首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
From the results of chronobiological studies in 11 Aotus lemurinus (trivirgatus) griseimembra, 3 Galago garnettii, 5 Galago senegalensis, and 6 Microcebus murinus, inferences can be made on the most suitable lighting conditions for nocturnal primates kept in captivity. In each species studied light controls the daily periodic course of activity in a dual way. First, the light-dark (LD) cycle acts as the main Zeitgeber, entraining the endogenous circadian timing system (CTS) to the environmental periodicity. Second, the prevailing light intensity has a direct species-specific inhibiting or enhancing effect, masking the level of activity predetermined by the CTS. Marked inhibition of activity is caused especially by low light intensities during dark-time (D-time), which can also lead to drastically reduced food intake (e.g., in Aotus). Therefore, high-amplitude LD cycles should be applied which guarantee a stable external and internal synchronization of the various circadian rhythms of the organism, with a D-illumination intensity high enough to prevent light-induced impairments of the behavior of the animals. Up to now LD cycles of 12:12 h (100–1,000:0.5–0.01 lx; ≥5,000°K) have proved to be most suitable. Only in Microcebus should the D-illumination be reduced to about 10?4 lx. Moreover, it must be considered that species with a photoperiodically controlled reproduction cycle require specific alterations of the L-time:D-time ratio.  相似文献   

2.
Synergic contribution of light and temperature is known to cause a paradoxical masking effect (inhibition of activity by bright light and high temperature) on various rhythms of animals. The present study reports the paradoxical masking effects of 1000-lux photophase at 25°C on the locomotor activity rhythm of Drosophila malerkotliana. Flies were subjected to light (L)-dark (D) 12:12 cycles wherein the photophase was varied from 10 to 1000 lux, whereas the scotophase was set to 0 lux in these and subsequent LD cycles. At 10, 100, and 500 lux, the flies were diurnal; however, at 1000 lux they were nocturnal. Transfer from LD 12:12 cycles to continuous darkness (DD) initiated free-running rhythmicity in all flies. Free-running rhythms of the flies switched from the 10-lux to the 500-lux groups started from the last activity-onset phase of the rhythm following 3–5 transient cycles, suggesting involvement of the circadian pacemaker. In contrast, the free-running rhythm of the flies of the 1000-lux group began abruptly from the last lights-on phase of the LD cycle, indicating noninvolvement of the pacemaker. Furthermore, all flies showed nocturnal activity in the two types of LD 12:12 cycles when the photophase was 1000 lux. The first type of LD cycles had three succeeding photophases of 100, 1000, and again 100 lux, whereas the second type of LD cycles had only one photophase of 1000 lux, but the LD 12:12 cycles were reversed to DL 12:12 cycles. Apparently, the combined effects of light and temperature caused such paradoxical masking effects. This hypothesis was tested by repeating the above experiments at 20°C. Flies in all experiments exhibited a diurnal activity pattern, even when the photophase was 1000 lux. Thus, the present study demonstrates that the paradoxical masking effect in D. malerkotliana was caused by the additive influence of light intensity and temperature. This strategy appears to have physiological significance, i.e., to shun and thus protect against the bright photophase at high temperature in the field. (Author correspondence: )  相似文献   

3.
1. The locomotor activity of the night monkey (Aotus trivirgatus) has been shown to be related to light intensity by an optimum function; here entrainment by LD cycles is examined to see whether the mechanism of synchronization of circadian periodicity in Aotus is based on this function. 2. Eleven night monkeys of various ages, previously in either a free-running phase or in LD 12:12 (10(2):10(-1) lux), were recorded in LD 12:12 with the optimal intensity (10(-1) lux) in the light part of the cycle and a suboptimal intensity (10(-3) lux) in the dark part. 3. In all cases the monkeys synchronized in such a way that their activity phase fell in the dark part of the LD cycle. 4. The implication is that Aotus is a true dark-active species, that the illumination-dependent activity maximum at 10(-1) lux does not affect the synchronization mechanism, and that the differential (direction of change) rather than proportional (absolute level) actions of light provide the decisive cue for synchronization of the circadian activity rhythm.  相似文献   

