsive or hyporesponsive to FMLP; functional responsiveness increases dramatically as surface FMLP receptors are gradually deployed after the cells leave the circulation. Thus, as neutrophils mature, their responsiveness to FMLP changes in a manner which may be crucial for efficient host defense. At 37 degrees C, this process is markedly potentiated by GM-CSF. We conclude that endogenous GM-CSF, released systemically or at sites of infection and inflammation, potentially plays an important role in host defense by accelerating functional maturation of responding polymorphonuclear leukocytes.  相似文献   

13.
The extracellular matrix component, laminin, enhances the chemotactic responsiveness of polymorphonuclear leukocytes (PMN) in vitro, and low doses of chemoattractant substances augment the expression of PMN cell surface receptors for laminin. This study determined whether laminin acts in concert with chemoattractants to activate PMN. Laminin (5 to 100 micrograms/ml) stimulated lysozyme release and superoxide production in response to the chemoattractant, FMLP by as much as 69%. These results could be explained by changes in cell surface chemoattractant receptor expression in that incubation of normal PMN with laminin (5 to 75 micrograms/ml) increased the binding of 19 nM FML[3H]P by 35 to 80%. This corresponded to as much as a 2.5-fold increase in the number of chemoattractant receptors/cells which had a lower average affinity. Laminin did not change the number or affinity of FML[3H]P receptors present on organelle-depleted PMN cytoplasts, and the laminin-induced increase in FML[3H]P receptors expressed on PMN from a patient with a specific granule deficiency was only 11 to 21% of that seen in normal PMN. These findings suggest that chemoattractants augment the expression of laminin receptors which mediate PMN attachment to basement membranes, followed by laminin-induced increases in the expression of cryptic chemoattractant receptors contained in intracellular granules, with resultant augmentation of the oxidative burst.  相似文献   

14.
The functions of polymorphonuclear leukocytes from tobacco smokers are altered compared to those from nonsmokers. Since neutrophil chemotaxis and oxidative metabolism are mediated by surface receptors, we studied the association of the chemotactic peptide formyl Met-Leu-Phe with neutrophils from smokers and non-smokers. An apparently single class of binding sites was observed in neutrophils from all the non-smokers, whereas upwardly curving Scatchard plots were obtained for binding to smokers' cells. Thus changes at the receptor level may be responsible for the previously observed alterations in smoker neutrophil function.  相似文献   

15.
A nonagglutinating derivative of wheat germ agglutinin (WGA), prepared by treating the native lectin with cyanogen bromide and formic acid and purified by affinity chromatography on an N-acetyl-D-glucosamine column, inhibited human polymorphonuclear leukocyte (PMN) chemotaxis to the synthetic chemotactic peptide N-formyl-methionyl-leucyl-phenylalanine (FMLP). The WGA derivative (WGA-D) did not influence either the ability of PMN to migrate randomly or their chemotactic response to the complement-derived peptide C5a. Similarly, WGA-D had no effect on either FMLP-induced PMN polarization or other FMLP-induced PMN functions (i.e., selective discharge of lysosomal enzymes from cytochalasin B-treated cells, generation of superoxide anion). The inhibition of FMLP-induced PMN chemotaxis by WGA-D could not be reversed by washing the cells, or by incubating lectin-treated PMN at 37 degrees C for 20 min. The inhibitory effect of WGA-D was mediated by its specific binding to N-acetyl-D-glucosamine residues on the cell surface. WGA-D did not alter the specific binding of [3H]-FMLP to its receptor(s) on the PMN membrane. The data presented here suggest that WGA-D inhibits FMLP-induced PMN chemotaxis at a step distal to stimulus recognition.  相似文献   

16.
Isolated human polymorphonuclear (PMN) leukocyte plasma membranes express high affinity (mean Kd = 0.12 nM) and low affinity (mean Kd = 50 nM) receptors for the chemotactic factor leukotriene B4 (5(S),12(R)-dihydroxy-eicosa-6,14 cis-8,10 trans-tetraenoic acid; LTB4) that are similar to those on intact PMN leukocytes. A portion of high affinity LTB4-R on PMN leukocyte membranes were converted to the low affinity state by GTP (mean +/- SE = 28.6 +/- 14.0%) and nonhydrolyzable GTP analogues, such as 5'-guanylylimidodiphosphate (GMP-PNP), in a concentration-dependent, nucleotide-specific, and reversible manner, without altering the intrinsic binding affinities of either class. [3H]GMP-PNP bound specifically to one class of receptors (mean Kd = 13 nM) on PMN leukocyte membranes. The interdependence of the LTB4-binding membrane protein and guanine nucleotide-binding protein was suggested by the capacity of LTB4 to enhance by a maximum of 150% the binding of [3H]GMP-PNP to PMN leukocyte membranes by increasing the number, but not altering the affinity, of receptors for GMP-PNP. Pertussis toxin, but not cholera toxin, reversed the enhancement of binding of [3H]GMP-PNP produced by LTB4. Guanine nucleotide-binding proteins and high affinity LTB4-R thus exhibit a mutual regulation that differs mechanistically from that of peptide chemotactic factor receptors on PMN leukocytes.  相似文献   

