首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Ectothermic vertebrates become thermally tolerant (heat hardened) after exposure to heat shock. Eukaryotic cells show a similar response. Cellular thermal tolerance is correlated with the induction of heat shock proteins (hsps). We have investigated the relationship between heat hardening in salamanders and the induction of hsps in the tissues of these organisms. Although the synthesis of hsps can be induced in these animals by sublethal heat shocks, conditions required for hsp induction and heat hardening often do not coincide. We conclude that induced thermal tolerance in adult salamanders is independent of hsp induction in their tissues.  相似文献   

2.
Wheat (Triticum aestivum L.) cvs. HD 2285 (relatively tolerant) and WH 542 (susceptible) were exposed to ambient and elevated temperature (3–4 °C higher) in open top chambers during post anthesis period. The grain yield components were determined at the time of maturity. In order to elucidate the basis of differential tolerance of these cultivars, the excised developing grains (20 d after anthesis) of ambient grown plants were incubated at 15, 25, 35 and 45 °C for 2 h and then analysed for the activities of soluble starch synthase (SSS), granule bound starch synthase (GBSS), kinetic parameters of SSS and content of heat shock protein (HSP 100). The elevated temperature during grain development significantly decreased grain growth in WH 542 whereas no such decrease was observed in HD 2285. High temperature tolerance of HD 2285 was found to be associated with higher catalytic efficiency (Vmax/Km) of SSS at elevated temperature and higher content of HSP 100.  相似文献   

3.
Heat shock protein synthesis and thermotolerance in Salmonella typhimurium   总被引:2,自引:0,他引:2  
The resistance of stationary phase Salmonella typhimurium to heating at 55 degrees C was greater in cells grown in nutritionally rich than in minimal media, but in all media tested resistance was enhanced by exposing cells to a primary heat shock at 48 degrees C. Chloramphenicol reduced the acquisition of thermotolerance in all media but did not completely prevent it in any. The onset of thermotolerance was accompanied by increased synthesis of major heat shock proteins of molecular weight about 83, 72, 64 and 25 kDa. When cells were shifted from 48 degrees C to 37 degrees C, however, thermotolerance was rapidly lost with no corresponding decrease in the levels of these proteins. There is thus no direct relationship between thermotolerance and the cellular content of the major heat shock proteins. One minor protein of molecular weight about 34 kDa disappeared rapidly following a temperature down-shift. Its presence in the cell was thus correlated with the thermotolerant state.  相似文献   

4.
The resistance of stationary phase Salmonella typhimurium to heating at 55°C was greater in cells grown in nutritionally rich than in minimal media, but in all media tested resistance was enhanced by exposing cells to a primary heat shock at 48°C. Chloramphenicol reduced the acquisition of thermotolerance in all media but did not completely prevent it in any.
The onset of thermotolerance was accompanied by increased synthesis of major heat shock proteins of molecular weight about 83, 72, 64 and 25 kDa. When cells were shifted from 48°C to 37°C, however, thermotolerance was rapidly lost with no corresponding decrease in the levels of these proteins. There is thus no direct relationship between thermotolerance and the cellular content of the major heat shock proteins. One minor protein of molecular weight about 34 kDa disappeared rapidly following a temperature down-shift. Its presence in the cell was thus correlated with the thermotolerant state.  相似文献   

5.
The role of heat shock proteins (HSPs) in heat tolerance has been demonstrated in cultured cells and animal tissues, but rarely in whole organisms because of methodological difficulties associated with gene manipulation. By comparing HSP70 expression patterns among representative species of reptiles and birds, and by determining the effect of HSP70 overexpression on embryonic development and hatchling traits, we have identified the role of HSP70 in the heat tolerance of amniote embryos. Consistent with their thermal environment, and high incubation temperatures and heat tolerance, the embryos of birds have higher onset and maximum temperatures for induced HSP70 than do reptiles, and turtles have higher onset and maximum temperatures than do lizards. Interestingly, the trade-off between benefits and costs of HSP70 overexpression occurred between life-history stages: when turtle embryos developed at extreme high temperatures, HSP70 overexpression generated benefits by enhancing embryo heat tolerance and hatching success, but subsequently imposed costs by decreasing heat tolerance of surviving hatchlings. Taken together, the correlative and causal links between HSP70 and heat tolerance provide, to our knowledge, the first unequivocal evidence that HSP70 promotes thermal tolerance of embryos in oviparous amniotes.  相似文献   

