首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract We investigated the genetic structure of blacktip shark (Carcharhinus limbatus) continental nurseries in the northwestern Atlantic Ocean, Gulf of Mexico, and Caribbean Sea using mitochondrial DNA control region sequences and eight nuclear microsatellite loci scored in neonate and young-of-the-year sharks. Significant structure was detected with both markers among nine nurseries (mitochondrial PhiST = 0.350, P < 0.001; nuclear PhiST = 0.007, P < 0.001) and sharks from the northwestern Atlantic, eastern Gulf of Mexico, western Gulf of Mexico, northern Yucatan, and Belize possessed significantly different mitochondrial DNA haplotype frequencies. Microsatellite differentiation was limited to comparisons involving northern Yucatan and Belize sharks with nuclear genetic homogeneity throughout the eastern Gulf of Mexico, western Gulf of Mexico, and northwestern Atlantic. Differences in the magnitude of maternal vs. biparental genetic differentiation support female philopatry to northwestern Atlantic, Gulf of Mexico, and Caribbean Sea natal nursery regions with higher levels of male-mediated gene flow. Philopatry has produced multiple reproductive stocks of this commercially important shark species throughout the range of this study.  相似文献   

2.
Detailed analyses of planktonic foraminifera at Site 17964 from the southern South China Sea (SCS) disclose that warm-water species have a higher percentage during the Holocene, while temperate-water species have a higher content for the last glacial period. Therefore, the sea surface temperature (SST) is a main factor that affects the foraminiferal assemblage at this site. A remarkable faunal variation at Site 17964 is recognized for Pulleniatina obliquiloculata over the last glacial–interglacial periods: higher P. obliquiloculata content during the glacial period and abrupt drop at the beginning of Termination I (16.5–15 kyr B.P.). The characteristic P. obliquiloculata variation can be correlated with other sites in the southern SCS and thus can be adopted as a stratigraphic tool in the region. A detailed analysis of Orbulina universa shell morphometrics at Site 17964 shows the test size from 0.83 to 1.45 mm and the shell porosity up to 36.7%, much larger than those in the Indian and Atlantic Oceans, which indicates a warmer and less saline surface water in the equatorial–tropical western Pacific. The diameter and shell porosity of O. universa increased from the last glacial to the Holocene, corresponding to the increase of SST recorded by the Uk37 alkenone index. A higher correlation coefficient (89%) between the O. universa test size and SST implies that intraspecific O. universa test size be used as an index of the sea surface temperature in the South China Sea.  相似文献   

3.
Synopsis Distribution of leptocephali ofConger in the Western North Atlantic Ocean was studied using specimens from our collections, specimens from other collections, and various existing collection records. The presence of leptocephali ofConger oceanicus andConger triporiceps < 30 mm long over deep water in the southwestern Sargasso Sea in autumn and winter implies a protracted spawning period there. The subtropical convergence zone, meandering east-west across the Sargasso Sea, is probably the northern limit of spawning of both species. Spawning may also occur close to the Bahamas and Antilles.C. triporiceps may spawn also in the Caribbean Sea judging by the capture of small leptocephali in the western Caribbean and of the more southerly continental distribution of its juveniles. The claim of Johannes Schmidt in 1931 that the EuropeanC. conger spawns across the North Atlantic into the western Sargasso Sea is probably incorrect, because leptocephali ofConger are rare in the eastern Sargasso Sea and becauseC. triporiceps, with myomere numbers overlapping those ofC. conger, was recently described in the western North Atlantic. With increasing size, leptocephali ofC. oceanicus and a portion ofC. triporiceps spread westward and northward in the Florida Current and Gulf Stream, but larger leptocephali especially ofC. triporiceps are found also in the Caribbean and Gulf of Mexico. Spawning ofC. oceanicus in the Sargasso Sea indicates that adults cross the Florida Current-Gulf Stream, and successful leptocephali cross the current in the opposite direction to colonize juvenile habitat on the continental shelf, a migratory pattern similar to that of the American eelAnguilla rostrata (Anguillidae).  相似文献   

