首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The Mediterranean Sea is a partillay isolated ocean where excess evaporation over precipitation results in large east to west gradients in temperature and salinity. Recent planktonic foraminiferal distributions have been examined in 66 surface sediment samples from the Mediterranean Sea. In addition to mapping the frequency distribution of 16 species, the faunal data has been subjected to cluster analysis, factor analysis and species diversity analysis. The clustering of species yields assemblages that are clearly temperature related. A warm assemblage contains both tropical and subtropical elements, while the cool assemblage can be subdivided into cool-subtropical, transitional and polar-subpolar groupings. Factor analysis is used to delineate the geographic distribution of four faunal assemblages. Factor 1 is a tropical-subtropical assemblage dominated by Globigerinoiden ruber. It has its highest values in the warmer eastern basin. Transitional species (Globorotalia inflata and Globigerina bulloides) dominate factor 2 with highest values occurring in the cooler western basin. Factor 3 reflects the distribution of Neogloboquadrina dutertrei and is considered to be salinity dependent. Subpolar species dominate factor 4 (Neoglobuquadrina pachyderma and G. bulloides), with highest values occurring in the northern part of the western basin where cold bottom water is presently being formed. The Shannon-Weiner index of species diversity shows that high diversity exists over much of the western basin and immediately east of the Strait of Sicily. This region is marked by equitable environmental conditions and relatively even distribution of individuals among the species. Conversely, in areas where temperature and salinity values are more extreme, diversity values are lower and the assemblages are dominated by one or two species.  相似文献   

2.
The principal component analysis method is applied to the study of associations of different Pleistocene and Holocene planktonic Foraminifera in five cores from the eastern Mediterranean. Comparison of the fossil foraminiferal distribution with the distribution of living species leads to grouping of the fossil microfauna on the basis of paleoecological controls. Factor 1 is interpreted as representing thermal control. We recognize as warm-water species Globigerinoides trilobus, Globigerinoides trilobus sacculifer, Orbulina universa, Globigerinella siphonifera, Globigerinoides ruber. Cold-water species are Globigerina pachyderma, Globorotalia scitula, Globigerina quinqueloba, Globigerinita glutinata. Species considered to be of intermediate character are Globigerina bulloides, Globorotalia inflata and Globorotalia truncatulinoides. Factor 2 also leads to the grouping of these last species and may reflect the contributing influence of productivity phenomena. A quadratic liaison interpreted as the “Guttman effect” relates factors 1 and 2. Factor 3 introduces complications resulting from apparently sporadic, irregular events affecting the distribution of certain species, notably Globoratalia inflata, Globorotalia truncatulinoides and Globigerina dutertrei.  相似文献   

3.
Planktonic foraminiferal records from Site 1083 (ODP Leg 175) were used to investigate changes in surface water conditions in the Northern Benguela Region over the past 450 ky. The assemblages of planktonic foraminifera are dominated by four species: sinistral coiling Neogloboquadrina pachyderma, dextral coiling N. pachyderma, Globigerina bulloides and Globorotalia inflata. Besides, tropical species deliver a small contribution to the assemblage.The most prominent temporal variations, displayed by N. pachyderma (s+d), represent changes in the coastal upwelling and the presence of cold, nutrient rich waters over the core site. Neogloboquadrina pachyderma (s+d) shows cyclic variability in the eccentricity and, to a less extent, precession frequencies. The changes indicate increased upwelling intensity in glacial maxima and precession maxima, and correlate well with the wind-strength record of Stuut et al. (2002). During glacial maxima, steep temperature gradients over the Southern Hemisphere caused strong SE trade winds and strong upwelling. Precession maxima cause a weak monsoonal circulation, more zonal SE trade winds, strong coastal upwelling, and nutrient-rich surface waters over ODP Site 1083.Advection of Angola Current (AC) surface water into the Walvis Basin, indicated by the tropical species, occurs when the Angola Benguela Front (ABF) is positioned southward. Occasionally, this happened during glacial maxima, as can be explained with the reconstructed and predicted meridional movements of the ABF. The amount of AC water was never sufficient to suppress the marine biological production at the core site.The contribution of Benguela Current (BC) water, reflected by Globorotalia inflata, is greatly determined by the upwelling. In periods of strong upwelling, the BC influence is suppressed.In several glacial substages, the temperature of the upwelling South Atlantic Central Water (SACW) may have been increased, as suggested by the dominance of Neogloboquadrina pachyderma (d) in the upwelling record. This phenomenon may be due to intensified subduction in the central South Atlantic that induces the formation of SACW, or to larger contributions of Eastern SACW to the upwelling water.Around 250–200 ky BP, a long-term shift to higher productivity occurred that is absent in the upwelling record. It was accompanied with a transition from a precession and obliquity variability to an eccentricity dominated variability in the Globorotalia inflata (BC) record. The shift was probably connected to a long-term southward shift of the circumpolar oceanic frontal systems south of the African continent.  相似文献   