6.
Heat shock protein synthesis during development in Caulobacter crescentus.   总被引:6,自引:7,他引:6  
Caulobacter crescentus cells respond to a sudden increase in temperature by transiently inducing the synthesis of several polypeptides. Two of the proteins induced, Hsp62 and Hsp70, were shown to be analogous to the heat shock proteins of Escherichia coli, GroEL and DnaK, respectively, by immunological cross-reactivity with antibodies raised against the E. coli proteins. Two-dimensional gel electrophoretic resolution of extracts of cells labeled with [35S]methionine during heat shock led to the identification of 20 distinct Hsps in C. crescentus which are coordinately expressed, in response to heat, at the various stages of the cell division cycle. Thus, a developmental control does not seem to be superimposed on the transient activation of the heat shock genes. Nonetheless, under normal temperature conditions, four Hsps (Hsp70, Hsp62, Hsp24b, and Hsp23a) were shown to be synthesized, and their synthesis was cell cycle regulated.  相似文献   

7.
High temperatures during seedling growth are considered as one of the factors that can modify surviving properties in wheat (Triticum aestivum L.) plant. This work attempts to evaluate the heat shock responses of seedling of winter wheat (Bezostaya-1) using growth parameters (seedling length, embryonal root length and embryonal root number), membrane stability index (MSI) and two dimensional (2D) gel electrophoresis analysis of heat shock proteins (HSPs) during heat shock. Seedlings grown until first leaf opening at controlled conditions (23 degrees C, 200 micromol m(-2) s(-1), 16h day/8h night, 50-60% humidity) were exposed to 37 degrees C or 45 degrees C high temperatures for 2, 4 and 8 hours. While 37 degrees C did not cause any significant change, 45 degrees C heat treatments caused significant decrease in terms of seedling and root length, and leaf MSI for all exposure times. However, all the plants from 45 degrees C heat treatments continued to grow during recovery period. 2D protein analysis indicated that 37 degrees C, 8 hours exposure caused stronger and more diverse heat shock response than the other treatments, followed by 37 degrees C, 4 hours, 45 degrees C, 8 hours, 45 degrees C, 4 hours, 45 degrees C, 2 hours treatments. 5 protein spots, ranging from 6-7.8 pl (isoelectric point) and 27-31.7 kDA molecular weight, were expressed at 37 degrees C, 2 hours and continued at 37 and 45 degrees C for all exposure times. This suggests that these early proteins and other newly synthesized proteins may have protective effects at 37 and 45 degrees C and provide plants for healthy growth during the recovery period.  相似文献   

8.
The cold-induced wheat WCSP1 protein belongs to the cold shock domain (CSD) protein family. In prokaryotes and eukaryotes, the CSD functions as a nucleic acid-binding domain. Here, we demonstrated that purified recombinant WCSP1 is boiling soluble and binds ss/dsDNA and mRNA. Furthermore, boiled-WCSP1 retained its characteristic nucleic acid-binding activity. A WCSP1 deletion mutant, containing only a CSD, lost ssDNA/RNA-binding activity; while a mutant containing the CSD and the first glycine-rich region (GR) displayed the activity. These data indicated that the first GR of WCSP1 is necessary for the binding activity but is not for the heat stability of the protein.  相似文献   

9.
Development of the Paraguayan anuran Lepidobatrachus laevis is unusual in that the larvae are obligate carnivores, facultative cannibals and apparently exist at high environmental temperatures in their natural habitat. In the present study, the effect of environmental temperature on the rate of anuran development was investigated. The larvae have a thermotolerance range of 18°C for normal development between 19 and 37°C. The effect of temperature on the rate of development was dramatic; larvae that were incubated at 36.8°C develop to stage 24 (Gosner) in approximately 9 h compared with 24 h for larvae incubated at 19°C. The ability of larvae to survive heat shock was also examined; larvae did not survive a shock of 45°C for 15 min when it was administered at stages 3, 5, 9, 10 or 20. However, using the same heat shock conditions, 50% survival was observed when larvae were shocked at stage 16. To study protein synthesis during heat shock, larvae were pulsed with [35S]-methionine during heat shock and labeled proteins were analyzed by electrophoresis under reducing and denaturing conditions. Larvae synthesized two sets of heat-shock proteins at doublet molecular weights of 83/78 and 62/59 kDa. These proteins were synthesized independently of the stage of development at which the shock was administered or the magnitude of the heat shock.  相似文献   

