首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The single-stranded viral DNA of an M13 phage recombinant containing the early promoter region of SV40 was hybridized with linear, double-stranded replicative form DNA of a related M13 phage containing a short deletion in the cloned SV40 sequence. The heteroduplexes formed between these DNA molecules contained a short, defined single-stranded region in an otherwise duplex molecule. These heteroduplexes were treated with sodium bisulphite to deaminate exposed unpaired cytosines to uracil residues. The single-stranded region was filled in with DNA polymerase I, which incorporates adenine opposite the mutated uracils, and the DNA then transfected into the M13 host JM103 . Viral DNA from the resultant plaques was used for the rapid dideoxy-DNA sequencing procedure; all of the plaques studied contained point mutations within the desired area. This method allows the very rapid and efficient generation of region-directed point mutants which can be quickly sequenced.  相似文献   

2.
Heteroduplex DNA molecules of two bacteriophage mutants (lambda b2 and lambda i434ct68) were obtained by the method of molecular hybridization. These heteroduplexes possessed two types of loops formed as a result of: a) deletion in one of the DNA strands; and b) substitution of a DNA fragment for nonhomological one. The digestion of heteroduplexes with single-stranded specific nuclease SI from Aspergillus oryzae produced two fragments at 37 degrees C and three ones at 55 degrees C. The separation of fragments and determination of their molecular weight were carried out by means of electrophoresis in agarose. The molecular weights both measured and preliminarily calculated proved to be close. One of the fragments was identificated by its biological activity in CaCl2-dependent infectious system with helperphage.  相似文献   

3.
T7 Exonuclease (T7 Exo) DNA digestion reactions were studied using direct single-molecule observations in microflow channels. DNA digestion reactions were directly observed by staining template DNA double-stranded regions with SYTOX Orange and staining single-stranded (digested) regions with a fluorescently labeled ssDNA-recognizing peptide (ssBP-488). Sequentially acquired photographs demonstrated that a double-stranded region monotonously shortened as a single-stranded region monotonously increased from the free end during a DNA digestion reaction. Furthermore, DNA digestion reactions were directly observed both under pulse-chase conditions and under continuous buffer flow conditions with T7 Exo. Under pulse-chase conditions, the double-stranded regions of λDNA monotonously shortened by a DNA digestion reaction with a single T7 Exo molecule, with an estimated average DNA digestion rate of 5.7 bases/s and a processivity of 6692 bases. Under continuous buffer flow conditions with T7 Exo, some pauses were observed during a DNA digestion reaction and double-stranded regions shortened linearly except during these pauses. The average DNA digestion rate was estimated to be 5.3 bases/s with a processivity of 5072 bases. Thus, the use of our direct single-molecule observations using a fluorescently labeled ssDNA-recognizing peptide (ssBP-488) was an effective analytic method for investigating DNA metabolic processes.  相似文献   

4.
Lowell JL  Klein DA 《BioTechniques》2000,28(4):676-8, 680, 681
Microbial community analyses using molecular techniques, such as PCR followed by genomic library construction, have been helpful in better understanding microbial communities. This is especially critical in ecological systems where most of the microbes present cannot be cultured using traditional techniques. Unfortunately, there are problems associated with the use of such molecular techniques for the analysis of microbial community structure, primarily from the frequent formation of PCR artifacts. Multitemplate PCR is often subject to errors such as heteroduplex formation that is generated during the amplification of a particular gene from a mixed community of DNA. Based on work in this laboratory, heteroduplexes may be resolved before carrying out genomic library construction by including a digestion step with T7 endonuclease I. Here, the 18S rDNA gene of fungi was amplified from soil community DNA and digested with T7 endonuclease I to resolve any heteroduplexes present in the PCR product before cloning. These samples were compared with replicates that did not receive the T7 endonuclease I treatment. Digestion of the amplified community 18S rDNA with 10 U T7 endonuclease I/microgram DNA prior to cloning eliminated heteroduplexes, leaving only the desired clones. Without the T7 endonuclease I treatment, heteroduplexes were produced in approximately 10% of the recombinants screened. The addition of this step may eliminate heteroduplexes from PCR products and ensure that subsequent genomic library construction is not compromised.  相似文献   