4.
Abstract: The last one million years are important in terms of climate development during the so‐called Mid‐Pleistocene Transition when amplification of the glacial–interglacial cycles occurred. This study describes abundance changes in fossil planktonic foraminifera in sediments from Core T89‐40, retrieved from the Walvis Ridge in the south‐east Atlantic, across this time period. Cycles between upwelling and subtropical planktonic foraminiferal assemblages are shown to mirror changes between glacial and interglacial periods, respectively. During interglacial marine isotopic stages (MIS) 9, 11 and 31, however, anomalously high abundances of the polar left‐coiled Neogloboquadrina pachyderma occur, presumably linked to unusual seasonal upwelling waters. The planktonic foraminiferal abundance record shows 41‐ky cyclic variations in the regional oceanography linked to cycles in insolation influenced by changes in the Earth’s axial tilt (obliquity). These orbitally induced oscillations in oceanographic change occurred throughout the entire record. The most conspicuous feature of the planktonic foraminiferal record is the near absence of left‐coiled Globorotalia truncatulinoides between 960 and 610 ka (MIS 26‐15). The abrupt disappearance of this species is synchronous with the onset of the Mid‐Pleistocene Transition in MIS 26.  相似文献   

5.
A high resolution micropalaeontological study of the core MD 04-2797 CQ recovered in the Sicilian–Tunisian Strait provides insights into the paleoclimatic history of the Mediterranean Sea at the transition between the western and eastern basin over the last 30 ka. Using the analysis of dinoflagellate cyst and planktonic foraminiferal assemblages, we reconstruct the paleoenvironmental changes that took place in this region. High abundances of cold temperate dinocyst species (Nematosphaeropsis labyrinthus, Spiniferites elongatus, Bitectatodinium tepikiense) and the polar planktonic foraminifera Neogloboquadrina pachyderma (left coiling) reveal three major cooling events synchronous with North Atlantic Henrich events 1 and 2 (H1 and H2) and the European and North Atlantic Younger Dryas event. During the Holocene, the presence of warm dinocyst species (Spiniferites mirabilis and Impagidinium aculeatum) and planktonic foraminifera (Globorotalia inflata and Globigerinoides ruber), reflects a significant increase of sea surface temperatures in the western Mediterranean basin, but a full warming was not recorded until 1500 years after the onset of the Holocene. Moreover, our results show that the Holocene was interrupted by at least four brief cooling events at ~ 9.2 ka, ~ 8 ka, ~ 7 ka and ~ 2.2 ka cal. BP, which may be correlated to climatic events recorded in Greenland ice cores and in the Atlantic Ocean.  相似文献   

6.
Summary Smaller benthic and planktonic foraminifera from the clastic sediments of the Pazin Basin (Istria, Croatia) were studied in order to obtain more data about paleoceanographic conditions that existed in the Middle Eocene Dinaric foreland basin. The succession investigated corresponds to the Middle Eocene planktonic foraminiferal zones Globigerapsis kugleri/Morozovella aragonensis (P11), Morozovella lehneri (P12), and Globigerapsis beckmanni (P13). Benthic foraminiferal assemblages from the clastic succession are dominated by epifaunal trochospiral genera suggesting oligotrophic to mesotrophic conditions and moderately oxygenated bottom waters. Planktonic foraminiferal assemblages indicate mesotrophic to eutrophic conditions of the surface waters, with increased eutrophication in the upper part of the section. Water depth, based on the ratio between planktonic and epifaunal benthic foraminifera and on the recognized species of cosmopolitan benthic foraminifera, was estimated to have been between about 900 and 1200 m. The basin was elongated and open to marine currents on both sides allowing good circulation and ventilation of the bottom water.  相似文献   