4.
《Chronobiology international》2013,30(8):1575-1586
We investigated the effects of natural light at night (LAN) in the field and artificial LAN in the laboratory on the circadian rhythm of pupal eclosion in a tropical wild type strain of Drosophila jambulina captured at Galle, Sri Lanka (6.1oN, 80.2oE). The influence of natural LAN, varying in intensity from 0.004 lux (starlight intensity) to 0.45 lux (moonlight intensity), on the entrainment pattern of the circadian rhythm of eclosion at 25o?±?0.5oC was examined by subjecting the mixed-aged pupae to natural cycles of light and darkness at the breeding site of this strain in the field. The eclosion peak was ~2?h prior to sunrise, and the 24?h rhythmicity was the most robust. Effects of artificial LAN at 25o?±?0.5oC were determined in the laboratory by subjecting pupae to LD 12:12 cycles in which the light intensity of the photophase was 500 lux in all LD cycles, while that of the scotophase was either 0 lux (complete darkness, DD), 0.5, 5, or 50 lux. In the 0 lux LAN condition (i.e., the control experiment), the eclosion peak was ~2?h after lights-on, and the 24?h eclosion rhythm was not as strong as in the 0.5 lux LAN condition. The entrainment pattern in 0.5 lux LAN was strikingly similar to that in the field, as the 0.5 lux LAN condition is comparable to the full moonlight intensity in the tropics. LAN at 0.5 lux dramatically altered both parameters of entrainment, as the eclosion peak was advanced by ~4?h and the 24?h eclosion rhythm was better than that of the control experiment. LAN at 5 lux, however, resulted in a weak eclosion rhythm that peaked in the subjective forenoon. Interestingly, the 50 lux LAN condition rendered the eclosion events unambiguously arrhythmic. After-effects of LAN on the period (τ) of the free-running rhythm and the nature of eclosion rhythm were also determined in DD by a single LD 12:12 to DD transfer. After-effects of the LAN intensity were observed on both the τ and nature of the eclosion rhythm in all four experiments. Pupae raised in 0.5 lux LAN exhibited the shortest τ (20.6?±?0.2?h, N?=?11 for this and subsequent values) and the most robust rhythm, while pupae raised in 50 lux LAN had the longest τ (29.5?±?0.2?h) and weakest rhythm in DD. Thus, these results demonstrate the intensity of LAN, varying from 0 to 50 lux, profoundly influences the parameters of entrainment as well as free-running rhythmicity of D. jambulina. Moreover, the observed arrhythmicity in LD 12:12 cycles caused by the 50 lux LAN condition appeared to be the masking effect of relatively bright light at night, as the LD 12:12 to DD transfer restored the rhythmicity, although it was rather weak. (Author correspondence: )  相似文献   

5.
This study investigated whether changes in illumination modify perception of day and night conditions in a diurnal species, the Indian weaver bird. Birds were initially subjected to a 12-h light:12-h dark regime (12L:12D; L?=?20 lux, D =?0.5 lux). After every 2 wks, the combinations of light illumination in L and D phases were changed as follows: 20:2 lux, 20:5 lux, 20:10 lux, 20:20 lux, 20:100 lux, and 20:200 lux. Finally, birds were released into dim constant light (0.5 lux) for 2 wks to determine the phase and period of the circadian activity rhythm. They were also laparotomized at periodic intervals to examine the effects of the light regimes on the seasonal testicular cycle. All individuals showed a consistently similar response. As evident by the activity pattern under these light regimes, both in total activity during contrasting light phases and during the 2?h in the beginning and end of first light phase, birds interpreted the period of higher light intensity as day, and the period of lower intensity as the night. During the period of similar light intensity, i.e., under LL, birds free-ran with a circadian period (~24?h). In bright LL (20 lux), the activity rhythm was less distinct, but periodogram analysis revealed the circadian period for the group as 24.46?±?0.41?h (mean?±?SE). However, in dim LL at the end of the experiment, all birds exhibited a circadian pattern with average period of 25.52?±?0.70?h. All birds also showed testicular growth and regression during the 16-wks study. It is suggested that weaver birds interpret day and night subjectively based on both the light intensity and contrast between illuminations during two phases over the 24?h. (Author correspondence: )  相似文献   