4.
Relationships were analyzed between sea surface temperature (SST) and annual growth characteristics (density, extension rate and calcification rate) of the Caribbean reef-building coral Montastraea annularis. Colonies were collected from 12 localities in the Gulf of Mexico and the Caribbean Sea. Two well-separated relationships were found, one for the Gulf of Mexico and the other for the Caribbean Sea. Calcification rate and skeletal density increased with increasing SST in both regions, while extension rate tended to decrease. Calcification rate increased ∼0.57 g cm−2 year−1 for each 1 °C increase in SST. Zero calcification was projected to occur at 23.7 °C in corals from the Gulf of Mexico and at 25.5 °C in corals from the Caribbean Sea. The 24 °C annual average SST isotherm marks the northern limit of distribution of M. annularis. Montastraea annularis populations of the Gulf of Mexico are isolated from those of the Caribbean Sea, and results indicate that corals from the Gulf of Mexico are adapted to growth at lower minimum and average annual SST. Corals from both the Gulf of Mexico and the Caribbean Sea, growing at lower SSTs and having lower calcification rates, extend their skeletons the same or more than those growing at higher SSTs. They achieve this by putting more of their calcification resources into extension and less into thickening, i.e., by sacrificing density.  相似文献   

5.
Lionfish (Pterois volitans) have rapidly invaded the tropical Atlantic and spread across the wider Caribbean in a relatively short period of time. Because of its high invasion capacity, we used it as a model to identify the connectivity among nine marine protected areas (MPAs) situated in four countries in the Gulf of Mexico and the Caribbean Sea. This study provides evidence of local genetic differentiation of P. volitans in the Gulf of Mexico and the Caribbean Sea. A total of 475 lionfish samples were characterized with 12 microsatellites, with 6–20 alleles per locus. Departures from Hardy–Weinberg equilibrium (HWE) were found in 10 of the 12 loci, all caused by heterozygous excess. Moderate genetic differentiation was observed between Chiriviche, Venezuela and Xcalak, México localities (FST = 0.012), and between the Los Roques and the Veracruz (FST = 0.074) sites. STRUCTURE analysis found that four genetic entities best fit our data. A unique genetic group in the Gulf of Mexico may imply that the lionfish invasion unfolded both in a counterclockwise manner in the Gulf of Mexico. In spite of the notable dispersion of P. volitans, our results show some genetic structure, as do other noninvasive Caribbean fish species, suggesting that the connectivity in some MPAs analyzed in the Caribbean is limited and caused by only a few source individuals with subsequent genetic drift leading to local genetic differentiation. This indicates that P. volitans dispersion could be caused by mesoscale phenomena, which produce stochastic connectivity pulses. Due to the isolation of some MPAs from others, these findings may hold a promise for local short‐term control of by means of intensive fishing, even in MPAs, and may have regional long‐term effects.  相似文献   

6.
We report for the first time a highly divergent lineage in the Caribbean Sea for the bull shark (Carcharhinus leucas) based on the analysis of 51 mitochondrial DNA genomes of individuals collected in the western North Atlantic. When comparing the mtDNA control region obtained from the mitogenomes to sequences reported previously for Brazil, the Caribbean lineage remained highly divergent. These results support the existence of a discrete population in Central America due to a phylogeographic break separating the Caribbean Sea from the western North Atlantic, Gulf of Mexico and South America.  相似文献   

7.
Late Neogene stable isotope stratigraphy and planktonic foraminiferal biostratigraphy have been examined in a high sedimentation rate core (E67-135, Shell Oil Co.) drilled at 725 m water depth in the De Soto Canyon, Gulf of Mexico. The 305 m core contains sections that are Late Miocene, Early Pliocene, Late Pliocene, and Quaternary in age, and is rich in well-preserved assemblages of planktonic foraminifera.A biostratigraphy has been established based on the ranges of 34 selected species of foraminifera. The core 3orrelates with sections from the Gulf of Mexico, the Caribbean Sea, and the subtropical North and South Atlantic Oceans using, as datums, the evolutionary appearances of Globorotalia miocenica Palmer and Globorotalia margaritae evoluta Cita, the extinction of Globorotalia miocenica and the first appearance of Globorotalia truncatulinoides (d'Orbigny).Oxygen and carbon isotope stratigraphy is based on analysis of the benthonic foraminifer, Uvigerina d'Orbigny. Isotopic trends are similar to those observed in the Pacific and Atlantic Oceans. From Early Pliocene to Late Pleistocene time, average δ18O values increase (2.42‰ to 3.36‰) and exhibit a wider range of values (0.71‰ in Early Pliocene compared to 1.65‰ in Late Pleistocene sediments), probably reflecting Late Neogene climatic deterioration. The ratio 13C12C decreases significantly by ?0.21‰ from the Late Miocene to the Early Pliocene. A decrease in δ13C is observed in other cores and is probably related to changing oceanic circulation patterns in Late Miocene time.  相似文献   

