首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The pink yeast Rhodotorula rubra of marine origin was found to be capable of extended growth at very low phosphate concentrations (K(0.5) = 10.8 nm). Average intracellular phosphate concentrations, based on isotope exchange techniques, were 15 to 200 nm, giving concentration gradients across the cell envelope of about 10(6). Sensitivity to metabolic inhibitors occurred at micromolar concentrations. Inability of the phosphate transport system, K(s) = 0.5 to 2.8 mum, V(max) = 55 mumoles per g of cells per min, to discriminate against arsenate transport led to arsenate toxicity at 1 to 10 nm, whereas environmental arsenate levels are reportedly much higher. Phosphate competitively prevented arsenate toxicity. The K(i) for phosphate inhibition of arsenate uptake was 0.7 to 1.2 mum. Phosphate uptake experiments showed that maximal growth rates could be achieved with approximately 4% of the total phosphate-arsenate transport system. Organisms adapted to a range both of concentration of NaCl and of pH. Maximal affinity for phosphate occurred at pH 4 and at low concentrations of NaCl; however, V(max) for phosphate transport was little affected. Maximal specific growth rates on minimal medium were consistent in batch culture but gradually increased to the much higher rates found with yeast extract media when the population was subjected to long-term continuous culture with gradually increasing dilution rates. Phosphate initial uptake rates that were in agreement with the steady-state flux in continuous culture were obtained by using organisms and medium directly from continuous culture. This procedure resulted in rates about 500 times greater than one in which harvested batch-grown cells were used. Discrepancies between values found and those reported in the literature for other organisms were even larger. Growth could not be sustained below a threshold phosphate concentration of 3.4 nm. Such thresholds are explained in terms of a system where growth rate is set by intracellular nutrient concentrations. Threshold concentrations occur in response to nutrient sinks not related to growth, such as efflux and endogenous metabolism. Equations are presented for evaluation of growth rate-limiting substrate concentrations in the presence of background substrate and for evaluating low inhibitor concentration inhibition mechanisms by substrate prevention of inhibitor flux.  相似文献   

2.
In Saccharomyces cerevisiae, proline is a stress protectant interacting with other substrate uptake systems against oxidative stress under low pH conditions. In this study, we performed metabolomics analysis to investigate the response associated with an increase in cell growth rates and maximum densities when cells were treated with proline under normal and acid stress conditions. Metabolome data show that concentrations of components of central metabolism are increased in proline-treated S. cerevisiae. No consumption of proline was observed, suggesting that proline does not act as a nutrient but regulates metabolic state and growth of cells. Treatment of lactic acid-producing yeast with proline during lactic acid bio-production improved growth rate and increased the final concentration of lactic acid.  相似文献   

3.
A mouse embryonal carcinoma cell line resistant to the toxic arginine analogue -canavanine has been isolated. Kinetic studies of the transport of arginine in the canavanine-sensitive parental cell indicate that there are two arginine uptake systems which operate at different substrate concentrations. The canavanine-resistant variant shows a reduction in the rate at which it can transport arginine at all substrate concentrations. This is not, however, due to the complete loss of either uptake system. The observation that the rate of arginine transport at high substrate concentrations is reduced in the variant can be explained, at least in part, by an increase in chromosome number and cell volume. This is not true of the reduction in the low substrate concentration uptake system. The observation that the reductions in the two uptake systems can be dissociated in this way provides support for the conclusion, based on the kinetic data from the parental cell, that there are two independent arginine transport systems in this mouse embryonal carcinoma cell line.  相似文献   

4.
The influence of high substrate concentrations on microbial kinetics   总被引:13,自引:0,他引:13  
High substrate concentrations inhibit growth and may distort the metabolism of microorganisms. Mechanisms causing substrate inhibition are discussed and used to derive several mathematical models representative of the entire concentration range, including stimulation of growth by low substrate concentrations. These kinetic models are tested with a variety of batch culture measurements of specific growth rate and respiration rate at widely-ranging substrate concentrations. Using one of the kinetic models, equations are developed for batch, continuous, and exponential-feed reactors. Comparison of results obtained in continuous culture with results from exponential-feed culture systems is shown to offer a novel experimental method for evaluating the effect of the cell age distribution on the properties and metabolic activity of a culture.  相似文献   