5.
The methyl-directed DNA repair efficiency of a series of M13mp9 frameshift heteroduplexes 1, 2, or 3 unpaired bases was determined by using an in vitro DNA mismatch repair assay. Repair of hemimethylated frameshift heteroduplexes in vitro was directed to the unmethylated strand; was dependent on MutH, MutL, and MutS; and was equally efficient on base insertions and deletions. However, fully methylated frameshift heteroduplexes were resistant to repair, while totally unmethylated substrates were repaired with no strand bias. Hemimethylated 1-, 2-, or 3-base insertion and deletion heteroduplexes were repaired by the methyl-directed mismatch repair pathway as efficiently as the G.T mismatch. These results are consistent with earlier in vivo studies and demonstrate the involvement of methyl-directed DNA repair in the efficient prevention of frameshift mutations.  相似文献   

6.
The effect of several enzymes of the DNA metabolism of Escherichia coli on the biological activity of native and single-stranded T7 DNA was studied by transfection of lysozyme-EDTA spheroplasts prepared from various E. coli mutants. It is shown that the presence of the recBC DNase in the recipient cells decreases the infectivity of native and denatured DNA by about 100- and 10-fold, respectively. Lack of exonuclease I did not stimulate transfection by single-stranded DNA. Separated light (l) and heavy (r) strands of T7 DNA are fully infective, with a linear dependence on DNA concentrations, whereas heat-denatured DNA shows a two-hit kinetics. Single-stranded DNA was observed to depend on a functional DNA polymerase III for infectivity in polAB cells, whereas transfection with native T7 DNA was independent of the host DNA polymerases. The results are discussed with respect to the mode of T7 DNA replication.  相似文献   

7.
Bacteriophage T7 gene 2.5 protein has been shown to interact with T7 DNA polymerase (the complex of T7 gene 5 protein and Escherichia coli thioredoxin) by affinity chromatography and fluorescence emission anisotropy. T7 DNA polymerase binds specifically to a resin coupled to gene 2.5 protein and elutes from the resin when the ionic strength of the buffer is raised to 250 mM NaCl. In contrast, T7 gene 5 protein alone binds more weakly to gene 2.5 protein, eluting when the ionic strength of the buffer is 50 mM NaCl. Thioredoxin does not bind to gene 2.5 protein. Steady-state fluorescence emission anisotropy gives a dissociation constant of 1.1 +/- 0.2 microM for the complex of gene 2.5 protein and T7 DNA polymerase, with a ratio of gene 2.5 protein to T7 DNA polymerase in the complex of 1:1. Nanosecond emission anisotropic analysis suggests that the complex contains one monomer each of gene 2.5 protein, gene 5 protein, and thioredoxin. The ability of T7 gene 2.5 protein to stimulate the activity and processivity of T7 DNA polymerase is compared with the ability of three other single-stranded DNA-binding proteins: E. coli single-stranded DNA-binding protein, T4 gene 32 protein, and E. coli recA protein. All except E. coli recA protein stimulate the activity and processivity of T7 DNA polymerase; E. coli recA protein inhibits these activities.  相似文献   

8.
Three proteins catalyze RNA-primed DNA synthesis on the lagging strand side of the replication fork of bacteriophage T7. Oligoribonucleotides are synthesized by T7 gene 4 protein, which also provides helicase activity. DNA synthesis is catalyzed by gene 5 protein of the phage, and processivity of DNA synthesis is conferred by Escherichia coli thioredoxin, a protein that is tightly associated with gene 5 protein. T7 DNA polymerase and gene 4 protein associate to form a complex that can be isolated by filtration through a molecular sieve. The complex is stable in 50 mM NaCl but is dissociated by 100 mM NaCl, a salt concentration that does not inhibit RNA-primed DNA synthesis. T7 DNA polymerase forms a stable complex with single-stranded M13 DNA at 50 mM NaCl as measured by gel filtration, and this complex requires 200 mM NaCl for dissociation, a salt concentration that inhibits RNA-primed DNA synthesis. Gene 4 protein alone does not bind to single-stranded DNA. In the presence of MgCl2 and dTTP or beta, gamma-methylene dTTP, a gene 4 protein-M13 DNA complex that is stable at 200 mM NaCl is formed. The affinity of DNA polymerase for both gene 4 protein and single-stranded DNA leads to the formation of a gene 4 protein-DNA polymerase-M13 DNA complex even in the absence of nucleoside triphosphates. However, the binding of each protein to DNA plays an important role in mediating the interaction of the proteins with each other. High concentrations of single-stranded DNA inhibit RNA-primed DNA synthesis by diluting the amount of proteins bound to each template and reducing the frequency of protein-protein interactions. Preincubation of gene 4 protein, DNA polymerase, and M13 DNA in the presence of dTTP forms protein-DNA complexes that most efficiently catalyze RNA-primed DNA synthesis in the presence of excess single-stranded competitor DNA.  相似文献   