6.
This study investigated whether changes in illumination modify perception of day and night conditions in a diurnal species, the Indian weaver bird. Birds were initially subjected to a 12-h light:12-h dark regime (12L:12D; L=20 lux, D =0.5 lux). After every 2 wks, the combinations of light illumination in L and D phases were changed as follows: 20:2 lux, 20:5 lux, 20:10 lux, 20:20 lux, 20:100 lux, and 20:200 lux. Finally, birds were released into dim constant light (0.5 lux) for 2 wks to determine the phase and period of the circadian activity rhythm. They were also laparotomized at periodic intervals to examine the effects of the light regimes on the seasonal testicular cycle. All individuals showed a consistently similar response. As evident by the activity pattern under these light regimes, both in total activity during contrasting light phases and during the 2?h in the beginning and end of first light phase, birds interpreted the period of higher light intensity as day, and the period of lower intensity as the night. During the period of similar light intensity, i.e., under LL, birds free-ran with a circadian period ( ~ 24 h). In bright LL (20 lux), the activity rhythm was less distinct, but periodogram analysis revealed the circadian period for the group as 24.46 (+/-) 0.41 h (mean???SE). However, in dim LL at the end of the experiment, all birds exhibited a circadian pattern with average period of 25.52 (+/-) 0.70 h. All birds also showed testicular growth and regression during the 16-wks study. It is suggested that weaver birds interpret day and night subjectively based on both the light intensity and contrast between illuminations during two phases over the 24 h.  相似文献   

7.
Synergic contribution of light and temperature is known to cause a paradoxical masking effect (inhibition of activity by bright light and high temperature) on various rhythms of animals. The present study reports the paradoxical masking effects of 1000-lux photophase at 25°C on the locomotor activity rhythm of Drosophila malerkotliana. Flies were subjected to light (L)-dark (D) 12:12 cycles wherein the photophase was varied from 10 to 1000 lux, whereas the scotophase was set to 0 lux in these and subsequent LD cycles. At 10, 100, and 500 lux, the flies were diurnal; however, at 1000 lux they were nocturnal. Transfer from LD 12:12 cycles to continuous darkness (DD) initiated free-running rhythmicity in all flies. Free-running rhythms of the flies switched from the 10-lux to the 500-lux groups started from the last activity-onset phase of the rhythm following 3-5 transient cycles, suggesting involvement of the circadian pacemaker. In contrast, the free-running rhythm of the flies of the 1000-lux group began abruptly from the last lights-on phase of the LD cycle, indicating noninvolvement of the pacemaker. Furthermore, all flies showed nocturnal activity in the two types of LD 12:12 cycles when the photophase was 1000 lux. The first type of LD cycles had three succeeding photophases of 100, 1000, and again 100 lux, whereas the second type of LD cycles had only one photophase of 1000 lux, but the LD 12:12 cycles were reversed to DL 12:12 cycles. Apparently, the combined effects of light and temperature caused such paradoxical masking effects. This hypothesis was tested by repeating the above experiments at 20°C. Flies in all experiments exhibited a diurnal activity pattern, even when the photophase was 1000 lux. Thus, the present study demonstrates that the paradoxical masking effect in D. malerkotliana was caused by the additive influence of light intensity and temperature. This strategy appears to have physiological significance, i.e., to shun and thus protect against the bright photophase at high temperature in the field.  相似文献   

8.
The circadian rhythms of locomotor activity of the scorpion Leiurus quinqueslriatus were examined under different light-dark cycles and in free-running conditions. The circadian rhythm is bimodal in LD 12:12 with alternating cycles of temperature (35°-25°C) with high intensity (1300 lux) or in LD 12: 12 with constant temperature 35° C with 300 lux. In LD 12:12 (1300 lux), in long or in short light spans with constant temperature, the bimodal pattern is slightly changed with the appearance of a third minor peak of activity. In free-running conditions, the bimodal rhythm of locomotor activity persists in DD with T about 24 hr, but in LL the rhythm becomes unimodal with T about 24 hr. Cosinor and power spectrum analysis showed the presence of more than one periodic component. It seems that there is a correlation between the range of light regimens, temperature, light intensity and the coincidence of these components. These components are independently entrained by the environmental light cycle. The mechanism of entrainment of components is discussed.  相似文献   

9.
Abstract

The aim of this study was to analyse the effect of light respectively illumination cycles on the activity rhythm of the insectivorous bat Myotis myotis (M.m.). A new electronic registration system devised for this purpose can be applied almost universally in recording the activity of terrestrial animals.