5.
The influence of different physiological states on the glucose uptake and mineralization by Cytophaga johnsonae, a freshwater isolate, was examined in batch and chemostat cultures. At different growth rates under glucose limitation in chemostat cultures, different uptake patterns for 14C labeled glucose were observed. In batch culture and at high growth rates the glucose uptake potential showed a higher maximum velocity and a much lower substrate affinity than at lower growth rates. These findings and the results of short-term labeling patterns could be explained by two different glucose uptake mechanisms which enable the strain to grow efficiently both at high and low substrate concentrations. Substrate specificity studies showed that a structural change of the C-2 atom of the glucose molecule was tolerated by both systems. The consequences of these results for the ecophysiological classification of the Cytophaga group and for the operation of continuous cultures are discussed.  相似文献   

6.
Traditional concepts of nutrient uptake and growth kinetics as linked by cell yield are presented. Phenomena affecting the kinetics are examined along with a discussion of those which lead to ambiguity. Concepts of flux control are presented to help understand the distribution of material along metabolic pathways. Specific affinity is described to relate nutrient accumulation rates to transporter density. It is shown to be a primary kinetic constant and the best available index of nutrient collection ability. As an aid to understanding, specific affinity is reexpressed in terms of membrane permeability. Formulations of nutrient transport rate as a function of cellular composition, particularly transporter and enzyme content and known as janusian kinetics, are described as an improvement to specific affinity theory. Procedures for quantified unidirectional fluxes are reviewed to identify the difference between gross and net transport rates of substrate. Collision frequency theory is used to show that in addition to total biomass, cell size and transporter density should also be included in rate equations describing microbial growth. Theory diversity suggests that one reason for microbial metabolic is that the likelihood of additional collisions of substrate molecules with a cell surface, after an initial collision, requires only a sparse distribution of transporter sites for maximal rate, leaving room for additional transporters able to collect other substrate types.  相似文献   

7.
Nutrient uptake and allocation at steady-state nutrition   总被引:13,自引:0,他引:13  
Ingestad, T. and Ågren, G. I. 1988. Nutrient uptake and allocation at steady-state nutrition. - Physiol. Plant. 72: 450–459. Net nutrient uptake and translocation rates are discussed for conditions of steady-state nutrition and growth. Under these conditions, the relative uptake rate is equal to the relative growth rate, for whole plants as well as for plant parts, since the root/shoot ratio and internal concentrations remain stable. The nutrient productivity and the minimum internal concentration are parameters characteristic for the plant and the nutrient. A conceptual, mathematical model, based on these two fundamental parameters is used for calculation and prediction of the net nutrient uptake rate, which is required to maintain steady-state nutrition at a specified internal nutrient concentration or relative growth rate. When uptake rate is expressed on the basis of the root growth rate, there is, up to optimum, a strong linear relationship between uptake rate and the internal concentration of the limiting nutrient. More complicated and less consistent relationships are obtained when uptake rate is related to root biomass. The limiting factor for suboptimum uptake is the amount of nutrients becoming available at the root surface. When replenishment is efficient, e.g. with vigorous stirring, the concentration requirement at the root surface appears to be extremely low, even at optimum. In the suboptimum range of nutrition, the effect of nutrient status on root growth rate is a critical factor with a strong feed-back on nutrition, growth and allocation. At supraoptimum conditions, the uptake mechanism is interpreted as a protection against too high uptake rates and internal concentrations at high external concentration. In birch (Betula pendula Roth.), the allocation of nitrogen to the shoots is high compared to that of potassium and also to that of phosphorus at low nitrogen or phosphorus status. With decreasing stress, phosphorus allocation becomes more and more similar to nitrogen allocation. The formulation of a mathematical model for calculation of allocation of biomass and nutrients requires more exact information on the quantitative dependence of the growth-regulating processes on nutrition.  相似文献   