10.
We compared heat shock proteins (HSPs) and cold shock proteins (CSPs) produced by different species of Rhizobium having different growth temperature ranges. Several HSPs and CSPs were induced when cells of three arctic (psychrotrophic) and three temperate (mesophilic) strains of rhizobia were shifted from their optimal growth temperatures (arctic, 25 degrees C; temperate, 30 degrees C) to shock temperatures outside their growth temperature ranges. At heat shock temperatures, three major HSPs of high molecular weight (106,900, 83,100, and 59,500) were present in all strains for all shock treatments (29, 32, 36.4, 38.4, 40.7, 41.4, and 46.4 degrees C), with the exception of temperate strains exposed to 46.4 degrees C, in which no protein synthesis was detected. Cell survival of arctic and temperate strains decreased markedly with the increase of shock temperature and was only 1% at 46.4 degrees C. Under cold shock conditions, five proteins (52.0, 38.0, 23.4, 22.7, and 11.1 kDa) were always present for all treatments (-2, -5, and -10 degrees C) in arctic strains. Among temperate strains, five CSPs (56.1, 37.1, 34.4, 17.3, and 11.1 kDa) were present at temperatures down to 0 degrees C. The 34.4- and the 11.1-kDa components were present in all temperate strains at -5 degrees C and in one strain at -10 degrees C. Survival of all strains decreased with cold shock temperatures but was always higher than 50%. These results show that rhizobia can synthesize proteins at temperatures not permissive for growth. In all shock treatments, no correspondence between the number of HSPs or CSPs produced and rhizobial survival was found.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Heat shock protein expression in fish   总被引:19,自引:0,他引:19  
Heat shock proteins (HSP) are a family of proteins expressed in response to a wide range of biotic and abiotic stressors. They are thus also referred to as stress proteins. Their extraordinarily high degree of identity at the amino acid sequence level and the fact that this cellular stress response has been described in nearly all organisms studied, make this group of proteins unique. We provide a brief historical overview of HSP research, as a background to summarizing what is known about HSP expression in fish. The expression of HSPs in fish has been described in cell lines, primary cultures of various cells, and in the tissues of whole organisms. Collectively, the data show that the expression of HSPs are affected in a wide variety of fish cells and tissues, in response both to biological stressors such as infectious pathogens, as well as to abiotic stressors such as heat and cold shock, and environmental contaminants. HSP research in fish is in its early stages and many studies are describing the expression of proteins in response to various stressors. Several studies have contributed to our understanding of the molecular nature and the molecular biology of HSPs in fish. Recent studies have shown a relationship between HSP expression and the generalized stress response in fish, but further research is needed to clarify the complex relationships between stress hormones and the cellular HSP response. In general, the HSP response seems to be related to the sensing of the stressor and the subsequent cellular effects which may adapt the cells to cope with the stressors. Consequently, such data may be of central importance in understanding the significance of HSP expression to the whole organism. We conclude with sections on laboratory methods used in HSP research and on potential applications of this knowledge in biomonitoring.  相似文献   

12.
A recent approach to evaluate environmenta induced damages has been damages has been suggested, based on the stress response. The approach involves the detection of stress protein induction in organisms to infer about environmental conditions in their surroundings. However, to be an indicator of adverse biological effects in the environment, the elevation of stress proteins should be compared to a response pattern for the experimental species. JuvenileCorbicula fluminea, collection from a control site, were submited to heat-shock stress in the laboratory to obtain the stress response pattern under normal and extreme conditions. Acclimated to 26°C, the specimens were submited to 29, 32, 35 and 38°C, for 96 h. After 1, 2, 4, 8, 24, 48, 72 and 96 h of exposure, clams were removed from each vial and prepared for stress protein analysis. Animals from the control site were frozen in liquid nitrogen at the time of collection, and prepared for stress protein analysis. Hsp60 and 70 were detected by immunoreactivity after separation on 12.5% polyacrylamide gels and transference to nitrocellulose by western blotting, to determine the stress protein concentrations. The result showed that hsp70 increased at 4h from the beginning of the experiment and progressed over the 96 h experimental period in animals exposed to 35°C. However hsp70 levels decreased between 4 h and 24 h for the clams stressed at their lethal temperature of 38°C. Immunoblotting with hsp60 showed similar reactivity. At 38°C there was an increase in the amount of hsp60 at 4h, reaching a maximum eight-fold level at 8h. By 96h, the amount decreased to levels lower than those observed at 4h. At 38°C the level of hsp60 began to decrease at 8 h and continue to decline to 24 h when the clams died. The data support the hypothesis of increasing concentrations of stress protein until the heat shock approaches the thermal limits for the species. The results of this research suggest the usefulness of using the stress response as a diagnostic in environmental toxicology. They confirm that the sps response may serve as a valid biomonitoring tool under chronic, sublethal exposures when it is still possible to prevent effects at organismal or higher organizational levels.  相似文献   