8.
The first Cretaceous serial planktic foraminifer (family Heterohelicidae Cushman, 1927) with simple-ridged test wall is reported from the uppermost Santonian-lower Campanian sediments of the Deep Sea Drilling Project Site 463 (Mid-Pacific Mountains, equatorial Central Pacific). Hendersonites pacificus n. sp. is characterized by the reduced ornamentation over the last pairs of chambers and strong peripheral costae lining the periphery with test wall flexure. This species evolved from H. carinata (Cushman, 1938) of the upper Santonian-Campanian, a frequently reported species from the Atlantic Ocean, Gulf of Mexico and Western Tethyan Realm.  相似文献   

9.
A sleeper shark, genus Somniosus, was observed in the Colombian Caribbean. A Remote Operated Vehicle (ROV) recorded a sleeper shark specimen during an inspection while drilling a hydrocarbon exploratory well at 1,820 m water depth. This is the first record of a sleeper shark for the southern Colombian Caribbean. The previous most southern records of Somniosid sharks in the tropical and subtropical western Atlantic came from the western and northern Gulf of Mexico, and from Cuba.  相似文献   

10.
Aim We analysed the distribution patterns of the eastern Pacific octocoral genus Pacifigorgia and deduced its ancestral distribution to determine why Pacifigorgia is absent from the Gulf of Mexico, the Caribbean of central America, and the Antilles. We also examined the current patterns of endemism for Pacifigorgia to look for congruence between hot spots of endemism in the genus and generally recognized areas of endemism for the eastern Pacific. Location The tropical eastern Pacific and western Atlantic, America. Methods We used track compatibility analysis (TCA) and parsimony analysis of endemicity (PAE) to derive ancestral distribution patterns and hot spots of endemism, respectively. Distributional data for Pacifigorgia were gathered from several museum collections and from fieldwork, particularly in the Pacific of Costa Rica and Panama. Results A single generalized track joined the three main continental eastern Pacific biogeographical provinces and the western Atlantic. This track can be included within a larger eastern Atlantic–eastern Pacific transoceanic track that may be the oldest transoceanic track occurring in the region. PAE results designate previously recognized eastern Pacific biogeographical provinces as Pacifigorgia hot spots of endemism. The number of endemic species, which for other taxonomic groups is similar among the eastern Pacific provinces, is higher in the Panamic province for Pacifigorgia. Main conclusions We propose that the absence of Pacifigorgia from the Gulf of Mexico, the Caribbean of central America, and the Antilles is the result of an ancient absence of the genus from these areas rather than the consequence of a major, recent, extinction episode. The Cortez province and the Mexican province appear together as a result of either non‐response to vicariance or dispersal across the Sinaloan Gap. We posit that the Central American Gap acts as a barrier that separates the Panamic province from the northern Cortez–Mexican province.  相似文献   