8.
An empirical relation relating specific growth, rate in steady state systems to nutrient status with respect to more than one nutrient simultaneously is proposed, based on 3 experimentally verifiable postulates: (1) that uptake depends on the external substrate concentration; (2) that growth depends on the interval substrate concentration; and (3) in a steady state system specific rate of uptake (in the absence of significant, excretion) is necessarily the product of the specific growth rate and internal substrate concentration. The implications of this model are discussed in particular in respect to the concept of luxury consumption and Liebig's law of minimum. Some aspects of uptake in transient situations are also discussed.  相似文献   

9.
Hybridomas are finding increased use for the production of a wide variety of monoclonal antibodies. Understanding the roles of physiological and environmental factors on the growth and metabolism of mammalian cells is a prerequisite for the development of rational scale-up procedures. An SP2/0-derived mouse hybridoma has been employed in the present work as a model system for hybridoma suspension culture. In preliminary shake flask studies to determine the effect of glucose and glutamine, it was found that the specific growth rate, the glucose and glutamine metabolic quotients, and the cumulative specific antibody production rate were independent of glucose concentration over the range commonly employed in cell cultures. Only the specific rate of glutamine uptake was found to depend on glutamine concentration. The cells were grown in continuous culture at constant pH and oxygen concentration at a variety of dilution rates. Specific substrate consumption rates and product formation rates were determined from the steady state concentrations. The specific glucose uptake rate deviated from the maintenance energy model(1) at low specific growth rates, probably due to changes in the metabolic pathways of the cells. Antibody production was not growth-associated; and higher specific antibody production rates were obtained at lower specific growth rates. The effect of pH on the metabolic quotients was also determined. An optimum in viable cell concentration was obtained between pH 7.1 and 7.4. The viable cell number and viability decreased dramatically at pH 6.8. At pH 7.7 the viable cell concentration initially decreased, but then recovered to values typical of pH 7.1-7.4. Higher specific nutrient consumption rates were found at the extreme pH values; however, glucose consumption was inhibited at low pH. The pH history also influenced the behavior at a given pH. Higher antibody metabolic quotients were obtained at the extreme pH values. Together with the effect of specific growth rate, this suggests higher antibody production under environmental or nutritional stress.  相似文献   

10.
Bulking sludge in biological nutrient removal systems   总被引:2,自引:0,他引:2  
Bulking sludge problems are commonly reported in biological nutrient removal (BNR) systems. This has led to the general belief that intrinsic BNR conditions favor the growth of undesirable and excessive filamentous bacteria. The present study shows that other factors have a major role in bulking, and not the BNR conditions. These factors have been verified in well-controlled, strictly anoxic-aerobic and strictly anaerobic-aerobic sequencing batch reactor systems. The experimental results show that conditions known to be responsible for bulking sludge in aerobic systems (i.e., low concentration of electron donor and/or electron acceptor) did not lead to bulking. Even when acetate was present at very low concentrations in the aerobic stage of an anaerobic-aerobic bio-P system, the sludge settleability remained very good. This clearly demonstrates that good bio-P activity can stabilize and improve sludge settleability. The presence of microaerophilic conditions in the anoxic stage of the anoxic-aerobic system was the only factor leading to worsening sludge settling characteristics. The results are discussed in light of our previous hypothesis about the importance of diffusion-limited substrate uptake for the development of filamentous structures in biological flocs. The hypothesis is extended to anaerobic-aerobic and anoxic-aerobic conditions, typical of BNR-activated sludge systems. Taking into account the effect of feeding patterns on biochemical rates and on the development of filamentous bacterial structures, we recommend the adoption of plug-flow selector configurations, with strictly anaerobic and/or strictly anoxic conditions, wherein microaerophilic conditions are excluded, in order to maintain reliable and robust BNR performance.  相似文献   