7.
Time-incremental sediment trap moorings were deployed at two sites across Campbell Plateau, New Zealand; one in the relatively quiet waters of the plateau interior (Pukaki Rise) and the other at the Antarctic Circumpolar Current-swept margin (eastern Campbell flank). A continuous record of particle flux over 416 days identifies marked differences in faunal composition and seasonal occurrence in response to these two dynamically different Southern Ocean settings. In the shallow and thermally isolated interior of the Pukaki Rise site, the flux of foraminifera was closely linked to the austral spring pulse of primary production, at which time 97% of the total foraminiferal production for the year occurred. This seasonal flux of foraminifera at Pukaki Rise was dominated by the species Globorotalia inflata and Globigerina bulloides. The collapse of phytoplankton production at the end of spring was most likely a result of a co-limitation of iron and silicic acid. Over the deep and dynamic eastern flank of Campbell Plateau there were four seasonal pulses of foraminiferal flux, the largest in spring when almost half of the foraminiferal production occurred. Most of the spring flux at this site consisted of Globorotalia inflata and Globigerinita glutinata. Summer at eastern Campbell flank, exhibited the lowest flux of foraminifera, but the highest species diversity, while autumn and winter fluxes were dominated by the deep-dwelling Globorotalia truncatulinoides. Although there was only a single pulse of foraminiferal flux at Pukaki Rise, its mass (g m− 2d− 1) was still greater than that which occurred over the flank, summed across all four seasons. However, the overall standing stock (tests m− 2d− 1) on the flank was more than twice that which occurred at the Pukaki Rise site.An examination of core-top material taken from gravity cores collected in the vicinity of the sediment trap locations, revealed typical Southern Ocean foraminiferal assemblages that were markedly dissimilar in proportion to those observed in the sediment traps.  相似文献   

8.
Late Neogene stable isotope stratigraphy and planktonic foraminiferal biostratigraphy have been examined in a high sedimentation rate core (E67-135, Shell Oil Co.) drilled at 725 m water depth in the De Soto Canyon, Gulf of Mexico. The 305 m core contains sections that are Late Miocene, Early Pliocene, Late Pliocene, and Quaternary in age, and is rich in well-preserved assemblages of planktonic foraminifera.A biostratigraphy has been established based on the ranges of 34 selected species of foraminifera. The core 3orrelates with sections from the Gulf of Mexico, the Caribbean Sea, and the subtropical North and South Atlantic Oceans using, as datums, the evolutionary appearances of Globorotalia miocenica Palmer and Globorotalia margaritae evoluta Cita, the extinction of Globorotalia miocenica and the first appearance of Globorotalia truncatulinoides (d'Orbigny).Oxygen and carbon isotope stratigraphy is based on analysis of the benthonic foraminifer, Uvigerina d'Orbigny. Isotopic trends are similar to those observed in the Pacific and Atlantic Oceans. From Early Pliocene to Late Pleistocene time, average δ18O values increase (2.42‰ to 3.36‰) and exhibit a wider range of values (0.71‰ in Early Pliocene compared to 1.65‰ in Late Pleistocene sediments), probably reflecting Late Neogene climatic deterioration. The ratio 13C12C decreases significantly by ?0.21‰ from the Late Miocene to the Early Pliocene. A decrease in δ13C is observed in other cores and is probably related to changing oceanic circulation patterns in Late Miocene time.  相似文献   

9.
The present work analyses the seasonal evolution of planktonic assemblages and particle fluxes through the water column in the Eastern Alboran Sea (Western Mediterranean) at 35º55.47'N/01º30.77'W. A Sediment trap was deployed below the influence of the Almeria-Oran Front (AOF), a semi-permanent geostrophic front, during July 1997 to June 1998. Overall, the temporal variability of coccolithophore, planktonic foraminifer, diatom, benthic and wind-carried biogenic particle fluxes is linked to the seasonal evolution of sea surface hydrological structures. Maximum planktonic fluxes were found during high-productivity periods and wind-induced upwelling, following a trimodal pattern, with maximum fluxes in July 1997, November–December 1997, and April–May 1998. These periods were characterized by vertical mixing and the full development of anticyclonic gyres in the Alboran Sea. The annual flux of coccolithophores was dominated by the “small Gephyrocapsa Group” and Emiliania huxleyi, whereas Turborotalita quinqueloba and Globigerina bulloides dominated the foraminiferal fluxes, and Chaetoceros Resting Spores (RS) were predominant in the diatom assemblage. Benthic specimens were also collected with the sediment trap, suggesting a variable influence of bottom water activity. Wind-driven particles (phytoliths and fresh-water diatoms) were collected along the year, but their fluxes followed the local wind regime.The high Sea Surface Temperature (SST) during fall due to weaker than usual westerly winds, and the pressure anomaly prevailing in the Alboran Sea during early winter, were reflected in the planktonic assemblages by the proliferation of warm, lower photic layer inhabitants and/or oligotrophic taxa of coccolithophores (Florisphaera profunda), planktonic foraminifers (Globigerinoides ruber and Globorotalia inflata) and diatoms (Leptocylindrus danicus). These unusual climatic conditions in the eastern Alboran Sea must have been caused by the 1997–1998 ENSO event.  相似文献   

