首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
用前染和后染两种不同的染色方法,研究比较SYBRGreenI和溴化乙锭(EB)两种核酸染料对凝胶中DNA的染色效果和灵敏度,及SYBRGreenI取代EB用于常规凝胶中核酸染色的可能性。结果表明,用前染法染色SYBRGreenI对琼脂糖凝胶中的核酸染色效果与EB相当;用后染法染色前者要优于后者,可显示5ng以下的DNA条带,在完全相同的操作条件下,其染色DNA条带背景清晰,灵敏度较高。因此,无致突变性新型染料SYBRGreenI可替代强致突变性染料EB用于检测凝胶中DNA片段大小、含量等,从而减少由于使用EB带来的环境污染和人体健康危害。  相似文献   

2.
Cationic liposomes and DNA interact electrostatically to form complexes called lipoplexes. The amounts of unbound (free) DNA in a mixture of cationic liposomes and DNA at different cationic lipid:DNA molar ratios can be used to describe DNA binding isotherms; these provide a measure of the binding efficiency of DNA to different cationic lipid formulations at various medium conditions. In order to quantify the ratio between the various forms of naked DNA and supercoiled, relaxed and single-stranded DNA, and the ratio between cationic lipid bound and unbound DNA of various forms we developed a simple, sensitive quantitative assay using agarose gel electrophoresis, followed by staining with the fluorescent cyanine DNA dyes SYBR Green I or SYBR Gold. This assay was compared with that based on the use of ethidium bromide (the most commonly used nucleic acid stain). Unlike ethidium bromide, SYBR Green I DNA sensitivity and concentration-dependent fluorescence intensity were identical for supercoiled and nicked-relaxed forms. DNA detection by SYBR Green I in solution is approximately 40-fold more sensitive than by ethidium bromide for double-stranded DNA and approximately 10-fold for single-stranded DNA, and in agarose gel it is 16-fold more sensitive for double-stranded DNA compared with ethidium bromide. SYBR Gold performs similarly to SYBR Green I. This study shows that: (a) there is no significant difference in DNA binding isotherms to the monocationic DOTAP (DOTAP/DOPE) liposomes and to the polycationic DOSPA (DOSPA/DOPE) liposomes, even when four DOSPA positive charges are involved in the electrostatic interaction with DNA; (b) the helper lipids affect DNA binding, as DOTAP/DOPE liposomes bind more DNA than DOTAP/cholesterol; (c) in the process of lipoplex formation, when the DNA is a mixture of two forms, supercoiled and nicked-relaxed (open circular), there is a preference for the binding to the cationic liposomes of plasmid DNA in the nicked-relaxed over the supercoiled form. This preference is much more pronounced when the cationic liposome formulation is based on the monocationic lipid DOTAP than on the polycationic lipid DOSPA. The preference of DOTAP formulations to bind to the relaxed DNA plasmid suggests that the binding of supercoiled DNA is weaker and easier to dissociate from the complex.  相似文献   

3.
SYBR Green 1 is an asymmetrical cyanine DNA-binding dye that provides an opportunity for increasing the sensitivity of nucleic acid detection when used in conjunction with gel electrophoresis. In this paper, we summarize the general properties and specific uses of SYBR green 1 in ion-pair reversed-phase denaturing high-performance liquid chromatography (IP DHPLC). We describe several applications for the WAVE DHPLC platform that illustrate the generic potential of such intercalating dyes in mutation detection and gene expression profiling. We show that SYBR Green 1 obviates the need to use end-labeled oligodeoxynucleotides for the sensitive detection of nucleic acids during chromatography. Moreover the incorporation of SYBR Green 1 into samples and elution buffers does not impair resolution and has no significant effect on the retention times of DNA fragments compared with dye-free DHPLC.  相似文献   

4.
Ethidium bromide (EtBr) and SYBR Green I are nucleic acid gel stains and used commonly in combination with UV-illumination. EtBr preferentially induces frameshift mutations but only in the presence of an exogenous metabolic activation system, while SYBR Green I is a very weak mutagen that induces frameshift mutations. We found that EtBr and SYBR Green I, without an added metabolic activation system, strongly potentiated the base-substitution mutations induced by UV-irradiation in E. coli B/r WP2 cells. Each DNA stain alone showed no mutagenicity to the strain. Base-substitutions induced by 3-chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone (MX) and 4-nitroquinoline-1-oxide were similarly potentiated by EtBr and SYBR Green I. SYBR Green I had a much greater effect. No enhancing effects were observed on mutations induced by mitomycin C, cisplatin, transplatin, cumene hydroperoxide, base analogs, and alkylating agents. Another DNA stain, acridine orange, showed similar enhancing effects on UV- and MX-mutagenicity, but no effect was observed for 4',6-diamidino-2-phenylindole (DAPI). UV- and MX-induced mutations in E. coli WP2s (uvrA), which is defective in nucleotide excision repair activity, were not potentiated by the addition of EtBr, SYBR Green I, or acridine orange. Those nucleic acid stains might inhibit the nucleotide excision repair of DNA damaged by UV and MX treatment.  相似文献   