11.
Hybridomas are finding increased use for the production of a wide variety of monoclonal antibodies. Understanding the roles of physiological and environmental factors on the growth and metabolism of mammalian cells is a prerequisite for the development of rational scale-up procedures. An SP2/0-derived mouse hybridoma has been employed in the present work as a model system for hybridoma suspension culture. In preliminary shake flask studies to determine the effect of glucose and glutaminE, it was found that the specific growth rate, the glucose and glutamine metabolic quotients, and the cumulative specific antibody production rate were independent of glucose concentration over the range commonly employed in cell cultures. Only the specific rate of glutamine uptake was found to depend on glutamine concentration. The cells were grown in continuous culture at constant pH and oxygen concentration at a variety of dilution rates. Specific substrate consumption rates and product formation rates were determined from the steady state concentrations. The specific glucose uptake rate deviated from the maintenance energy model(1) at low specific growth rates, probably due to changes in the metabolic pathways of the cells. Antibody production was not growth-associated; and higher specific antibody production rates were obtained at lower specific growth rates. The effect of pH on the metabolic quotients was also determined. An optimum in viable cell concentration was obtained between pH 7.1 and 7.4. The viable cell number and viability decreased dramatically at pH 6.8. At pH 7.7 the viable cell concentration initially decreased, but then recovered to values typical of pH 7.1-7.4. Higher specific nutrient consumption rates were found at the extreme pH values; however, glucose consumption was inhibited at low pH. The pH history also influenced the behavior at a given pH. Higher antibody metabolic quotients were obtained at the extreme pH values. Together with the effect of specific growth rate, this suggests higher antibody production under environmental or nutritional stress.  相似文献   

12.
Staying alive     
Quiescence is a state of reversible cell cycle arrest that can grant protection against many environmental insults. In some systems, cellular quiescence is associated with a low metabolic state characterized by a decrease in glucose uptake and glycolysis, reduced translation rates and activation of autophagy as a means to provide nutrients for survival. For cells in multiple different quiescence model systems, including Saccharomyces cerevisiae, mammalian lymphocytes and hematopoietic stem cells, the PI3Kinase/TOR signaling pathway helps to integrate information about nutrient availability with cell growth rates. Quiescence signals often inactivate the TOR kinase, resulting in reduced cell growth and biosynthesis. However, quiescence is not always associated with reduced metabolism; it is also possible to achieve a state of cellular quiescence in which glucose uptake, glycolysis and flux through central carbon metabolism are not reduced. In this review, we compare and contrast the metabolic changes that occur with quiescence in different model systems.  相似文献   

13.
Quiescence is a state of reversible cell cycle arrest that can grant protection against many environmental insults. In some systems, cellular quiescence is associated with a low metabolic state characterized by a decrease in glucose uptake and glycolysis, reduced translation rates and activation of autophagy as a means to provide nutrients for survival. For cells in multiple different quiescence model systems, including Saccharomyces cerevisiae, mammalian lymphocytes and hematopoietic stem cells, the PI3Kinase/TOR signaling pathway helps to integrate information about nutrient availability with cell growth rates. Quiescence signals often inactivate the TOR kinase, resulting in reduced cell growth and biosynthesis. However, quiescence is not always associated with reduced metabolism; it is also possible to achieve a state of cellular quiescence in which glucose uptake, glycolysis and flux through central carbon metabolism are not reduced. In this review, we compare and contrast the metabolic changes that occur with quiescence in different model systems.  相似文献   