10.
Planktonic foraminiferal analyses of six deep-sea sediment cores from the central North Atlantic east of the Azores Islands between 37°N and 40°N show distinct oscillations in planktonic foramineferal assemblages during the last 300,000 years. A paleoclimatic curve has been constructed using “Total Fauna Analysis” that reveals three glacial and four interglacial episodes. Relatively minor climatic oscillations are superimposed upon the major glacial-interglacial episodes. The paleoclimatic curve is similar to previous paleoclimatic curves from the Atlantic and adjacent areas. Minor paleoclimatic fluctuations are more distinct in paleoclimatic curves from high latitudes of the Atlantic.The faunal assemblages are transitional between subarctic and subtropical assemblages. During portions of the interglacial episodes, the assemblage is dominated by Globorotalia inflata. Neogloboquadrina pachyderma (dextral-coiling) or Globigerina bulloides dominate during the remainder of the interglacial episodes and during the glacial episodes. Glacial episodes are also marked by particularly high frequencies of Globigerina quinqueloba and Globorotalia scitula. Interglacial episodes are also marked by increases in Globorotalia truncatulinoides, Globigerinoides ruber, and Globigerinella aequilateralis.The planktonic foraminiferal faunal oscillations in the cores are complex and cannot be entirely explained by temperature variation. Other parameters such as salinity, nutrients and biological competitin must influence the faunal oscillations.The faunas suggest no major planktonic foraminiferal faunal boundaries migrated across the area between 37°N and 40°N in the central North Atlantic during the last 300,000 years.  相似文献   

11.
Surface-sediment samples from the Maurice Ewing Bank (eastern Falkland Plateau), South Atlantic Ocean, have been analyzed to rank dissolution susceptibility of cool water planktonic foraminiferal species. A dissolution index is formulated from quantitative analyses of sedimentological properties (CaCO3 content, frequency of planktonic foraminiferal fragments, radiolarians, mineral grains, and ratio of a dissolution-tolerant to a dissolution-susceptible planktonic foraminiferal species). This index is used to assess degrees of dissolution in the samples. Quantified differences in relative abundance of species between the two dissolution regimes (less prominent and stronger dissolution) formed the basis for differentiation. The species were ranked in the following order, from most resistant to least resistant: sinistrally coiled variety ofNeogloboquadrina pachyderma (antarctic variety of this species),Globorotalia inflata, G. truncatulinoides, Globigerina bulloides andGlobigerinita glutinata (a tie), dextralN. pachyderma (subantarctic variety),Globigerinita uvula, andGlobigerina quinqueloba. Fragmentation (frequency of damaged tests) increases with increasing dissolution in tolerant species, but not in susceptible species. This may be because susceptible species are completely dissolved under intense dissolution, whereas tolerant species, although damaged, remain and increase in abundance.  相似文献   