5.
Accurate measurement of single DNA fragments by DNA fragment sizing flow cytometry (FSFC) depends upon precise, stoichiometric DNA staining by the intercalating dye molecules. In this study, we determined the binding characteristics of a commercially available 532 nm wavelength-excitable dye and used this information to develop a universal DNA staining protocol for DNA FSFC using a compact frequency-doubled Nd:YAG laser excitation source. Among twelve 532 nm wavelength-excitable nucleic acid staining dyes tested, SYTOX Orange stain showed the highest fluorescence intensity along with a large fluorescence enhancement upon binding to double-stranded DNA ( approximately 450-fold). Furthermore, using SYTOX Orange stain, accurate fragment-size-distribution histograms were consistently obtained without regard to the staining dye to base pair (dye/bp) ratio. A model describing two binding modes, intercalation (primary, yielding fluorescence) and external binding (secondary, involving fluorescence quenching), was proposed to interpret the performance of the dyes under different dye/bp ratios. The secondary equilibrium dissociation constant was found to be the most critical parameter in determining the sensitivity of each fluorophore to the staining dye/bp ratio. The measurements of both equilibrium dissociation constants provided us with a theoretical framework for developing a universal protocol which was successfully demonstrated over a wide range of DNA concentrations on a compact flow cytometer equipped with a frequency-doubled, diode-pumped, solid-state Nd:YAG laser for rapid and sensitive DNA fragment sizing.  相似文献   

6.
SYBR Green I nucleic acid gel stain is an unsymmetrical cyanine dye developed for sensitive detection of nucleic acids in electrophoretic gels. Its mechanism of nucleic acid binding is not known, whereas the most commonly used nucleic acid gel stain, ethidium bromide, is a well-characterized intercalator. We compared the mutagenicity of SYBR Green I stain with that of ethidium bromide in Salmonella/mammalian microsome reverse mutation assays (Ames tests). As expected [J. McCann, E. Choi, E. Yamasaki, B.N. Ames, Proc. Natl. Acad. Sci. USA, 72 (1975) 5135-5139], ethidium bromide showed high revertant frequencies in several frameshift indicator strains (averaging 68-fold higher than vehicle controls in TA98, 80-fold higher in TA1538, 15-fold higher in TA1537, and 4.4-fold higher in TA97a), only in the presence of rat liver extracts (S9). Small increases in revertant frequencies were observed for ethidium bromide in the base-substitution indicator strain TA102 both in the presence and absence of S9 (averaging 2.0- and 1.8-fold higher than vehicle controls, respectively) and in base-substitution indicator strain TA100 in the presence of S9 (averaging 1.6-fold higher than vehicle controls). A small mutagenic effect was detected for SYBR Green I stain in frameshift indicator strain TA98 (averaging 2. 2-fold higher than vehicle controls) only in the absence of S9 and in base-substitution indicator strain TA102, both in the presence and absence of S9 (averaging 2.2- and 2.7-fold higher than vehicle controls, respectively). Thus, SYBR Green I stain is a weak mutagen and appears to be much less mutagenic than ethidium bromide. These results suggest that SYBR Green I stain may not intercalate, and if it does, that its presence does not give rise to point mutations at a high frequency.  相似文献   

7.
The novel dye SYBR Green I binds specifically to nucleic acids and can be excited by blue light (488-nm wavelength). Cell concentrations of prokaryotes measured in marine samples with this dye on a low-cost compact flow cytometer are comparable to those obtained with the UV-excited stain Hoechst 33342 (bis-benzimide) on an expensive flow cytometer with a water-cooled laser. In contrast to TOTO-1 and TO-PRO-1, SYBR Green I has the advantage of clearly discriminating both heterotrophic bacteria and autotrophic Prochlorococcus cells, even in oligotrophic waters. As with TOTO-1 and TO-PRO-1, two groups of heterotrophic bacteria (B-I and B-II-like types) can be distinguished. Moreover, the resolution of DNA distribution obtained with SYBR Green I is similar to that obtained with Hoechst 33342 and permits the analysis of the cell cycle of photosynthetic prokaryotes over the whole water column.  相似文献   