17.
Activated human polymorphonuclear leukocytes (PMN) isolated from peripheral blood specifically bind 125I-laminin after stimulation with phorbol 12-myristate 13-acetate (PMA) or f-Met-Leu-Phe (FMLP) at 37 degrees C. Changes in laminin receptor expression are stimulus dose dependent at both chemotactic (10(-10) M to 10(-6) M) concentrations of FMLP, and secretory (greater than 5 ng/ml) levels of PMA. In the presence of cytochalasin B (5 micrograms/ml), 10(-7) M FMLP activation stimulates specific laminin binding, with an apparent Kd = 3.9 X 10(-9) M and 6.47 X 10(5) binding sites/cell, reaching equilibrium within 10 min at 4 degrees C. This observed activation-dependent change in laminin receptor expression is not due to interference by endogenous laminin, because no fluorescein-visualized anti-laminin antibody bound to cells without added glycoprotein, regardless of the level of activation. Levels of neutrophil lysozyme release, which show a PMA dose dependence similar to that of receptor binding activity, suggest that granule-plasma membrane fusion may be significant during increases in receptor expression. A lack of receptor stimulation by PMA from a granule-deficient patient or in granule-depleted cytoplasts from normal donors additionally supports this hypothesis. Electroblot transfer and autoradiography of subcellular fractions from unstimulated PMN reveals the presence of a 68,000 dalton laminin-binding component in the secondary/tertiary granule (beta) fraction, which may represent an intracellular laminin receptor pool.  相似文献   

18.
Antipeptide antibodies that recognize a lymphocyte substance P receptor   总被引:1,自引:0,他引:1  
In an effort to investigate the presence of substance P (SP) receptors on lymphocytes, polyclonal antibodies against SP receptors were developed. The immunogen used to generate these antibodies was a peptide encoded by an RNA complementary to the mRNA for SP. The rationale for using this SP complementary peptide (termed SP CP) as an immunogen resulted from the observation that 3H-SP bound to microtiter wells coated with SP CP in a dose dependent and saturable fashion. Furthermore, binding was blocked with excess unlabeled SP or SP antagonist, D-Pro2-D-Phe7-D-Trp9-SP. Inasmuch as the peptide, SP CP, specifically bound 3H-SP, we hypothesized that antibodies against this peptide might recognize a SP receptor binding site. Using the SP receptor positive lymphoblast cell line, IM-9, affinity-purified antibodies against SP CP but not antibodies against keyhole limpet hemocyanin recognized a molecule on the surface of IM-9 cells. Anti-SP CP binding to IM-9 cells was blocked with excess SP antagonist, suggesting that the antibody and the SP antagonist were competing for the same binding site. In support of this possibility, anti-SP CP antibodies blocked 3H-SP binding to IM-9 cells. An immunoaffinity column coupled with antibodies against SP CP bound protein from solubilized IM-9 cells. This isolated protein bound 125I-Tyr8-SP and binding was specifically blocked with SP as well as by SP antagonist, neurokinin A, and eledoisin. Passthrough material did not bind SP suggesting that a SP receptor had been purified. Western blot analysis of solubilized IM-9 cell proteins using anti-SP CP antibodies but not preimmune IgG recognized a single protein of 58,000 D. Taken together, these results demonstrate that antibodies against SP CP recognize a SP receptor present on the lymphocyte cell line, IM-9.  相似文献   

19.
The stochastic nature of cell surface receptor-ligand binding is known to limit the accuracy of detection of chemoattractant gradients by leukocytes, thus limiting the orientation ability that is crucial to the chemotactic response in host defense. The probabilistic cell orientation model of Lauffenburger is extended here to assess the consequences of recently discovered receptor phenomena: "down-regulation" of total surface receptor number, spatial asymmetry of surface receptors, and existence of a higher-affinity receptor subpopulation. In general, a reduction in orientation accuracy is predicted by inclusion of these phenomena. An orientation signal based on a simple model of chemosensory adaptation (i.e., a spatial difference in relative receptor occupancy) is found to be functionally different from the signal suggested by an experimental correlation (i.e., a spatial difference in absolute receptor occupancy). However, in the context of receptor "signal noise," the signal based on adaptation yields predictions in better qualitative agreement with the experimental orientation data of Zigmond. From this cell orientation model we can estimate the effective time-averaging period required for noise diminution to a level allowing orientation predictions to match observed levels. This time-averaging period presumably reflects the time constant for receptor signal transduction and locomotory response.  相似文献   

20.
We have recently reported that the glucocorticoid receptor (GR) becomes bound to the 90-kDa heat shock protein (hsp90) at or near the end of receptor translation in vitro (Dalman, F. C., Bresnick, E. H., Patel, P. D., Perdew, G. H., Watson, S. J., Jr., and Pratt, W. B. (1989) J. Biol. Chem. 264, 19815-19821). In this paper we compare the hsp90 binding and DNA binding activities of the thyroid hormone receptor (TR) to those of the GR after cell-free translation of the two receptors in rabbit reticulocyte lysate. In contrast to the newly translated GR, which is bound to hsp90 and must be transformed to the DNA binding state, the TR is not bound to hsp90 and is translated in its DNA binding form without any requirement for transformation. When the GR is translated in wheat germ extract, which does not contain hsp90, it is translated in its DNA binding form in the same manner as the TR synthesized in reticulocyte lysate. These observations provide direct evidence that binding of GR to hsp90 is associated with repression of its DNA binding function. The fact that the TR does not bind to hsp90 and is translated in its DNA binding form is consistent with the different behavior of this receptor with respect to classic steroid receptors in the intact cell. We propose that binding to hsp90 may account for the fact that most of the steroid receptors are recovered in the cytosolic fraction after lysis of hormone-free cells in low salt buffer whereas the hormone-free TR is recovered in tight association with the nucleus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号