12.
Deep-sea drilling at high latitudes of the Southern Hemispheres has provided almost the only available data to evaluate the biogeographic development of the planktonic biota in the Southern Ocean during the Cenozoic (65 m.y. to Present Day). Paleontological investigations on Deep Sea Drilling Project (DSDP) materials have shown that the development of Cenozoic planktonic biogeography of the Southern Ocean is intimately linked with the evolution of the Southern Ocean water masses themselves. During the Cenozoic, this has included the development of the Circum-Antarctic Current system as obstructing land masses moved apart, the refrigeration and later extensive glaciation of the continent, and the development of the Antarctic Convergence (Polar Front) with related oceanic upwelling.Almost all evolution of calcareous planktonic microfossils has occurred outside of the Antarctic—Subantarctic region followed by limited migration into these water masses. Virtually no endemism occurs amongst calcareous microfossil groups at these latitudes. In contrast, conspicuous and widespread evolution has occurred within the siliceous microfossil groups especially during the Neogene. Low diversity and differences in stratigraphic ranges of Antarctic calcareous microfossils makes them only broadly useful for correlation. Relatively higher diversities within the Subantarctic provide a firmer basis for more detailed correlation, although the ranges of fossils are often different than at lower latitudes because of different paleoceanographic and paleoclimatic controls. Within the Antarctic water mass south of the Antarctic Convergence, siliceous microfossilsbiostratigraphy, oxygen isotopic stratigraphy and magnetostratigraphy, provide the only firm basis for correlation with low-latitude sequences.Eocene (55-38 Ma) sediments contain abundant calcareous microfossils even closely adjacent to the continent. Antarctic calcareous planktonic microfossils of this age exhibit relative high diversity, although this is lower than assemblages of equivalent age at middle and low latitudes. Within the Subantarctic region, Eocene planktonic foraminifera exhibit strong affinities with those in the temperate regions. Biogeographic differences exist between various sectors of the Southern Ocean related to biogeographic isolation preceding the development of the Circum-Antarctic Current. Subantarctic calcareous nannofossil assemblages of Paleocene and Eocene age exhibit higher diversity than Oligocene and Neogene assemblages. Siliceous microfossils are poorly represented or at best poorly known.One of the most dramatic changes in Southern Ocean planktonic biogeography occurred near the Eocene/Oligocene boundary (38 Ma). Since then, Antarctic planktonic foraminiferal assemblages have exhibited distinct polar characteristics, marked in particular by low diversity, and this event thus reflects the initiation of the Antarctic faunal and floral provinces. Profound paleoceanographic changes at this time, which triggered the biogeographic crisis, appear to be related to the initiation of widespread Antarctic sea-ice formation, and rapid cooling of deep and intermediate waters, in turn associated with increased Antarctic glaciation. During the Oligocene, planktonic microfossil diversity was low in all groups throughout the world's oceans. In Antarctic waters, the early Oligocene foraminiferal fauna is monospecific (Subbotina angiporoides), while in the later Oligocene two species (S. angiporoides and Catapsydrax dissimilis) were recorded. Calcareous nannofossil assemblages are of low diversity compared with the Eocene. Subantarctic foraminiferal faunas of Oligocene age display much higher diversity than those in the Antarctic, but early and middle Oligoceae faunas still exhibit the lowest diversities for the entire Cenozoic. Siliceous assemblages remain relatively inconspicuous in most regions of the Southern Ocean.The Paleogene-Neogene transition (22 Ma) is marked by a major change in the global planktonic biogeography, i.e. modern patterns developed in which permanent, steep faunal and floral diversity gradients existed between tropical and polar regions; a gradient which has persisted even during the most severe glacial episodes. Oligocene assemblages of low diversity and almost cosmopolitan distribution were replaced by distinctive belts of planktonic assemblages arranged latitudinally from the tropics to the poles. The establishment of the steep planktonic diversity gradients and latitudinal provinces near the beginning of the Neogene almost certainly were linked to the development of the Circum-Antarctic Current in the late Oligocene which effectively separated high- and low-latitude planktonic assemblages. These fundamental global circulation and biogeographic patterns have persisted through the Neogene.During the Neogene (22 Ma to Present Day), Antarctic calcareous microfossil assemblages exhibit persistent low diversity and high dominance, while Subantarctic assemblages are of much greater diversity. The beginning of the Neogene (= beginning of Miocene) heralded the development of the high-latitude siliceous microfossil assemblages towards their present-day dominant role. Siliceous biogenec productivity began to increase. These changes were linked to the initial development and later intensification of circulation associated with the Antarctic Convergence and Antarctic Divergence. The Antarctic Convergence sharply separates dominantly siliceous assemblages to the south from calcareous assemblages to the north. Radiolarian assemblages became more endemic. Relatively warm early and middle Miocene conditions are reflected by slightly higher diversity of planktonic foraminifera and by the presence, in the northern Subantarctic, of conspicuous discoasters in early Miocene sediments. In Antarctic waters, calcareous nannofossils become unimportant as biogenic elements after the middle Miocene.The latest Miocene ( 5 m.y. ago) was marked by northward movement of the Antarctic Convergence, corresponding expansion of the Antarctic water mass, and low diversity of calcareous assemblages. Pliocene planktonic foraminifera seem to be largely monospecific in Antarctic and southern Subantarctic sequences. During the Quaternary, Antarctic waters reached a maximum northward expansion and exhibit highest siliceous biogenic productivity for the Cenozoic. In the Subantarctic, Quaternary foraminiferal diversities are much higher than in Pliocene sequences. Although calcareous nannofossil diversity may be high, only a few species are abundant. Large northward shifts of Antarctic and Subantarctic water masses have occurred during the Quaternary although no southward penetrations have occurred much beyond that of the present day. Several radiolarian and foraminiferal species disappeared or appeared at or close to a number of paleomagnetic reversals during the last 4 m.y. These faunal events, which provide valuable datums, do not seem to be associated with major climatic changes.  相似文献   