M.m. is a strictly dark‐active species with a bimodal activity pattern of bigeminus character. Under constant conditions, M.m. reveals a free running circadian activity rhythm. Its period length varies between 22.6 and 27.8 h and is positively correlated with the intensity of illumination. The range of entrainment of the circadian activity rhythm of M.m. is unusually wide. Accordingly, M.m. resynchronizes very quickly after phase shifts of the Zeitgeber LD. Activity maxima in the range of 10‐4 lx occur in LD 12:12 with constant illumination in L and varied illumination in D as well as in LL with varying intensity.

It is to be discussed whether the wide variability of different parameters in the circadian system of M.m. compared with those of other Chiroptera can be interpreted as an adaptation to ecological factors.  相似文献   

10.
Eclosion rhythm of the high-altitude Himalayan strain of Drosophila ananassae from Badrinath (altitude 5123 m) was temperature-dependent and at 21°C, it was entrained by cycles of 12 h light: 12 h darkness (LD 12:12) and free-ran in constant darkness, however, it was arrhythmic at 13°C or 17°C under identical experimental conditions (Khare, P. V., Barnabas, R. J., Kanojiya, M., Kulkarni, A. D., Joshi, D. S. (). Temperature dependent eclosion rhythmicity in the high altitude Himalayan strains of Drosophila ananassae. Chronobiol. Int. 19:1041–1052). The present studies were designed to see whether or not these strains could be entrained at 13°C, 17°C, and 21°C by two types of LD cycles in which the photoperiod at 100 lux intensity varied from 6 h to 18 h, and the light intensity of LD 14:10 cycles varied from 0.001 lux to 1000 lux. All LD cycles entrained this strain at 21°C but not at 13°C or 17°C. These results demonstrate that the entrainment of eclosion rhythm depends on the ambient temperature and not on the photoperiod or light intensity of LD cycles. Thus the temperature has taken precedence over the light in the entrainment process of eclosion rhythm of the high altitude Himalayan strain of D. ananassae. This may be the result of natural selection in response to the environmental temperature at Badrinath that resembles that of the sub-Arctic region but the photoperiod or light intensity are of the subtropical region.  相似文献   

11.
Masking of circadian activity rhythms in canaries by light and dark   总被引:1,自引:0,他引:1  
Canaries (Serinus canaria) were kept singly in cages placed in an artificially illuminated, soundproof cabinet. Perch-hopping activity was recorded by means of a computer system. In three series of experiments, the activity rhythms of the birds were entrained to 24 hr by light-dark (LD) cycles with 4, 12, or 20 hr of light (L), respectively. The intensity of illumination was 10 lux in L and 0.25 lux in darkness (D). Under LD 4:20 and 12:12, the intensity of D was increased daily at the same zeitgeber time to 1 lux for 1 hr (L pulse) during about 8 consecutive days. This sequence was followed by 8 days without L pulses before giving another series of L pulses at a different zeitgeber time. Under LD 20:4, the intensity of L was decreased to 1 lux for 1 hr (D pulse). The activity of all birds was more or less increased by the L pulses (positive masking) and decreased by the D pulses (negative masking). The level of masking activity during the L and D pulses depended on the circadian phase at which the pulses were administered. Positive masking by L pulses was minimal about 5 hr after the beginning of D, and increased steadily thereafter. Negative masking by D pulses was maximal at the beginning and the end of L, and minimal during the middle.  相似文献   

12.
Entrainment patterns of the circadian rhythms of body temperature and locomotor activity were compared in 6 squirrel monkeys (Saimiri sciureus) exposed to daily illumination cycles with abrupt transitions between light and darkness (LD-rectangular) or with gradual dawn and dusk transitions simulating natural twilights at the equator (LD-twilight). Daytime light intensity was 500 lux, and the total amount of light emitted per day was the same in the two conditions. Mean daytime body temperature levels were stable in LD-rectangular but increased gradually in LD-twilight, reaching peak levels during the dusk twilight. Locomotor activity showed a similar pattern, but with an additional, secondary peak near the end of dawn. Activity duration was about 0.5 h longer in LD-twilight than in LD-rectangular, but the time of activity midpoint was similar in the two conditions. Reentrainment of the body temperature rhythm was faster following an 8-h advance of the LD cycle than following an 8-h delay, but did not differ significantly between the two LD conditions. These results provide no evidence that the inclusion of twilight transitions affected the strength of the LD Zeitgeber, and suggest that the observed differences in the daily patterns reflected direct effects of light intensity on locomotor activity and body temperature rather than an effect of twilights on circadian entrainment mechanisms.Abbreviation LD light-dark  相似文献   