11.
The Greater Caribbean biogeographic region is the high-diversity heart of the Tropical West Atlantic, one of four global centers of tropical marine biodiversity. The traditional view of the Greater Caribbean is that it is limited to the Caribbean, West Indies, southwest Gulf of Mexico and tip of Florida, and that, due to its faunal homogeneity, lacks major provincial subdivisions. In this scenario the northern 2/3 of the Gulf of Mexico and southeastern USA represent a separate temperate, “Carolinian” biogeographic region. We completed a comprehensive re-assessment of the biogeography of the Greater Caribbean by comparing the distributions of 1,559 shorefish species within 45 sections of shelf waters of the Greater Caribbean and adjacent areas. This analysis shows that that the Greater Caribbean occupies a much larger area than usually thought, extending south to at least Guyana, and north to encompass the entire Carolinian area. Rather than being homogenous, the Greater Caribbean is divided into three major provinces, each with a distinctive, primarily tropical fauna: (1) a central, tropical province comprising the West Indies, Bermuda and Central America; (2) a southern, upwelling-affected province spanning the entire continental shelf of northern South America; and (iii) a northern, subtropical province that includes all of the Gulf of Mexico, Florida and southeastern USA. This three-province pattern holds for both reef- and soft bottom fishes, indicating a general response by demersal fishes to major variation in provincial shelf environments. Such environmental differences include latitudinal variation in sea temperature, availability of major habitats (coral reefs, soft bottom shorelines, and mangroves), and nutrient additions from upwelling areas and large rivers. The three-province arrangement of the Greater Caribbean broadly resembles and has a similar environmental basis to the provincial arrangement of its sister biogeographic region, the Tropical Eastern Pacific.  相似文献   

12.
Whistle characteristics were quantitatively compared between both geographically separated and neighboring populations of Atlantic spotted dolphins (Stenella frontalis), bottlenose dolphins (Tursiops truncatus), and pilot whales (Globicephala spp.) in U.S. waters to evaluate if intraspecific acoustic differences exist between groups. We compared nine whistle characteristics between continental shelf and offshore Atlantic spotted dolphins in the western North Atlantic and between northern Gulf of Mexico and western North Atlantic bottlenose dolphins and pilot whales using discriminant analysis. Offshore Atlantic spotted dolphin whistles were significantly different (Hotelling's T2, P= 0.0003) from continental shelf whistles in high frequency, bandwidth, duration, number of steps, and number of inflection points. Atlantic bottlenose dolphin whistles were significantly different (Hotelling's T2, P < 0.0001) from those in the Gulf of Mexico in duration, number of steps, and number of inflection points. There was no significant difference between pilot whale whistles in the two basins. The whistle differences indicate acoustic divergence between groups in different areas that may arise from geographic isolation or habitat separation between neighboring but genetically distinct populations of dolphins. This study supports the premise that acoustic differences can be a tool to evaluate the ecological separation between marine mammal groups in field studies.  相似文献   

13.
To resolve the population genetic structure and phylogeography of the West Indian manatee ( Trichechus manatus ), mitochondrial (mt) DNA control region sequences were compared among eight locations across the western Atlantic region. Fifteen haplotypes were identified among 86 individuals from Florida, Puerto Rico, the Dominican Republic, Mexico, Colombia, Venezuela, Guyana and Brazil. Despite the manatee's ability to move thousands of kilometres along continental margins, strong population separations between most locations were demonstrated with significant haplotype frequency shifts. These findings are consistent with tagging studies which indicate that stretches of open water and unsuitable coastal habitats constitute substantial barriers to gene flow and colonization. Low levels of genetic diversity within Florida and Brazilian samples might be explained by recent colonization into high latitudes or bottleneck effects. Three distinctive mtDNA lineages were observed in an intraspecific phylogeny of T. manatus , corresponding approximately to: (i) Florida and the West Indies; (ii) the Gulf of Mexico to the Caribbean rivers of South America; and (iii) the northeast Atlantic coast of South America. These lineages, which are not concordant with previous subspecies designations, are separated by sequence divergence estimates of d = 0.04–0.07, approximately the same level of divergence observed between T. manatus and the Amazonian manatee ( T. inunguis , n = 16). Three individuals from Guyana, identified as T. manatus , had mtDNA haplotypes which are affiliated with the endemic Amazon form T. inunguis . The three primary T. manatus lineages and the T. inunguis lineage may represent relatively deep phylogeographic partitions which have been bridged recently due to changes in habitat availability (after the Wisconsin glacial period, 10 000 BP ), natural colonization, and human-mediated transplantation.  相似文献   