9.
The gene 2.5 protein (gp2.5) encoded by bacteriophage T7 binds preferentially to single-stranded DNA. This property is essential for its role in DNA replication and recombination in the phage-infected cell. gp2.5 lowers the phage lambda DNA melting force as measured by single molecule force spectroscopy. T7 gp2.5-Delta26C, lacking 26 acidic C-terminal residues, also reduces the melting force but at considerably lower concentrations. The equilibrium binding constants of these proteins to single-stranded DNA (ssDNA) as a function of salt concentration have been determined, and we found for example that gp2.5 binds with an affinity of (3.5 +/- 0.6) x 10(5) m(-1) in a 50 mm Na(+) solution, whereas the truncated protein binds to ssDNA with a much higher affinity of (7.8 +/- 0.9) x 10(7) m(-1) under the same solution conditions. T7 gp2.5-Delta26C binding to single-stranded DNA also exhibits a stronger salt dependence than the full-length protein. The data are consistent with a model in which a dimeric gp2.5 must dissociate prior to binding to ssDNA, a dissociation that consists of a weak non-electrostatic and a strong electrostatic component.  相似文献   

10.
Oliveira MT  Kaguni LS 《PloS one》2010,5(10):e15379
Biochemical studies of the mitochondrial DNA (mtDNA) replisome demonstrate that the mtDNA polymerase and the mtDNA helicase are stimulated by the mitochondrial single-stranded DNA-binding protein (mtSSB). Unlike Escherichia coli SSB, bacteriophage T7 gp2.5 and bacteriophage T4 gp32, mtSSBs lack a long, negatively charged C-terminal tail. Furthermore, additional residues at the N-terminus (notwithstanding the mitochondrial presequence) are present in the sequence of species across the animal kingdom. We sought to analyze the functional importance of the N- and C-terminal regions of the human mtSSB in the context of mtDNA replication. We produced the mature wild-type human mtSSB and three terminal deletion variants, and examined their physical and biochemical properties. We demonstrate that the recombinant proteins adopt a tetrameric form, and bind single-stranded DNA with similar affinities. They also stimulate similarly the DNA unwinding activity of the human mtDNA helicase (up to 8-fold). Notably, we find that unlike the high level of stimulation that we observed previously in the Drosophila system, stimulation of DNA synthesis catalyzed by human mtDNA polymerase is only moderate, and occurs over a narrow range of salt concentrations. Interestingly, each of the deletion variants of human mtSSB stimulates DNA synthesis at a higher level than the wild-type protein, indicating that the termini modulate negatively functional interactions with the mitochondrial replicase. We discuss our findings in the context of species-specific components of the mtDNA replisome, and in comparison with various prokaryotic DNA replication machineries.  相似文献   