13.
The responses of community assemblages of planktonic and benthonic foraminifera and coccolithophorids to transient climate change are explored for the uppermost 2 m of cores ODP677B (1.2°N; 83.74°W, 3461 m) and TR163-38 (1.34°S; 81.58°W, 2200 m), for the last ∼ 40 ka. Results suggest that the deglaciation interval was a time of increased productivity and a major reorganization of planktonic trophic webs. The succession in dominance between the planktonic foraminifera species Globorotalia inflata, Globigerina bulloides, and Neogloboquadrina pachyderma denote four periods of oceanographic change: (1) advection (24-20 ka), (2) strong upwelling (20-15 ka), (3) weak upwelling (14-8 ka) and (4) oligotrophy (8 ka to present). Strong upwelling for the deglaciation interval is supported by the low Florisphaera profunda/other coccolithophorids ratio and the high percentage abundance of Gephyrocapsa oceanica. Benthonic foraminifera assemblage changes are different in both cores and suggest significant regional variations in surface productivity and/or oxygen content at the seafloor, and a decoupling between surface productivity and export production to the seafloor. This decoupling is evidenced by the inverse relationship between the percentage abundance of infaunal benthonic foraminifera and the percentage abundance of N. pachyderma. The terrigenous input of the Colombian Pacific rivers, particularly the San Juan River, is suggested as a possible mechanism. Finally, the Globorotalia cultrata/Neogloboquadrina dutertrei ratio is used to reconstruct the past influence of the Costa Rica Dome-Panama Bight and cold tongue upwelling systems in the Panama Basin. A northern influence is suggested for the late Holocene (after 5 ka) and the last glacial (before 20 ka), whereas a southern influence is suggested for the 20-5 ka interval. There is a correspondence between our reconstructed northern and southern influences and previously proposed positions of the Intertropical Convergence Zone (ITCZ) after the Last Glacial Maximum (LGM).  相似文献   

14.
During the Messinian, the Mediterranean area experienced fast and prominent paleoenvironmental changes, culminating in the so-called Messinian Salinity Crisis, with the deposition of the evaporitic series. This work investigates the micropaleontological assemblages in the pre-evaporitic sediments of the Sant’Agata Fossili Marls (SAF) of the Pollenzo section (Cuneo area, North Western Italy). A semiquantitative analysis is carried out on the upper part of the marly and pelitic sediments of the SAF underlying the first gypsum bed, ascribed to the Vena del Gesso Fm. (VDF). The studied interval belongs to the planktonic foraminifer Globorotalia conomiozea Zone and “non distinctive Zone” of Iaccarino and to the calcareous nannofossil MNN11b/c Zone of Raffi et al. (1998, 2003) ( [Raffi et al., 1998] and [Raffi et al., 2003]). Decrease of diversity and abundance of the foraminifer and calcareous nannofossil assemblages is recorded 12 m below the VDG and clearly reflects environmental stress. From bottom to top, six paleoecological events are recorded: (1) the first peak abundance of “small” Reticulofenestra and the last recovery (LR) of planktonic foraminifers; (2) the peak abundance of Pontosphaera japonica and the last recovery of warm water taxa Discoaster spp.; (3) the last recovery of benthic foraminifers; (4) the co-occurring peak abundances of Helicosphaera carteri and Sphenolithus abies, and the last recovery of warm water taxa Amaurolithus spp.; (5) the second peak of “small” Reticulofenestra; (6) the definitive disappearance of calcareous nannofossils. These paleoecological events describe a progressive isolation of the basin from the world ocean and increasingly stressed environment (LR planktonic foraminifers; LR Discoaster spp.), increasing dysoxic to anoxic conditions at the sea floor (LR benthic foraminifers), shallowing of the water column (peak of H. carteri), increasing salinity in surface waters (peak of S. abies), and enhanced nutrient concentration in surface waters (peak of “small” Reticulofenestra); these are related to paleoenvironmental changes predating gypsum deposition at Pollenzo and affecting the whole Mediterranean basin.  相似文献   

15.
The Sulu Sea in the western equatorial Pacific is presently a shallowly-silled, dysaerobic, deep-marine basin. Deep waters in the Sulu Sea are ventilated through a single sill at 420 m depth which connects it to the China Sea. Benthic and planktonic foraminiferal oxygen and carbon isotope records, benthic and planktonic foraminiferal census data and total organic carbon measurements have been used to evaluate changes in water mass conditions in the Sulu Sea between the last glacial maximum (18,000 yrs. B.P.) and the present day.An increase in the abundance of the planktonic foraminiferaNeogloboquadrina dutertrei and relatively light planktonic foraminiferal δ18O values suggest that during the last glacial maximum surface water salinities were reduced in the Sulu Sea. Enhanced isolation of the basin due to glacio-eustatic lowering of sea level and reduced surface salinities resulted in stagnation of deep water and an expansion of the mid-water oxygen minimum layer. Increased organic carbon preservation at mid-water depths occurs at this time. Benthic carbon isotope data and an increase in the abundance of benthic foraminiferal species considered to prefer low oxygen environments support the conclusion of an oxygen-minimum expansion at mid-water depths during the last glacial maximum. At water depths greater than 4000 m, bottom waters appear to have maintained some degree of oxygenation during the last glacial maximum. Stronger Pacific Ocean trade winds at this time may have caused the influx of denser Celebes Sea surface water into the southern part of the Sulu Sea. The slow sinking of this water would have then ventilated bottom waters in this part of the basin.At the transition from glacial to interglacial conditions, rising sea level caused denser water to flow over the deepest sill into the Sulu Sea. Vertical circulation increased, resulting in a greater downward flux of oxygen and a dissipation of the oxygen minimum. Continued post-glacial sea level rise caused periodic ventilation of deep water until the present dysaerobic conditions were established.  相似文献   