14.
The well-documented Floridian Gulf/Atlantic marine genetic disjunction provides an influential example of presumed vicariant cladogenesis along a continental coastline for major elements of a diverse nearshore fauna. However, it is unclear if this disjunction represents a local anomaly for regionally distributed morphospecies, or if it is merely one of many such cryptic phylogenetic splits that underlay their assumed genetic cohesiveness. We aimed to place the previously characterized scorched mussel Gulf/Atlantic genetic disjunction into a regional phylogenetic perspective by incorporating genotypes of nominal conspecifics sampled throughout the Caribbean Basin as well as those of eastern Pacific potential geminate species. Our results show it to be one of multiple latent regional genetic disjunctions, involving five cryptic Caribbean species, that appear to be the product of a long history of regional cladogenesis. Disjunctions involving three stem lineages clearly predate formation of the Isthmus of Panama and of the Caribbean Sea, although four of the five cryptic species have within-basin sister relationships. Surprisingly, the Atlantic clade was also found to be widespread in the southern Caribbean, and ancestral demography calculations through time for Atlantic coast-specific genotypes are consistent with a northward range extension after the last glacial maximum. Our new data seriously undermine the hypothesis of a Floridian vicariant genesis and imply that the scorched mussel Gulf/Atlantic disjunction represents a case of geographic and temporal pseudocongruence. All five Caribbean Basin cryptic species exhibited an intriguing pattern of predominantly allopatric distribution characterized by distinct geographic areas of ecological dominance, often adjoining those of sister taxa. This pattern of distribution is consistent with allopatric speciation origins, coupled with restricted postspeciation range extensions. Several lines of indirect evidence favor the hypothesis that the predominantly allopatric distributions are maintained over evolutionary time scales, primarily by postrecruitment ecological filters rather than by oceanographic barriers to larval-mediated gene flow.  相似文献   

15.
The greater amberjack (Seriola dumerili) is a commercially and recreationally important marine fish species in the southeastern United States, where it has been historically managed as two non-mixing stocks (Gulf of Mexico and Atlantic). Mark-recapture studies and analysis of mitochondrial DNA have suggested the two stocks are demographically independent; however, little is currently known about when and where spawning occurs in Gulf of Mexico amberjack, and whether stock mixture occurs on breeding grounds. The primary objective of this study was to quantify stock mixture among breeding populations of amberjack collected from the Atlantic and Gulf of Mexico. Genetic data based on 11 loci identified very low, though statistically significant differentiation among Gulf of Mexico samples (GST = 0.007, \(G_{{{\text{ST}}}}^{\prime }\) = 0.009; all P?=?0.001) and between reproductive adults collected from two spawning areas (GST = 0.007, \(G_{{{\text{ST}}}}^{\prime }\) = 0.014; all P?=?0.001). Naïve Bayesian mixture analysis supported a single genetic cluster [p(S|data)?=?0.734] whereas trained clustering (using Atlantic and Gulf spawning fish) gave the highest support to a two-cluster model (p(S|data)?=?1.0). Our results support the argument that the genetic structuring of greater amberjack is more complex than the previously assumed two, non-mixing stock model. Although our data provide evidence of limited population structure, we argue in favour of non-panmixia among reproductive fish collected from the Gulf of Mexico and Florida Keys.  相似文献   

16.
17.
Invasive lionfish (Pterois volitans/miles complex) now permeate the entire tropical western Atlantic, Caribbean Sea, and Gulf of Mexico, but lionfish abundance has been measured only in select locations in the field. Despite its rapid range expansion, a comprehensive meta-population analysis of lionfish ‘sources’ and ‘sinks’ and consequentially the invader’s potential abundance and impacts on economically important, sympatric reef fishes have not been assessed. These data are urgently needed to spatially direct control efforts and to plan for and perhaps mitigate lionfish-caused damage. Here, we use a biophysical computer model to: (1) forecast larval lionfish sources and sinks that are also delineated as low to high lionfish ‘density zones’ throughout their invaded range, and (2) assess the potential vulnerability of five grouper and snapper species—Epinephelus morio, Mycteroperca microlepis, Epinephelus flavolimbatus, Lutjanus campechanus, and Rhomboplites aurorubens—to lionfish within these density zones in the Gulf of Mexico. Our results suggest that the west Florida shelf and nearshore waters of Texas, USA, and Guyana, South America, function both as lionfish sources and sinks and should be a high priority for targeted lionfish control. Furthermore, of the five groupers and snappers studied, the high fishery value E. morio (red grouper) is the Gulf of Mexico species most at risk from lionfish. Lacking a comprehensive lionfish control policy, these risk exposure data inform managers where removals should be focused and demonstrate the risk to five sympatric native groupers and snappers in the Gulf of Mexico that may be susceptible to dense lionfish aggregations, should control efforts fail.  相似文献   