13.
To investigate whether sublethal heat shock protects Perkinsus marinus (Dermo)-infected oysters Crassostrea virginica from lethal heat stress, and the effects of P. marinus infection on sublethal heat shock response, oysters were first experimentally challenged with P. marinus. Then, when infections in oysters progressed to moderate levels (parasite burden = 10(4) to 10(5) cells g(-1) wet tissue weight), oysters were treated with a sublethal heat shock at 40 degrees C for 1 h (heat shock + Dermo challenge). Other treatment groups included heat-shocked, unchallenged (non-P. marinus challenged) oysters and non-heat-shocked, P. marinus-challenged and -unchallenged oysters. Thermal tolerance was compared among these treatments by administering a lethal heat treatment at 44 degrees C for 1 h, 7 d after sublethal heat shock. Sublethal heat shock enhanced survival to lethal heat treatment in both P. marinus-challenged and -unchallenged oysters. Although levels of hsp70 isoforms (hsp69 and hsp72) did not vary significantly by heat shock or infection with P. marinus, responses due to these treatments were apparent when comparing hsp70 levels within infected and uninfected oysters. Infection enhanced expression of hsp69, regardless of whether oysters were heat shocked or not. In uninfected oysters, hsp72 increased due to heat shock 2 and 7 d post heat shock. Overall, this study demonstrates that heat shock can improve survival in oysters, even in oysters infected with P. marinus. Expression of hsp70 varied among isoforms after sublethal and lethal heat shocks and in infected and uninfected oysters. The heat shock response was not negatively affected by P. marinus infection.  相似文献   

14.
Heat shock proteins (HSP) are families of highly conserved proteins which are induced in cells and tissues upon exposure to extreme conditions causing acute or chronic stress. They exhibit distinct functions and have been implicated in the pathogenesis of a number of diseases, including cancer. A causal relationship between HSP expression and immunogenicity has been demonstrated in murine and human tumors and is also associated with the immune response. In order to investigate the correlation of HSP expression and their immunogenic potential in renal cell carcinoma (RCC), we here analyzed (i) the protein expression profile of various members of the HSP family in untreated and interferon (IFN)-gamma treated RCC cell lines as well as normal kidney epithelium, and (ii) the anti-heat shock protein reactivity in sera derived from RCC patients and healthy controls using proteomics-based techniques. A heterogeneous expression pattern of members of the HSP families was demonstrated in RCC cell lines and in cells representing normal renal epithelium. In some cases the expression rate is moderately altered by IFN-gamma treatment. In addition, a distinct anti-heat shock protein reactivity could be detected in autologous and allogeneic sera from RCC patients and healthy controls. These data suggest that HSP play a role in the immunogenicity of RCC and thus might be used for the design of immunization strategies to induce a potent antitumor response in this disease.  相似文献   

15.
At elevated temperatures, germinating conidiospores of Neurospora crassa discontinue synthesis of most proteins and initiate synthesis of three dominant heat shock proteins of 98,000, 83,000, and 67,000 Mr and one minor heat shock protein of 30,000 Mr. Postemergent spores produce, in addition to these, a fourth major heat shock protein of 38,000 Mr and a minor heat shock protein of 34,000 Mr. The three heat shock proteins of lower molecular weight are associated with mitochondria. This exclusive synthesis of heat shock proteins is transient, and after 60 min of exposure to high temperatures, restoration of the normal pattern of protein synthesis is initiated. Despite the transiency of the heat shock response, spores incubated continuously at 45 degrees C germinate very slowly and do not grow beyond the formation of a germ tube. The temperature optimum for heat shock protein synthesis is 45 degrees C, but spores incubated at other temperatures from 40 through 47 degrees C synthesize heat shock proteins at lower rates. Survival was high for germinating spores exposed to temperatures up to 47 degrees C, but viability declined markedly at higher temperatures. Germinating spores survived exposure to the lethal temperature of 50 degrees C when they had been preexposed to 45 degrees C; this thermal protection depends on the synthesis of heat shock proteins, since protection was abolished by cycloheximide. During the heat shock response mitochondria also discontinue normal protein synthesis; synthesis of the mitochondria-encoded subunits of cytochrome c oxidase was as depressed as that of the nucleus-encoded subunits.  相似文献   