8.
Twenty three novel cyanine dyes have been applied as fluorescent stains for the detection of nucleic acids in agarose gel electrophoresis. Significant fluorescence enhancement of these dyes in the presence of double stranded DNA was observed. Five dyes offered superior sensitivity in the detection and quantification of DNA, over Ethidium Bromide, the most commonly used nucleic acid stain.  相似文献   

9.
B L Roth  M Poot  S T Yue    P J Millard 《Applied microbiology》1997,63(6):2421-2431
A fluorescent nucleic acid stain that does not penetrate living cells was used to assess the integrity of the plasma membranes of bacteria. SYTOX Green nucleic acid stain is an unsymmetrical cyanine dye with three positive charges that is completely excluded from live eukaryotic and prokaryotic cells. Binding of SYTOX Green stain to nucleic acids resulted in a > 500-fold enhancement in fluorescence emission (absorption and emission maxima at 502 and 523 nm, respectively), rendering bacteria with compromised plasma membranes brightly green fluorescent. SYTOX Green stain is readily excited by the 488-nm line of the argon ion laser. The fluorescence signal from membrane-compromised bacteria labeled with SYTOX Green stain was typically > 10-fold brighter than that from intact organisms. Bacterial suspensions labeled with SYTOX Green stain emitted green fluorescence in proportion to the fraction of permeabilized cells in the population, which was quantified by microscopy, fluorometry, or flow cytometry. Flow cytometric and fluorometric approaches were used to quantify the effect of beta-lactam antibiotics on the cell membrane integrity of Escherichia coli. Detection and discrimination of live and permeabilized cells labeled with SYTOX Green stain by flow cytometry were markedly improved over those by propidium iodide-based tests. These studies showed that bacterial labeling with SYTOX Green stain is an effective alternative to conventional methods for measuring bacterial viability and antibiotic susceptibility.  相似文献   

10.
SYBR Gold is a commonly used and particularly bright fluorescent DNA stain, however, its chemical structure is unknown and its binding mode to DNA remains controversial. Here, we solve the structure of SYBR Gold by NMR and mass spectrometry to be [2-(4-{[diethyl(methyl)ammonio]methyl}phenyl)-6-methoxy-1-methyl-4-{[(2Z)-3-methyl-1,3-benzoxazol-2-ylidene]methyl}quinolin-1-ium] and determine its extinction coefficient. We quantitate SYBR Gold binding to DNA using two complementary approaches. First, we use single-molecule magnetic tweezers (MT) to determine the effects of SYBR Gold binding on DNA length and twist. The MT assay reveals systematic lengthening and unwinding of DNA by 19.1° ± 0.7° per molecule upon binding, consistent with intercalation, similar to the related dye SYBR Green I. We complement the MT data with spectroscopic characterization of SYBR Gold. The data are well described by a global binding model for dye concentrations ≤2.5 μM, with parameters that quantitatively agree with the MT results. The fluorescence increases linearly with the number of intercalated SYBR Gold molecules up to dye concentrations of ∼2.5 μM, where quenching and inner filter effects become relevant. In summary, we provide a mechanistic understanding of DNA-SYBR Gold interactions and present practical guidelines for optimal DNA detection and quantitative DNA sensing applications using SYBR Gold.  相似文献   

11.
DNA-binding proteins are key to the regulation and control of gene expression, replication and recombination. The electrophoretic mobility shift assay (or gel shift assay) is considered an essential tool in modern molecular biology for the study of protein-nucleic acid interactions. As typically implemented, however, the technique suffers from a number of shortcomings, including the handling of hazardous (32)P-labeled DNA probes, and difficulty in quantifying the amount of DNA and especially the amount of protein in the gel. A new detection method for mobility-shift assays is described that represents a significant improvement over existing techniques. The assay is fast, simple, does not require the use of radioisotopes and allows independent quantitative determination of: (i) free nucleic acid, (ii) bound nucleic acid, (iii) bound protein, and (iv) free protein. Nucleic acids are detected with SYBR Green EMSA dye, while proteins are subsequently detected with SYPRO Ruby EMSA dye. All fluorescence staining steps are performed after the entire gel-shift experiment is completed, so there is no need to prelabel either the DNA or the protein and no possibility of the fluorescent reagents interfering with the protein-nucleic acid interactions. The ability to independently quantify each molecular species allows more rigorous data analysis methods to be applied, especially with respect to the mass of protein bound per nucleic acid.  相似文献   