14.
Nutrient uptake in eastern deciduous tree seedlings   总被引:3,自引:0,他引:3  
K. Lajtha 《Plant and Soil》1994,160(2):193-199
Tree seedlings that colonize large treefall gaps are generally shade-intolerant species with high potential relative growth rates. Nutrient availability may be significantly elevated in disturbance-induced gaps, however, little is known about the role of differences in nutrient uptake capacities of different species in structuring the community response to gap openings in eastern North American deciduous forests. Seven tree species were grown from seed under both a high and a low nutrient regime, and uptake kinetics of phosphate, ammonium, and nitrate were studied. Yellow birch, a species with intermediate shade tolerance and relative growth rate, had the highest maximum rates of uptake of all ions, while tulip tree, a gap-colonizing species with high relative growth rate, had the lowest rate of phosphate uptake and intermediate rates of ammonium and nitrate uptake. Beech and hickory, which have low relative growth rates and are not gap-colonizing species, had intermediate levels of nutrient uptake. There was no evidence that species with the highest maximum uptake rates measured at high supply concentrations had relatively low uptake at low nutrient supply concentrations. Although birch increased phosphate absorption capacity when grown under a low nutrient regime, this pattern did not hold for nitrate or ammonium uptake, and other species showed no change in nutrient uptake capacity according to nutrient growth regime. Clearly, factors other than nutrient absorption capacity, such as nutrient use efficiency or allocation to root vs. shoot biomass, underlie differences in species' capacities to colonize and maintain a high relative growth rate in canopy gaps.  相似文献   

15.
Microscopic algae can grow rapidly in natural waters that are extremely low in essential macro and micro nutrients. Yet, their nutrient uptake systems exhibit only mediocre nutrient affinities, the saturation constants being often 10–1000 times the (estimated) ambient concentrations. The large difference which exists between the saturation constants for growth (Ku) and short term uptake (Kp) are due to the acclimation capabilities of the organisms. Over the acclimation range, Ku, to Kp the algae can maintain maximum growth rate by modulating both their internal nutrient quotas (Q) and their maximum short term nutrient uptake rates (Pmax) in response to variations in external nutrient concentrations. The commonly assumed hyperbolic relationships for steady growth and uptake (viz “chemostat theory”) are coherent with a hyperbolic expression for short term uptake including a variable maximum (Pmax). The ratio of the saturation constants for growth and uptake is then directly related to the extreme in quotas and maximum uptake rates: Kμ/Kρ= Qmin/Qmaxρmax/ρQmax. This result is applicable even when the exact hyperbolic laws are not. Published data on Fe, Mn, P and N limitation in algae are generally in accord with the theory and demonstrate a wider acclimation range for trace than for major nutrients.  相似文献   

16.
Sustained oscillations of biomass, ethanol, and ammonium concentrations, specific growth rate, and specific uptake rates of ethanol, ammonium, and oxygen were found in continuous cultures of Saccharomyces cerevisiae under controlled dissolved oxygen (DO), pH, and temperature conditions. The period of oscillations was approximately 2.5-3 h at a pH of 5.5 and 2-2.5 h at a pH of 6.5. Oscillations were observed only under conditions of low carbon (glucose below the minimum detectable level), nitrogen nutrient (ammonium concentration varied between 0.00001 and 0.0015M), and ethanol concentration (0.002-0.085 g/L) in the bioreactor.The oscillatory behavior at pH 5.5 was also characterized by partially synchronized cell growth and reproduction. Not only did the total percentage of budding cells oscillate with the same period as observed for the global biomass and nutrient concentrations, but the peaks in the individual subpopulations of initial budding, middle budding, and late budding cells appeared sequentially during the oscillation period. This provides strong evidence of the hypothesis that variations in metabolism during different periods in the cell cycle of a partially synchronized cell population are responsible for the observed oscillatory bioreactor behavior.The specific nutrient uptake rates for ammonium and oxygen as well as the net specific ethanol uptake rate oscillated with the same period as the biomass oscillations. These results show a dramatic increase in the ammonium and oxygen consumption rates prior to the initial budding of the synchronized subpopulation and a decrease in these rates during the late budding phase. At a pH of 5.5, the late budding phase is characterized by high specific ethanol productivity; however, the ethanol productivity lags the late budding phase at a pH pf 6.5. The observed time-varying metabolism in the oscillatory operating regime appears to be the result of the metabolic changes which occur during the cell cycle. Models which can predict the oscillatory biomass concentration and nutrient levels in this regime must be capable of predicting the concentrations and metabolic rates of the subpopulations as well.  相似文献   