16.
《Marine Micropaleontology》1999,37(2):199-218
A time series of 65 sediment trap samples, representing 48-month changes in diatom flora, and 62 sediment core-tops from the western North Pacific Ocean were analyzed. Varieties of a single diatom species were found to be characteristic of two surface water masses bounded by the Kuroshio Current. Thalassionema nitzschioides var. incurvata, var. inflata and var. parva dominate in warm saline waters in the Subtropical Gyre, while T. nitzschioides sensu stricto is abundant in less-saline waters northwest of this current. Time series data on percent abundances for the three T. nitzschioides varieties in the T. nitzschioides complex are compared with path variations of the current south of Japan. Inter-annual fluctuations in percent abundance are linked to changes in surface water masses over the sediment traps in association with migration of the Kuroshio paths. This finding makes the percent abundance a useful tool for deciphering path migrations of the Kuroshio Current in the geologic past. Down-core analyses of two sediment cores collected beneath the modern Kuroshio Current were performed. A sharp increase in percent abundances from 12 to 9 kyr BP, with an abrupt change around 11 kyr BP, records the previously reported transition of the Kuroshio Current from a predominantly offshore path to its modern path. Path migrations of the Kuroshio Current may be inferred from percent abundances of these diatoms, which comprise a new proxy for delineating the paleoclimate of the northwestern Pacific in relation to changes in northward heat transport from the western equatorial Pacific Ocean by the western boundary current.  相似文献   

17.
《Marine Micropaleontology》2002,45(2):117-150
The evolution of planktonic foraminifera during the Late Cretaceous is marked in the Santonian by the disappearance of complex morphotypes (the marginotruncanids), and the contemporary increasing importance and diversification of another group of complex taxa, the globotruncanids. Upper Turonian to lower Campanian planktonic foraminiferal assemblages from Holes 762C and 763B (Ocean Drilling Program, Leg 122, Exmouth Plateau, 47°S palaeolatitude) were studied in detail to evaluate the compositional variations at the genus and species level based on the assumption that, in the Cretaceous oceans as in the modern, any faunal change was associated with changes in the characteristics and the degree of stability of the oceanic surface waters. Three major groups were recognised based on gross morphology, and following the assumption that Cretaceous planktonic foraminifera, although extinct, had life-history strategies comparable to those of modern planktonics: 1 – r-selected opportunists; 2 – k-selected specialists; 3 – r/k intermediate morphotypes which include all genera that display a range of trophic strategies in-between opportunist and specialist taxa. Although planktonic foraminiferal assemblages are characterised by a progressive appearance of complex taxa, this trend is discontinuous. Variation in number of species and specimens within genera has allowed recognition of five discrete intervals each of them reflecting different oceanic conditions based on fluctuations in diversity and abundance of the major morphotypes. Planktonic forms show cyclical fluctuations in diversity and abundance of cold (r-strategists) and warm taxa (k-strategists), perhaps representing alternating phases of unstable conditions (suggesting a weakly stratified upper water column in a mesotrophic environment), and well-stratified surface and near-surface waters (indicating a more oligotrophic environment). Interval 1, middle Turonian to early Coniacian in age, is dominated by the r/k intermediate morphotypes which alternate with r-strategists. These cyclical alternations are used to identify three additional sub-intervals. Interval 2, aged middle to late Coniacian, is characterised by the increasing number of species and relative abundance of k-strategists. After this maximum diversification the k-strategists show a progressive decrease reaching a minimum value in Interval 3 (early to late Santonian), which corresponds to the extinction of the genus Marginotruncana. In the Interval 4, latest Santonian in age, the k-strategists, represented mainly by the genera Globotruncana, increase again in diversity and abundance. The last Interval 5 (early Campanian) is dominated by juvenile globotruncanids and r-strategists which fluctuate in opposite phase. The positive peak (Interval 2) related to the maximum diversification of warm taxa (k-strategists) in the Coniacian seems to correspond to a warmer episode. It is followed by a marked decrease in the relative abundance of warm taxa (k-strategists crisis) with a minimum in the late Santonian (Interval 3), reflecting a decrease in temperature. Detailed analysis of faunal variations allows the Santonian faunal turnover to be ascribed to a cooling event strong enough to cause the extinction of the marginotruncanids.  相似文献   

