首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study confirms our earlier finding that human interleukin (IL)-1 beta exerts an antiviral effect on diploid fibroblasts and on MG-63 osteosarcoma cells. It also extends the observation in that a similar effect was noted on aged but not freshly trypsinized HEp-2 cells, and that not only IL-1 beta but also IL-1 alpha and tumor necrosis factor (TNF)-alpha exerted similar antiviral effects on cells. The antiviral effects of these cytokines were neutralized by addition to the assay system of an antibody that was specific for interferon (IFN)-beta 1, indicating that IFN-beta 1 or a structurally or functionally related substance is involved in the antiviral activity observed. Both IL-1 and TNF were able to induce production of the 26-kDa protein, also known as IFN-beta 2, hybridoma/plasmacytoma growth factor (HPGF) or B-cell stimulatory factor-2 (BSF-2) and previously proposed as an alternative to IFN-beta 1 for mediating the antiviral effect of TNF. However, no good correlation was found between the antiviral effects of TNF and its potential to induce production of the 26-kDa protein. Furthermore, the anti-IFN-beta 1 serum which neutralized the antiviral activity of IL-1 and TNF did not cross-react with the 26-kDa protein. Conversely, the antiviral effect of IL-1 and TNF was only weakly neutralized by an antibody that did react with the 26-kDa protein and showed low cross-reactivity with IFN-beta 1. These observations, together with the low specific activity of the 26-kDa protein as an antiviral agent (less than 10(5) U/mg protein) provide strong arguments against this protein and in favor of IFN-beta 1 (or still another IFN-beta 1-related molecule) as the ultimate mediator of the antiviral effect of IL-1 and TNF.  相似文献   

2.
3.
A Simon  J Fh  O Haller    P Staeheli 《Journal of virology》1991,65(2):968-971
Accumulation of Mx gene products in cells of patients and experimental animals has been recognized as a useful marker for detecting minute quantities of biologically active interferon (IFN). Goetschy et al. (J. Goetschy, H. Zeller, J. Content, and M. A. Horisberger, J. Virol. 63:2616-2622, 1989) reported that not only IFNs but also interleukin-1 (IL-1) and tumor necrosis factor (TNF) were potent inducers of the human Mx genes. However, we observed no Mx induction in cultured human fibroblasts or in human peripheral blood mononuclear cells treated with various concentrations of IL-1 alpha or TNF-alpha. Mx induction was found in the spleens of mice treated with TNF-alpha or IL-1 alpha, but this effect could be neutralized with antibodies to murine IFN-alpha/beta. Of the other cytokines that we tested (IL-2, IL-6, and granulocyte-macrophage colony-stimulating factor), only IL-2 induced the Mx genes in peripheral blood mononuclear cells, but antibodies to human IFN-beta efficiently neutralized this effect. Our results thus indicate that IFNs are the only cytokines with intrinsic Mx-inducing activity.  相似文献   

4.
Ia expression is an important marker of macrophage functional capacity. IFN-gamma induces Ia expression on perhaps all murine macrophages, whereas IL-4, granulocyte-macrophage CSF, and CSF-1 induce Ia on restricted sets of macrophages. Inhibitors of expression include PGE2, glucocorticoids, and IFN-beta. TNF has been found to augment Ia expression on several macrophage lineage cell lines but to inhibit expression on murine peritoneal macrophages. Our study shows that TNF can have opposite effects on Ia expression (induced by IFN-gamma) on thioglycollate-elicited peritoneal macrophages, depending on the length of time cells are treated and on the presence of other modulators. In particular, TNF augmented early expression induced by IFN-gamma but inhibited later expression. And although TNF synergized with PGE2 to markedly inhibit Ia induction on these cells, it partially antagonized the inhibition by corticosterone and IFN-beta. TNF and PGE2 also synergized to inhibit Ia expression induced on bone marrow-derived and splenic macrophages by either IFN-gamma or IL-4. In contrast to their effect on Ia expression, TNF and PGE2 had opposite effects on expression of gamma 2a FcR in macrophages. TNF blocked the increase in FcR expression due to any combination of PGE2, IFN-gamma, and IFN-beta. However, TNF and PGE2 both increased expression of gamma 2a FcR on WEHI-3 cells. If the different effects of TNF reflect the differentiation states of macrophages, its effects on Ia and FcR expression may vary with the progression of an immune response.  相似文献   

5.
Earlier studies demonstrated the induction of beta 2-interferon (IFN-beta 2) in human diploid fibroblasts (FS-4 strain) exposed to tumor necrosis factor (TNF). These studies suggested that IFN-beta 2 mediates an antiviral effect in TNF-treated cells and exerts a feedback inhibition of the mitogenic effect of TNF. Here we demonstrate that the expression of the antiviral action of TNF can be enhanced by prior exposure of FS-4 cells to trace amounts of IFN-beta 1. IFN-beta 1, at a higher concentration, can directly increase the expression of IFN-beta 2. Exposure of cells to TNF enhanced IFN-beta 2 (but not IFN-beta 1) mRNA expression in response to poly(I).poly(C), an IFN inducer which is also known to stimulate FS-4 cell growth. Platelet-derived growth factor and interleukin-1 also led to the increased expression of IFN-beta 2. However, platelet-derived growth factor and interleukin-1 could override the antiviral effect of TNF and also that of exogenously added IFN-beta 1. Our data suggest that a complex network of interactions that involves the endogenous production of IFN-beta 2 is triggered by several growth-modulatory cytokines. Cellular homeostasis is likely to represent a balance between the induction of IFN-beta 2 by these cytokines and their ability to override the inhibitory actions of IFN-beta 2.  相似文献   