12.
Ethidium bromide: a nucleic acid stain for tissue section   总被引:3,自引:0,他引:3  
The phenanthridinium dye, ethidium bromide (EB), selectively intercalates into double-stranded regions of nucleic acids with a large and specific increase in fluorescence. When used for the staining of fixed tissue sections, the dye stains cellular nuclei with excellent resolution of microscopic detail. In some fixed tissues, particularly pancreatic acini, cytoplasm stains intensely and this staining can be abolished by digestion with trypsin and ribonuclease. The orange fluorescence of EB can be easily distinguished from the green fluorescence of fluorescein and EB is thus an excellent counterstain for immunofluorescence. Ethidium bromide is a useful and practical stain for the fluorescence microscopy of tissue sections and, in combination with enzymatic digestion of RNA, provides a simple way to differentially localize DNA and RNA.  相似文献   

13.
Ethidium bromide (EtBr) is used to stain DNA in agarose gel electrophoresis, but this dye is mutagenic and carcinogenic. We investigated N-719, which is a visible, reliable and organic Ruthenium-based dye, and five fluorescent alternatives for staining plant DNA. For prestaining and poststaining, N-719, GelRed, and SYBR Safe stained both DNA and PCR product bands as clearly as EtBr. SYBR Green I, methylene blue, and crystal violet were effective for poststaining only. The organic dye N-719 stained DNA bands as sensitively and as clearly as EtBr. Consequently, organic dyes can be used as alternatives to EtBr in plant biotechnology studies.  相似文献   

14.
SYPRO Ruby protein blot stain provides a sensitive, gentle, fluorescence-based method for detecting proteins on nitrocellulose or polyvinylidene difluoride (PVDF) membranes. SYPRO Ruby dye is a permanent stain composed of ruthenium as part of an organic complex that interacts noncovalently with proteins. Stained proteins can be excited by ultraviolet light of about 302 nm or with visible light of about 470 nm. Fluorescence emission of the dye is approximately 618 nm. The stain can be visualized using a wide range of excitation sources utilized in image analysis systems including a UV-B transilluminator, 488-nm argon-ion laser, 532-nm yttrium-aluminum-garnet (YAG) laser, blue fluorescent light bulb, or blue light-emitting diode (LED). The detection sensitivity of SYPRO Ruby protein blot stain (0.25-1 ng protein/mm(2)) is superior to that of amido black, Coomassie blue, and india ink staining and nearly matches colloidal gold staining. SYPRO Ruby protein blot stain visualizes proteins more rapidly than colloidal gold stain and the linear dynamic range is more extensive. Unlike colloidal gold stain, SYPRO Ruby protein blot stain is fully compatible with subsequent biochemical applications including colorimetric and chemiluminescent immunoblotting, Edman-based sequencing and mass spectrometry.  相似文献   

15.
A novel and simple method for detection of mutations in DNA oligonucleotides using a double-stranded DNA specific dye (SYBR Green I) is reported. The SYBR Green I is bound specifically with a duplex DNA oligonucleotide (intercalation). This intercalation induces fluorescent emission at 525 nm with excitation at 494 nm. The fluorescence intensity of mismatched oligonucleotides (40-mer) decreases (by more than 13%) in comparison with the perfectly matched oligonucleotides. Moreover, fluorescence measurement of the SYBR Green I can distinguish various types of single-base mismatches, except for the T-G terminal mismatch. The addition of 20% (v/v) formamide, however, to an oligonucleotide solution improved the sensitivity of detection and also enabled the detection of the T-G terminal-mismatch. This detection method requires only a normal fluorescence spectrophotometer, an inexpensive dye and just 50 pmol of sample DNA.  相似文献   

16.
Jones LJ  Haugland RP  Singer VL 《BioTechniques》2003,34(4):850-4, 856, 858 passim
We developed a sensitive fluorescence assay for the quantitation of proteins in solution using the NanoOrange reagent, a merocyanine dye that produces a large increase in fluorescence quantum yield upon interaction with detergent-coated proteins. The NanoOrange assay allowed for the detection of 10 ng/mL to 10 micrograms/mL protein with a standard fluorometer, offering a broad, dynamic quantitation range and improved sensitivity relative to absorption-based protein solution assays. The protein-to-protein variability of the NanoOrange assay was comparable to those of standard assays, including Lowry, bicinchoninic acid, and Bradford procedures. We also found that the NanoOrange assay is useful for detecting relatively small proteins or large peptides, such as aprotinin and insulin. The assay was somewhat sensitive to the presence of several common contaminants found in protein preparations such as salts and detergents; however, it was insensitive to the presence of reducing agents, nucleic acids, and free amino acids. The simple assay protocol is suitable for automation. Samples are briefly heated in the presence of dye in a detergent-containing diluent, allowed to cool to room temperature, and fluorescence is measured using 485-nm excitation and 590-nm emission wavelengths. Therefore, the NanoOrange assay is well suited for use with standard fluorescence microplate readers, fluorometers, and some laser scanners.  相似文献   