11.
Evidence suggests that the genotoxic mechanism of estrogens (estrone/estradiol) in breast cancer involves their oxidation to 3,4-quinones and reaction with DNA to form depurinating N3Ade and N7Gua adducts. We examined whether estrogen genotoxicity is mutagenic in the mammary gland of the female ACI rat, a model for estrogen-dependent breast cancer. Mutagenesis was studied by PCR amplification of the H-ras1 gene (exons 1–2), cloning in pUC18, transforming Escherichia coli, and sequencing the inserts in plasmids from individual colonies. Mammary glands of both estrogen-responsive (ACI and DA) and resistant (Sprague–Dawley) rats contained pre-existing mutations at frequencies of (39.8–58.8) × 10−5, the majority (62.5–100%) of which were A·T to G·C transitions. Estradiol-3,4-quinone (200 nmol) treatment of ACI rats caused rapid (6 h to 1 day) mutagenesis (frequency (83.3–156.1) × 10−5; A·T to G·C 70–73.3%). The estrogen-induced A·T to G·C mutations were detected as G·T heteroduplexes, as would be expected if N3Ade depurinations caused Gua misincorporations by erroneous repair. These heteroduplexes were identified by the T·G-DNA glycosylase (TDG) assay. TDG converts G·T heteroduplexes to G.abasic sites, rendering DNA templates refractory to PCR amplification. Consequently, A·T to G·C mutations present as G·T heteroduplexes in the DNA are eliminated from the spectra. TDG treatment of mammary DNA from estradiol-3,4-quinone-treated ACI rats brought A·T to G·C mutations down to pre-existing frequencies. Our results demonstrate that treatment with estradiol-3,4-quinone, an important metabolite of estrogens, produced A·T to G·C mutations in the DNA of the mammary gland of ACI rats.  相似文献   

12.
Homogeneous gene 5 protein of bacteriophage T7, a subunit of T7 DNA polymerase, catalyzes the stepwise hydrolysis of single-stranded DNA in a 3' leads to 5' direction to yield nucleoside 5'-monophosphates. The gene 5 protein itself does not hydrolyze duplex DNA. However, in the presence of Escherichia coli thioredoxin, the host-specified subunit of T7 DNA polymerase, duplex DNA is hydrolyzed in a 3' leads to 5' direction to yield nucleoside 5'-monophosphates. The apparent Km for thioredoxin in the reaction is 4.8 x 10(-8) M, a value similar to that for the apparent Km of thioredoxin in the complementation assay with gene 5 protein to restore T7 DNA polymerase activity. Both exonuclease activities require Mg2+ and a sulfhydryl reagent for optimal activity, and both activities are sensitive to salt concentration. Deoxyribonucleoside 5'-triphosphates inhibit hydrolysis by both exonuclease activities; hydrolysis of single-stranded DNA by the gene 5 protein is inhibited even in the absence of thioredoxin where there is less than 2% active T7 DNA polymerase. E. coli DNA binding protein (helix destabilizing protein) stimulates the hydrolysis of duplex DNA up to 9-fold under conditions where the hydrolysis of the single-stranded DNA is inhibited 4-fold.  相似文献   

13.
Bacteriophage T7 gene 2.5 protein (gp2.5) is a single-stranded DNA (ssDNA)-binding protein that has essential roles in DNA replication, recombination and repair. However, it differs from other ssDNA-binding proteins by its weaker binding to ssDNA and lack of cooperative ssDNA binding. By studying the rate-dependent DNA melting force in the presence of gp2.5 and its deletion mutant lacking 26 C-terminal residues, we probe the kinetics and thermodynamics of gp2.5 binding to ssDNA and double-stranded DNA (dsDNA). These force measurements allow us to determine the binding rate of both proteins to ssDNA, as well as their equilibrium association constants to dsDNA. The salt dependence of dsDNA binding parallels that of ssDNA binding. We attribute the four orders of magnitude salt-independent differences between ssDNA and dsDNA binding to nonelectrostatic interactions involved only in ssDNA binding, in contrast to T4 gene 32 protein, which achieves preferential ssDNA binding primarily through cooperative interactions. The results support a model in which dimerization interactions must be broken for DNA binding, and gp2.5 monomers search dsDNA by 1D diffusion to bind ssDNA. We also quantitatively compare the salt-dependent ssDNA- and dsDNA-binding properties of the T4 and T7 ssDNA-binding proteins for the first time.  相似文献   