18.
The results of an in situ experiment in the Panama Basin allow us to determine the way in which planktonic foraminiferal assemblages are modified by calcite dissolution. Pre-weighed planktonic foraminiferal samples of known species composition were attached to a deep-sea mooring at various water depths between 665 m and 3791 m for a period of 123 days. Weight loss due to dissolution during this period ranged from less than 5% for the shallowest samples to slightly over 30% for the deepest samples. In terms of change in foraminiferal number, this is equivalent to decreases of between 1% and 26%. Only in the samples placed at the two deepest levels (3769 m and 3791 m) was there a significant loss in the total number of foraminifera. The magnitude of change in the abundance of individual species in early related to their different susceptibilities to dissolution. Species such as Hastigerina pelagica, Globigerinella aequilateralis and Candeina nitida, which are very susceptible to dissolution, exhibited the largest decreases in frequency percentage while the more resistent species (Sphaeroidinella dehiscens, Pulleniatina obliquiloculata and Globorotalia truncatulinoides) had minimal changes. From these results a solution-susceptibility ranking for planktonic foraminifera is established that is quite similar to those derived from previous laboratory experiments and sea-floor studies.  相似文献   

19.
Processes leading to speciation in oceanic environments without obvious physical barriers remain poorly known. European and American eel (Anguilla anguilla and A. rostrata) spawn in partial sympatry in the Sargasso Sea. Larvae are advected by the Gulf Stream and other currents towards the European/North African and North American coasts, respectively. We analyzed 104 mitogenomes from the two species along with mitogenomes of other Anguilla and outgroup species. We estimated divergence time between the two species to identify major events involved in speciation. We also considered two previously stated hypotheses: one where the ancestral species was present in only one continent but was advected across the Atlantic by ocean current changes and another where population declines during Pleistocene glaciations led to increasing vicariance, facilitating speciation. Divergence time was estimated to ∼3.38 Mya, coinciding with the closure of the Panama Gateway that led to reinforcement of the Gulf Stream. This could have advected larvae towards European/North African coasts, in which case American eel would be expected to be the ancestral species. This scenario could, however, not be unequivocally confirmed by analyses of dN/dS, nucleotide diversity and effective population size estimates. Extended bayesian skyline plots showed fluctuations of effective population sizes and declines during glaciations, and thus also lending support to the importance of vicariance during speciation. There was evidence for positive selection at the ATP6 and possibly ND5 genes, indicating a role in speciation. The findings suggest an important role of ocean current changes in speciation of marine organisms.  相似文献   

20.
High-resolution biostratigraphic and quantitative studies of subtropical Pacific planktonic foraminiferal assemblages (Ocean Drilling Program, Leg 198 Shatsky Rise, Sites 1209 and 1210) are performed to analyse the faunal changes associated with the Paleocene–Eocene Thermal Maximum (PETM) at about 55.5 Ma. At Shatsky Rise, the onset of the PETM is marked by the abrupt onset of a negative carbon isotope excursion close to the contact between carbonate-rich ooze and overlying clay-rich ooze and corresponds to a level of poor foraminiferal preservation as a result of carbonate dissolution. Lithology, planktonic foraminiferal distribution and abundances, calcareous plankton and benthic events, and the negative carbon isotope excursion allow precise correlation of the two Shatsky Rise records. Results from quantitative analyses show that Morozovella dominates the assemblages and that its maximum relative abundance is coincident with the lowest δ13C values, whereas subbotinids are absent in the interval of maximum abundance of Morozovella. The excursion taxa (Acarinina africana, Acarinina sibaiyaensis, and Morozovella allisonensis) first appear at the base of the event. Comparison between the absolute abundances of whole specimens and fragments of genera demonstrate that the increase in absolute abundance of Morozovella and the decrease of Subbotina are not an artifact of selective dissolution. Moreover, the shell fragmentation data reveal Subbotina to be the more dissolution-susceptible taxon. The upward decrease in abundance of Morozovella species and the concomitant increase in test size of Morozovella velascoensis are not controlled by dissolution. These changes could be attributed to the species' response to low nutrient supply in the surface waters and to concomitant changes in the physical and chemical properties of the seawater, including increased surface stratification and salinity.Comparison of the planktonic foraminiferal changes at Shatsky Rise to those from other PETM records (Sites 865 and 690) highlights significant similarities, such as the decline of Subbotina at the onset of the event, and discrepancies, including the difference in abundance of the excursion taxa. The observed planktonic foraminifera species response suggests a warm–oligotrophic scenario with a high degree of complexity in the ocean structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号