16.
17.
热休克蛋白60与细胞凋亡   总被引:5,自引:0,他引:5  
Cao Z  Ma J  Yuan WJ 《生理科学进展》2008,39(3):267-270
热休克蛋白60(heat shock protein 60, HSP60)是主要存在于线粒体内的分子伴侣蛋白,对于维持线粒体蛋白的正常结构和功能不可或缺.线粒体中的HSP60可作用于凋亡相关因子而抑制线粒体凋亡通路的激活,并且能够减少线粒体产生氧自由基;胞浆中的少量HSP60亦可通过与凋亡相关因子的相互作用等途径抑制细胞凋亡.相反,在某些刺激因素作用下或者HSP60细胞定位异常时,HSP60可产生促凋亡效应.HSP60在细胞凋亡中的双重作用及其对于肿瘤等疾病诊治的意义已引起高度关注.  相似文献   

18.
Abnormal levels of heat shock proteins have been observed in a number of human neoplasms and demonstrate prognostic, predictive and therapeutic implications. Since osteosarcoma (OSA) in dogs provides an important model for the same disease in humans, the aim of this study was to evaluate the immunohistochemical expression of Hsp27, Hsp72, Hsp73 and Hsp90 in 18 samples of canine appendicular OSA, in relation to histological grade and overall survival (OS), in order to investigate their potential prognostic, predictive and/or therapeutic value. A semiquantitative method was used for the analysis of the results. Hsp27, Hsp73 and Hsp90 showed a variably intense, cytoplasmic and nuclear immunoreactivity that was not associated with histological type or grade. On the other hand, a high percentage of Hsp72 immunostaining was significantly associated with grade III (P < 0.01) and a lack of immunolabelling was significantly correlated to a longer OS (P = 0.006). Neoplastic emboli were occasionally positive for Hsp27, faintly immunoreactive for Hsp72 and intensely immunolabelled by Hsp73 and Hsp90. In conclusion, absence of Hsp72 immunosignal appears to be associated with a favourable prognosis whilst the widespread Hsp90 immunoreactivity detected in all tumour cases as well as in neoplastic emboli, suggests this protein could be targeted in the therapy of canine OSA, and likewise in its human counterpart.  相似文献   

19.
20.
We evaluated the heat shock system 70 (HSP70) in patients with chronic glomerulonephritis (CGN). Seventy-six patients with CGN patients were included in our study. Ten patients with mild proteinuria (median 0.48 [0.16–0.78] g/24 h) and ten healthy subjects served as positive and negative controls, respectively. Urinary levels of HSP70, interleukin-10, and serum levels of anti-HSP70 were measured by ELISA. The immunohistochemical peroxidase method was used to study the expression of HSP70 and Foxp3+ in kidney biopsies. TregFoxP3+ cells in the interstitium were determined morphometrically. Median urinary HSP70 levels in patients with nephrotic syndrome (NS) [6.57 (4.49–8.33) pg/mg] and subnephrotic range proteinuria [5.7 (4.12–6.9) pg/mg] were higher (p?<?0.05) than in positive [3.7 (2.5–4.82) pg/mg] and negative [3.78 (2.89–4.84) pg/mg] controls. HSP70 expression index in tubular cells positively correlated with urinary HSP70 (Rs?=?0.948, р?<?0.05) and proteinuria (Rs?=?0.362, p?<?0.05). The number of TregFoxp3+ cells in the kidney interstitium and interleukin-10 excretion were lower in patients with NS. Anti-HSP70 antibody serum levels in patients with NS [21.1 (17.47–29.72) pg/ml] and subnephrotic range proteinuria [24.9 (18.86–30.92) pg/ml] were significantly higher than in positive [17.8 (12.95–23.03) pg/ml] and negative [18.9 (13.5–23.9) pg/ml] controls. In patients with CGN, increasing proteinuria was associated with higher HSP70 renal tissue and urinary levels. However, activation of HSP70 in patients with nephrotic syndrome did not lead to an increase in tissue levels of TregFoxp3+ cells or to the release of IL-10.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号