13.
Nobel PS 《Plant physiology》1968,43(5):781-787
A light-induced shrinkage of chloroplasts in vivo could be detected with chloroplasts isolated within 2 minutes of harvesting pea plants. As determined both by packed volume and Coulter counter, the mean volume of chloroplasts from plants in the dark was 39 μ3, whereas it was 31 μ3 for chloroplasts from plants in the light. Upon illumination of the plants, the half-time for the chloroplast shrinkage in vivo was about 3 minutes, and the half-time for the reversal in the dark was about 5 minutes. A plant growth temperature of 20° was optimal for the volume change. The chloroplast shrinkage was half-maximal for a light intensity of 400 lux incident on the plants and was light-saturated near 2000 lux. The light-absorbing pigment responsible for the volume change was chlorophyll. This light-induced shrinkage resulted in a flattening and slight indenting of the chloroplasts. This chloroplast flattening upon illumination of the plants may accompany an increase in the photosynthetic efficiency of chloroplasts.  相似文献   

14.
The locomotor activity rhythms were examined by using an actograph with infra-red photo-electric switches for two species of wrasses, (Halichoeres tenuispinnis andPteragogus flagellifera) under various light conditions. InH. tenuispinnis, the locomotor activity of almost all fish under light-dark cycle regimen (LD12:12; 06:00–18:00 light, 18:00–06:00 dark) commenced somewhat earlier than the beginning of light period and continued till somewhat earlier than the beginning of the dark period. This species clearly showed free-running activity rhythms under both constant illumination (LL) and constant darkness (DD). Therefore,H. tenuispinnis appeared to have a circadian rhythm. The length of the circadian period ranged from 23 hr. 30 min. to 23 hr. 44 min. under LL, and was from 23 hr. 39 min. to 24 hr. 18 min. under DD. On the other hand, the locomotor activity ofP. flagellifera occurred mostly in the light period under LD 12:12. The activity of this species continued through LL, but was greatly suppressed in DD, so that none of the fish had any activity rhythm in both constant conditions. It was known from field observations thatH. tenuispinnis burrowed and lay in sandy bottoms, whileP. flagellifera hid and rested in bases of seagrasses and shallow crevices of rocks during the night. In the present two wrasses, it seemed that the above-mentioned difference of noctural behavior was closely related to the intensity of the endogenous factor in the activity rhythm.  相似文献   

15.
Entrainment to light of circadian activity rhythms in tench (Tinca tinca)   总被引:1,自引:0,他引:1  
The present article analyzes locomotor activity rhythms in Tinca tinca. To that end, three different experiments were conducted on 24 animals (20 g body weight) kept in pairs in 60-liter aquaria fitted with infrared sensors connected to a computer to continuously record fish movements. The first experiment was designed to study the endogenous circadian clock under free-running conditions [ultradian 40:40 min LD pulses and constant dark (DD)] and after shifting the LD cycle. Our results demonstrate that tench has a strictly nocturnal activity pattern, an endogenous rhythm being evident in 45.8% of the fish analyzed. The second experiment was conducted to test the influence of different photoperiods (LD 6:18, 12:12, 18:6, and 22:2) on locomotor activity, the results showing that even under an extremely long photoperiod, tench activity is restricted to dark hours. The third experiment examined the effect of light intensity on locomotor activity rhythms. When fish were exposed to decreasing light intensities (from 300:0 lux to 30:0, 3:0, and 0.3:0 lux) while maintaining a constant photoperiod (LD 12:12), the highest percentage of locomotor activity was in all cases associated with the hours of complete darkness (0 lux). In short, our results clearly show that (a) tench is a species with a strictly nocturnal behavior, and (b) daily activity rhythms gradually entrain after shifting the LD cycle and persist under free-running conditions, pointing to their circadian nature. However, light strongly influences activity rhythms, since (c) the length of the active phase is directly controlled by the photophase, and (d) strictly nocturnal behavior persists even under very dim light conditions (0.3 lux). The above findings deepen our knowledge of tench behavior, which may help to optimize the aquacultural management of this species, for example, by adjusting feeding strategies to their nocturnal behavior.  相似文献   