18.
Deglaciation as seen in the δ18O record of deep-sea sediments starts about 14,000 yrs. ago. Measured bulk 14C ages are too old by 1000–2000 yrs. in the central Atlantic compared with ages derived from climate correlation. This conclusion rests on the observation that deglaciation occurs in two major steps, separated by a pause, and on the hypothesis that this pause is correlative to the Younger Dryas cold period. The Gulf of Mexico record is readily correlated with the deep-sea record if it is assumed that the appearance of Globorotalia menardii is retarded with respect to the tropical Atlantic, by about 2000 yrs. The major meltwater spike then dates near 9000 yrs. ago, rather than at 13,500 yrs. B.P. (as assumed by Kennett and Shackleton, 1975) or 11,500 yrs. B.P. (as in Emiliani et al., 1975).  相似文献   

19.
The present study was initiated to ascertain the significance of coccolithophores as a proxy for paleoceanographic and paleoproductivity studies in the equatorial Atlantic. Data from a range of different samples, from the plankton, surface sediments as well as sediment cores are shown and compared with each other.In general, the living coccolithophores in the surface and subsurface waters show considerable variation in cell numbers and distribution patterns. Cell densities reached a maximum of up to 300×103 coccospheres/l in the upwelling area of the equatorial Atlantic. Here, Emiliania huxleyi is the dominant species with relatively high cell numbers, whereas Umbellosphaera irregularis and Umbellosphaera tenuis are characteristic for oligotrophic surface waters. Although they are observed in high relative abundances, these species only occur in low absolute numbers. The lower photic zone is dominated by high abundances and considerable cell numbers of Florisphaera profunda.The geographical distribution pattern of coccoliths in surface sediments reflects the conditions of the overlying surface water masses. However, abundances of the oligotrophic species Umbellosphaera irregularis and Umbellosphaera tenuis are strongly diminished, causing an increase in relative abundance of the lower photic zone taxa Florisphaera profunda and Gladiolithus flabellatus.During the past 140,000 years the surface water circulation of the equatorial Atlantic has changed drastically, as can be seen from changes in the coccolithophore species composition, absolute coccolith numbers, as well as coccolith accumulation rates. Significant increases in coccolith numbers and accumulation rates is observed in the southern equatorial Atlantic during the last glacial interval (oxygen isotope stages 2–4), which we attribute to enhanced upwelling intensities and advection of cool nutrient rich waters at this site. In the western equatorial Atlantic we observe an opposite trend with decreasing numbers of coccoliths during glacial periods, which probably is caused by a deepening of the thermocline.  相似文献   

20.
Recent molecular studies have shown that highly mobile species with continuous distributions can exhibit fine‐scale population structure. In this context, we assessed genetic structure within a marine species with high dispersal potential, the Atlantic spotted dolphin (Stenella frontalis). Using 19 microsatellite loci and mitochondrial control region sequences, population structure was investigated in the western North Atlantic, the Gulf of Mexico and the Azores Islands. Analyses of the microsatellite data identified four distinct genetic clusters, which were supported by the control region sequences. The highest level of divergence was seen between two clusters corresponding to previously described morphotypes that inhabit oceanic and shelf waters. The combined morphological and genetic evidence suggests these two lineages are on distinct evolutionary trajectories and could be considered distinct subspecies despite their parapatry. Further analysis of the continental shelf cluster resulted in three groups: animals inhabiting shelf waters in the western North Atlantic, the eastern Gulf of Mexico and the western Gulf of Mexico. Analyses of environmental data indicate the four genetic clusters inhabit distinct habitats in terms of depth and sea surface temperature. Contemporary dispersal rate estimates suggest all of these populations should be considered as distinct management units. Conversely, no significant genetic differentiation was observed between S. frontalis from offshore waters of the western North Atlantic and the Azores, which are separated by approximately 4500 km. Overall, the hierarchical structure observed within the Atlantic spotted dolphin shows that the biogeography of the species is complex because it is not shaped solely by geographic distance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号