17.
18.
Microscopic algae ran grow rapidly in natural waters that are extremely low in essential macro and micro nutrients. Yet, their nutrient uptake systems exhibit only mediocre nutrient affinities, the saturation constants being often 10–1000 times the (estimated) ambient concentrations. The large difference which exists between the saturation constants for growth (Kμ) and short term uptake (Kρ) are due to the acclimation capabilities of the organisms. Over the acclimation range, Kμ to Kρ, the algae can maintain maximum growth rate by modulating both their internal nutrient quotas (Q) and their maximum short term nutrient uptake rates (ρmax) in response to variations in external nutrient concentrations. The commonly assumed hyperbolic relationships for steady growth and uptake (viz “chemostat theory”) are coherent with a hyperbolic expression for short term uptake including a variable maximum (ρmax). The ratio of the saturation constants for growth and uptake is then directly related to the extreme in quotas and maximum uptake rates: Kμ/Kρ= Qmin/Qmax·ρlomaxhimax. This result is applicable even when the exact hyperbolic laws are not. Published data on Fe, Mn, P and N limitation in algae are generally in accord with the theory and demonstrate a wider acclimation range for trace than for major nutrients.  相似文献   

19.
A mathematical model is developed to elucidate the effects of biophysical transport processes (nutrient diffusion, cell motility, and chemotaxis) along with biochemical reaction processes (cell growth and death, nutrient uptake) upon steady-state bacterial population growth in a finite one-dimensional region. The particular situation considered is that of growth limitation by a nutrient diffusing from an adjacent phase not accessible to the bacteria. It is demonstrated that the cell motility and chemotaxis properties can have great influence on steady-state population size. In fact, motility effects can be as significant as growth kinetic effects, in a manner analogous to diffusion- and reaction-limited regimes in chemically reacting systems. In particular, the following conclusions can be drawn from our analysis for bacterial populations growing at steady-state in a confined, unmixed region: (a) Random motility may lead to decreased population density; (b) chemotaxis can allow increased population density if the chemotactic response is large enough; (c) a species with superior motility properties can outgrow a species with superior growth kinetic properties; (d) motility effects become greater as the size of the confined growth region increases; and (e) motility effects are diminished by significant mass-transfer limitation of the nutrient from the adjacent source phase. The relationships of these results for populations to previous conclusions for individual cells is discussed, and implications for microbial competition are suggested.  相似文献   

20.
The yeasts Saccharomyces cerevisiae, Candida utilis, and Candida lipolytica were used to investigate the action of different concentrations of fatty acids (from acetic to myristic acid) on cell growth, division, uptake of inorganic phosphate, and substrate oxidation. The former two yeasts were found to undergo an inhibition of growth, cell division, and phosphate uptake at lower acid concentrations and to experience the inhibition of substrate oxidation at higher acid concentrations. The concentration dependence of the action of fatty acids can be classified into four categories: 1) subthreshold concentrations which do not inhibit growth and have either no effect on, or stimulate, oxygen consumption; 2) threshold concentrations which lower the rate of growth, cell division, and phosphate uptake but do not inhibit the oxidation of carbon substrate; 3) above-threshold concentrations which inhibit partially even substrate oxidation, and 4) microbicide concentrations. Candida lipolytica displays the same sensitivity toward the action of fatty acids as the above yeast species; however, the threshold concentrations are higher and can be quickly lowered owing to oxidation by the yeast. The concentrations of fatty acids found in the medium after cultivations of yeast with n-alkanes are of the same order as limiting concentrations; the formation of acids with twelve and less carbons in the molecule can thus be assumed to be one of the basic reasons for lowering of biomass yields during cultivations on these hydrocarbons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号