17.
Highly chlorinated Escherichia coli cannot be stained by propidium iodide   总被引:1,自引:0,他引:1  
Several studies have shown that the staining by fluorochromes (DAPI, SYBR Green II, and TOTO-1) of bacteria is altered by chlorination. To evaluate the effect of chlorine (bleach solution) on propidium iodide (PI) staining, we studied Escherichia coli in suspension and biomolecules in solution (DNA, RNA, BSA, palmitic acid, and dextran) first subjected to chlorine and then neutralized by sodium thiosulphate. The suspensions and solutions were subsequently stained with PI. The fluorescence intensity of the PI-stained DNA and RNA in solution dramatically decreased with an increase in the chlorine concentration applied. These results explain the fact that for chlorine concentrations higher than 3 micromol/L Cl2, the E. coli cells were too damaged to be properly stained by PI. In the case of highly chlorinated bacteria, it was impossible to distinguish healthy cells (with a PI-impermeable membrane and undamaged nucleic acids), which were nonfluorescent after PI staining, from cells severely injured by chlorine (with a PI-permeable membrane and damaged nucleic acids) that were also nonfluorescent, as PI penetrated but did not stain chlorinated nucleic acids. Our results suggest that it would be prudent to be cautious in interpreting the results of PI staining, as PI false-negative cells (cells with compromised membranes but not stained by PI because of nucleic acid damage caused by chlorine) are obtained as a result of nucleic acid damage, leading to an underestimation of truly dead bacteria.  相似文献   

18.
We have developed a simple, sensitive, fluorescence microplate-based assay for tumor necrosis factor (TNF) biological activity. The assay employs SYTOX Green nucleic acid stain to detect TNF-induced cell necrosis in actinomycin D sensitized cultured cell lines. SYTOX Green stain is a cationic unsymmetrical cyanine dye that is excluded from live cells but can readily penetrate cells with compromised cell membranes. Upon binding to cellular nucleic acids, the dye exhibits a large enhancement in fluorescence, which is monitored at fluorescein wavelengths. We detected 2.5 pg/mL and quantitated 25-500 pg/mL recombinant murine (rm) and recombinant human (rh) TNF-alpha, using mouse fibroblast-derived WEHI 164, WEHI 13var, and L929 cell lines. The procedure can also be used to detect agents that modulate TNF activity. We demonstrated complete inhibition of rhTNF-alpha using monoclonal anti-human TNF-alpha antibody and determined that approximately 20 ng/mL antibody was sufficient to neutralize 50% of the biological activity of 250 pg/mL rhTNF-alpha in these cell lines. Reagents are added in a single step, followed by a 6- to 8-h incubation period, during which the cytokine exhibits its effects. There are no wash steps, and the assay is readily amenable to automation and high-throughput screening procedures.  相似文献   

19.
Reliable analytical techniques to test growth-promoting and antimalarial efficacy on plasmodia are very important. Flow cytometry (FCM) offers the possibility to study developmental stages of intraerythrocytic growth of malaria parasites using nucleic acid staining. To analyze the growth of Plasmodium falciparum SYBR Green I was introduced as an intercalating dye with FCM for the 488 nm line of an argon laser. Procedures employing FCM, including fixatives, dye concentrations, dilution buffer, and staining period, were optimized to simplify the method. FCM as described here allows parasitemia and parasites of different stages to be quantified according to the DNA content. The proportion of parasitized erythrocytes estimated by FCM and the Giemsa method agreed with determination by parasite lactate dehydrogenase. The protocol was extended to merozoite counting as a sensitive assay of growth inhibition of the parasite.  相似文献   

20.
High background fluorescence and unspecific staining hampered the epifluorescence enumeration of bacteria in 45% of the tested soil and sediment samples with 4′,6-diamidino-2-phenylindole (DAPI) and polycarbonate membrane filters. These problems of the determination of total cell counts can be circumvented by using green fluorescent high-affinity nucleic acid dyes and aluminum oxide membrane filters. Due to the bright staining of cells, we recommend SYBR Green II as dye.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号