16.
Abstract

Sugar Gliders (Petaurus breviceps) re‐entrain faster after 8‐h delay shifts of an LD 12:12 and an LD 8:16 (31–56:0.3 lux each) than after 8‐h advance shifts of these Zeitgeber cycles. In order to test whether this asymmetric re‐entrainment behavior is related to, or even caused by the phase response characteristics of the circadian system, the phase response of the activity rhythm to short and long light pulses was studied. Short light pulses (15 min of 31–56 lux against a background intensity of 0.3 lux) caused only relatively small delay shifts when applied around the onset, and more pronounced advance shifts when given at the end of the activity time (α). Onset and end of activity shifted by different amounts. Long light pulses produced by 8‐h advances and delays of one single lighttime of an LD 12:12 elicited pronounced phase delays when applied at the beginning of the activity time, but only minor phase advances when given at the posterior part of α. These results indicate that in Petaurus breviceps the phase response characteristics to long light pulses exerting parametric effects of light are responsible for the pronounced asymmetry effect in re‐entrainment. Differing phase responses of onset and end of activity point to a two‐oscillator structure of the circadian pacemaker system in this marsupial.  相似文献   

17.
The circadian activity rhythm of the common marmoset, Callithrix j. jacchus was investigated by long-term recording of the locomotor activity of 15 individuals (5 males, 10 females) from 1.5 to 8 years old, both under constant illumination and under LD 12:12. The mean period of the spontaneous circadian rhythm was 23.2 ± 0.3 h. Neither sex-specific differences nor a systematic influence of light intensity on the spontaneous period were observed, but the period was dependent on the duration of the trial and on the age of the individual. Due to the short spontaneous period, in LD 12:12 there was a distinct advance of the activity phase with respect to the light time and a masking of the true onset of activity by the inhibitory direct effect of low light intensity during the dark time. After an 8 h delay shift of the LD 12:12, re-entrainment of the circadian activity rhythm required an average of 6.8 ± 0.7 days; the average re-entrainment time after an 8 h phase advance of the LD cycle was 8.6 ± 1.3 day. This directional effect is ascribed to characteristics of the phase-response curve. No ultradian components were observed, either in the LD-entrained or the free-running circadian activity rhythm.  相似文献   

18.
The wrasse,Suezichthys gracilis, is a diurnal fish which buries itself in sand during the night-time. The present paper deals with the locomotor activity rhythms ofS. gracilis, examined by using an actograph with infra-red photo-electric switches in a dark room. The fish were kept in eight experimental tanks (each 30l in capacity), with three different bottom conditions: sand (grain size about 1 mm in diameter and 5 cm deep); 1 or 2 stones (about 10cm in diameter) without sand; and transparent acrylic pellets (2 × 2 × 3 mm in size, 5 cm deep). The light intensities were 550–700 lux just above the water surface, decreasing to 21.3% under the acrylic pellets at a water depth of 20cm. The water temperatures were kept at 22.0–25.0°C during the experiments for 7 to 14 days. In the aquarium with bottom sand, diel activity rhythms ofS. gracilis were mostly synchronized to LD (LD12:12; 06:00–18:00 light, 18:00–06:00 dark), free-running activity rhythms continued distinctly under LL (constant illumination), and locomotor activity was greatly suppressed, with disappearance of the activity rhythm, under DD (constant darkness). In the aquarium without sand, locomotor activity ofS. gracilis could be summarized as follows. The fish moved throughout almost the entire period under LD, though more frequent movements were observed in light conditions than in dark ones. Under LL they showed continuous locomotor activity during the experiment, with no obvious periodicity. Under DD the activity of the species was somewhat suppressed, but irregular movement or indistinct periodicity was observed. In the aquarium with transparent acrylic pellets, locomotor activity under LD and DD, respectively, bore a close resemblance to activity patterns under the same light conditions with sand, whilst activity under LL was identical to that under LL without sand. Accordingly, it seems that maintenance of normal activity rhythms in the wrasse was due not only to the darkness, but also to the presence of bottom sand. It therefore seems that the biological clock inS. gracilis is not related to locomotor activity, but to burying behavior.  相似文献   