14.
A Wong  C H Huang  S T Crooke 《Biochemistry》1984,23(13):2939-2945
We have demonstrated that 4'-(9-acridinyl-amino)methanesulfon-m-anisidide (mAMSA), in the presence of Cu(II) ion, causes the breakage of plasmid pDPT275 and pBR322 superhelical form I DNA. In neutral pH, the degradative product was nicked, relaxed form II DNA, resulting from single-stranded DNA breakage. The extent of DNA breakage was both mAMSA concentration and Cu(II) concentration dependent. DNA breakage increased with increasing time of drug treatment. The mAMSA-Cu(II)-induced DNA breakage varied with pH values and also with the nature of the buffer systems. In both Tris-HCl and borate buffers the extent of DNA breakage increased with increasing pH. In Tris-HCl buffer (pH 7-9), only single-strand breaks were obtained, whereas in borate buffer (pH 9-10.5), linear form III DNA was obtained. At equivalent pH, the optimum buffer was borate. No breakage was observed at pH values below 6. The interaction of Cu(II) with mAMSA was examined by using absorption and fluorescence spectroscopies. Interaction of Cu(II) with mAMSA was characterized by a decrease in the absorption at 435 and 420 nm with a simultaneous increase at 330 nm. A highly fluorescent product was obtained upon reacting mAMSA with Cu(II), with an emission spectrum (excitation at 400 nm) showing a doublet at 430 and 450 nm and a shoulder around 480 nm. The spectral changes are also dependent similarly on the pH and the nature of buffer. Other divalent metal ions such as Co(II), Cd(II), Ni(II), and Zn(II) do not induce DNA breakage or spectral changes. The oAMSA isomer, which has no antitumor activity, is less effective in inducing DNA breakage than the mAMSA.  相似文献   

15.
We developed an effective protocol for generating high-purity heteroduplexes via annealing single-stranded DNAs (ssDNAs) derived from plasmid DNA by asymmetric polymerase chain reaction (A-PCR). With the addition of dimethyl sulfoxide, a one-step A-PCR procedure can generate ssDNAs stably at a range of reaction temperatures. Several annealing buffers can anneal two ssDNAs into heteroduplexes effectively. We further developed a simple strategy to create d(GATC) hemimethylated heteroduplexes by annealing fully methylated homoduplexes in the presence of excessive unmethylated ssDNAs. The constructed heteroduplexes have been well tested as substrates for mismatch repair in Escherichia coli and, thus, can be used in various biotechnology applications.  相似文献   

16.
T T Pham  J E Coleman 《Biochemistry》1985,24(20):5672-5677
The structural gene for the single-stranded endonuclease coded for by gene 3 of bacteriophage T7 has been cloned in pGW7, a derivative of the plasmid pBR322, which contains the lambda PL promoter and the gene for the temperature-sensitive lambda repressor, cI857. The complete gene 3 DNA sequence has been placed downstream of the PL promoter, and the endonuclease is overproduced by temperature induction at mid-log phase of Escherichia coli carrying the recombinant plasmid pTP2. Despite the fact that cell growth rapidly declines due to toxic effects of the excess endonuclease, significant amounts of the enzyme can be isolated in nearly homogeneous form from the induced cells. An assay of nuclease activity has been devised using gel electrophoresis of the product DNA fragments from DNA substrates. These assays show the enzyme to have an absolute requirement for Mg(II) (10 mM), a broad pH optimum near pH 7, but significant activity from pH 3 to pH 9, and a 10-100-fold preference for single-stranded DNA (ssDNA). The enzyme is readily inactivated by ethylenediaminetetraacetic acid or high salt. The differential activity in favor of ssDNA can be exploited to map small single-stranded regions in double-stranded DNAs as shown by cleavage of the melted region of an open complex of T7 RNA polymerase and its promoter.  相似文献   