19.
《Chronobiology international》2013,30(6):1001-1017
The present article analyzes locomotor activity rhythms in Tinca tinca. To that end, three different experiments were conducted on 24 animals (20 g body weight) kept in pairs in 60‐liter aquaria fitted with infrared sensors connected to a computer to continuously record fish movements. The first experiment was designed to study the endogenous circadian clock under free‐running conditions [ultradian 40:40 min LD pulses and constant dark (DD)] and after shifting the LD cycle. Our results demonstrate that tench has a strictly nocturnal activity pattern, an endogenous rhythm being evident in 45.8% of the fish analyzed. The second experiment was conducted to test the influence of different photoperiods (LD 6:18, 12:12, 18:6, and 22:2) on locomotor activity, the results showing that even under an extremely long photoperiod, tench activity is restricted to dark hours. The third experiment examined the effect of light intensity on locomotor activity rhythms. When fish were exposed to decreasing light intensities (from 300:0 lux to 30:0, 3:0, and 0.3:0 lux) while maintaining a constant photoperiod (LD 12:12), the highest percentage of locomotor activity was in all cases associated with the hours of complete darkness (0 lux). In short, our results clearly show that (a) tench is a species with a strictly nocturnal behavior, and (b) daily activity rhythms gradually entrain after shifting the LD cycle and persist under free‐running conditions, pointing to their circadian nature. However, light strongly influences activity rhythms, since (c) the length of the active phase is directly controlled by the photophase, and (d) strictly nocturnal behavior persists even under very dim light conditions (0.3 lux). The above findings deepen our knowledge of tench behavior, which may help to optimize the aquacultural management of this species, for example, by adjusting feeding strategies to their nocturnal behavior.  相似文献   

20.
The properties of the pacemaker controlling the adult locomotor activity rhythm of the high‐altitude Himalayan (haH) strain (Hemkund Sahib, 4121 m above sea level) of Drosophila helvetica are strikingly different from those of the low‐altitude Himalayan (laH) strain (Birahi, 1132 m above sea level) of the same species. The haH strain has a unimodal activity pattern with a delayed peak occurring about 4.5 h after lights‐on of the entraining light‐dark (LD) cycle, while the laH strain has a bimodal activity pattern with the morning and evening peaks. It is rather unusual for a wild type strain of any Drosophila species to have a unimodal activity pattern during entrainment as observed in the haH strain. The single activity peak of the haH strain is regarded as a consequence of delayed morning peak merging with the evening one. Three experiments were performed to test this hypothesis. The first experiment examined whether the single activity peak could be dissociated into two components by LD cycles in which photoperiods varied from 10 to 16 h per 24 h. The haH strain again exhibited a unimodal activity pattern with a delayed peak in 10, 12, and 14 h photoperiods but a bimodal activity pattern in 16 h photoperiod. The laH strain had bimodality in 10 and 12 h photoperiods, unimodality in a 14 h photoperiod, but complete arrhythmicity in a 16 h photoperiod.

In the second experiment, the haH flies were transferred from LD 16∶8 to LL at 5 lux to confirm whether the bimodality of this strain in LD 16∶8 cycles was not the result of masking by the long photoperiod of 16 h. Bimodality of the haH strain persisted in LL too; moreover, the morning component free‐ran with period (τ) <24 h, while the evening component free‐ran with τ>24 h. The third experiment examined the LL‐induced splitting of activity peak of the haH strain. Flies were transferred from LD 12∶12 cycles to LL at 0, 1, 5, and 15 lux. The haH strain was rhythmic in LL at 0 and 1 lux with a unimodal activity pattern. It was also rhythmic in LL at 5 lux, but the single activity peak was split into two discrete components; the morning component free‐ran with τ<24 h, while the evening component free‐ran with τ>24 h. This strain, however, was completely arrhythmic in LL at 15 lux. The laH strain was uniformly arrhythmic in LL at all levels of light intensity. These results suggest that the single but late activity component of the haH strain during entrainment appears to be the consequence of merging the delayed morning peak with the evening one as an adaptation to the environmental conditions at the altitude of origin of this strain, where these flies begin activity in the forenoon owing to non‐permissible low temperature in the morning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号