17.
There are at least four forms of DNA-dependent ATPase in mouse FM3A cells [Tawaragi, Y., Enomoto, T., Watanabe, Y., Hanaoka, F., & Yamada, M. (1984) Biochemistry 23, 529-533]. One of these, ATPase B, has been purified and characterized in detail. During the purification of the enzyme, we encountered the difficulties that the enzyme could not be recovered well from the single-stranded DNA-cellulose column and that the enzyme activity was distributed very broadly. The problems were resolved by the addition of ATP in the elution buffer. The ATPase has a sedimentation coefficient of 5.5 S in both high salt and low salt. The enzyme hydrolyzes rNTPs and dATP, but ATP and dATP are preferred substrates. Adenosine 5'-O-(3-thiotriphosphate) (ATP-gamma-S), 5'-adenylyl methylenediphosphate (AMP-PCP), and 5'-adenylyl imidodiphosphate (AMP-PNP) inhibit the enzyme activity. The enzyme is insensitive to ouabain, oligomycin, novobiocin, and ethidium bromide. A divalent cation (Mg2+ congruent to Mn2+ greater than Ca2+) as well as a nucleic acid cofactor is required for activity. Poly(dT), single-stranded circular DNA, and heat-denatured DNA were very effective. Native DNA was little effective with an efficiency of 29% of that obtained with heat-denatured DNA. In addition, the enzyme showed almost no activity with poly(dA).poly(dT) although it showed very high activity with the noncomplementary combination of poly(dT) and poly(dC), suggesting that ATPase B requires single-stranded DNA for activity. ATP altered the affinity of ATPase B for single-stranded DNA. The interaction of the enzyme with DNA was studied by Sephadex G-200 gel filtration assay.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Gene 2.5 of bacteriophage T7 is an essential gene that encodes a single-stranded DNA-binding protein. T7 phage with gene 2.5 deleted can grow only on Escherichia coli cells that express gene 2.5 from a plasmid. This complementation assay was used to screen for lethal mutations in gene 2.5. By screening a library of randomly mutated plasmids encoding gene 2.5, we identified 20 different single amino acid alterations in gene 2.5 protein that are lethal in vivo. The location of these essential residues within the three-dimensional structure of gene 2.5 protein assists in the identification of motifs in the protein. In this study we show that a subset of these alterations defines the dimer interface of gene 2.5 protein predicted by the crystal structure. Recombinantly expressed and purified gene 2.5 protein-P22L, gene 2.5 protein-F31S, and gene 2.5 protein-G36S do not form dimers at salt concentrations where the wild-type gene 2.5 protein exists as a dimer. The basis of the lethality of these mutations in vivo is not known because altered proteins retain the ability to bind single-stranded DNA, anneal complementary strands of DNA, and interact with T7 DNA polymerase.  相似文献   

19.
Site-specific modification of single-stranded DNA by oligonucleotide derivatives of p-azido-O-(4-aminobutyl)tetrafluorobenzaldoxime sensitized by an oligonucleotide derivative of pyrenylethylamine was studied. Upon irradiation with the long-wave UV light (365-390 nm) of a DNA target-oligonucleotide reagent complementary complex, a considerable increase in the rate of sensitized photomodification at the G11 residue of the target relative to the direct photomodification was observed owing to the singlet-single energy transfer from the sensitizer onto the photoreagent. Upon simultaneous irradiation of the complex with UV and visible light in the region of the triplet-triplet absorption of pyrene (360-580 nm), an additional increase in the modification rate and a change in its site-direction (from the G11 to T13 residue) occurred through the two-photon triplet-triplet sensitization. The total extent of the structure photomodification amounted to 80%.  相似文献   

20.
Mismatch cleavage by single-strand specific nucleases   总被引:25,自引:4,他引:21  
We have investigated the ability of single-strand specific (sss) nucleases from different sources to cleave single base pair mismatches in heteroduplex DNA templates used for mutation and single-nucleotide polymorphism analysis. The TILLING (Targeting Induced Local Lesions IN Genomes) mismatch cleavage protocol was used with the LI-COR gel detection system to assay cleavage of amplified heteroduplexes derived from a variety of induced mutations and naturally occurring polymorphisms. We found that purified nucleases derived from celery (CEL I), mung bean sprouts and Aspergillus (S1) were able to specifically cleave nearly all single base pair mismatches tested. Optimal nicking of heteroduplexes for mismatch detection was achieved using higher pH, temperature and divalent cation conditions than are routinely used for digestion of single-stranded DNA. Surprisingly, crude plant extracts performed as well as the highly purified preparations for this application. These observations suggest that diverse members of the S1 family of sss nucleases act similarly in cleaving non-specifically at bulges in heteroduplexes, and single-base mismatches are the least accessible because they present the smallest single-stranded region for enzyme binding. We conclude that a variety of sss nucleases and extracts can be effectively used for high-throughput mutation and polymorphism discovery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号