6.
7.
The hypothesis that cytokines mediate neutrophil emigration induced by endotoxin (LPS) was studied by examining the potency, the kinetics of neutrophil emigration, and the tachyphylaxis of intradermal sites with IL-1, TNF-alpha and LPS. Human rIL-1 alpha and IL-1 beta, synthetic lipid A, and LPS were several orders of magnitude more potent than human rTNF. The kinetic profiles of neutrophil emigration induced by IL-1 alpha, TNF, and LPS were characterized by minimal emigration in the first 30 min, followed by rapid and transient emigration. After the injection of LPS, the onset and the time at which the rate of emigration was maximal consistently appeared 30 min later than IL-alpha or TNF, suggesting that neutrophil emigration in response to LPS was mediated by a locally generated cytokine. IL-1 and TNF were then examined as potential secondary mediators of LPS-induced emigration by comparing the patterns of tachyphylaxis between LPS and IL-1 alpha or TNF; i.e., the magnitude of neutrophil emigration into inflammatory sites was compared with sites injected 6 h previously (desensitizing injections) with a cytokine or with LPS. Tachyphylaxis was dose dependent with each and also between the IL-1 species; therefore, when tachyphylaxis between the cytokines and LPS was examined, relatively higher doses were selected for the desensitizing injections than for the test injections. With this approach, desensitizing injections of IL-1 alpha diminished the neutrophil accumulation after LPS, and LPS also desensitized sites to IL-1 alpha. However, tachyphylaxis was not observed between TNF and LPS, or between TNF and IL-1 alpha. These data suggest that IL-1, but not TNF, is a potential mediator of LPS-induced neutrophil emigration.  相似文献   

8.
Effects of transforming growth factor-beta 1 (TGF-beta 1), either alone or in combination with TNF, on the induction of differentiation of human myelogenous leukemic cell lines were examined. TGF-beta 1 alone induced differentiation of a human monocytic leukemia U-937 line into the cells with macrophage characteristics. When combined with TNF, TGF-beta 1 synergistically or additively induced differentiation associated properties. A human myeloblastic leukemia cell line, ML-1, differently responded to TGF-beta 1 in induction of differentiation. FcR activity and phagocytic activity induced by TNF were suppressed by TGF-beta 1. However, nitroblue tetrazolium reducing activity was synergistically induced by combinations of TGF-beta 1 and TNF. Scatchard analysis of TNF receptors indicated that the number of binding sites and dissociation constant of TNF for its receptors on U-937 or ML-1 cells were not changed by treatment with TGF-beta 1. Although IFN-gamma, IL-6, granulocyte CSF, and granulocyte-macrophage CSF-induced nitroblue tetrazolium reducing activity of U-937 cells, only IFN-gamma, and TNF induced it synergistically in combination with TGF-beta 1. Synergism between TGF-beta 1 and TNF was also observed in inhibition of growth of U-937 and ML-1 cells. Although TGF-beta 1 induction of differentiation of other monocytoid leukemic THP-1 cells was similar to that of U-937 cells, TGF-beta 1 only slightly induced differentiation of promyelocytic leukemic HL-60 cells, either alone or in combination with TNF. Our observations indicate that TGF-beta 1 strongly modulates differentiation and proliferation of human myelogenous leukemia cells, macrophage precursors.  相似文献   

9.
Tumor necrosis factor (TNF), interleukin-1 (IL-1), and epidermal growth factor (EGF) were mitogenic for human diploid FS-4 fibroblasts. Dexamethasone amplified the growth-stimulating action of all three agents. Amplification of the growth-stimulating action was maximal when dexamethasone was added along with TNF or EGF; no amplification was seen if the addition of dexamethasone was delayed for more than 3 hr. Prolonged simultaneous treatment with TNF and EGF resulted in less growth stimulation than treatment with EGF alone. Dexamethasone abolished this apparent antagonistic interaction between TNF and EGF. Dexamethasone also inhibited the antiviral action of TNF against encephalomyocarditis (EMC) virus in FS-4 cells. TNF and IL-1 increased the steady state level of interferon (IFN)-beta 2 mRNA but failed to induce detectable levels of IFN-beta 1 mRNA in FS-4 cells. Dexamethasone inhibited the increase of IFN-beta 2 mRNA levels by IL-1 or TNF. Inhibition of IFN-beta synthesis is likely to be responsible for the inhibition of the TNF-induced antiviral state by dexamethasone. Since IFNs suppress cell growth, inhibition of endogenous IFN-beta synthesis may also be responsible for the amplification by dexamethasone of the growth-stimulating action of TNF and IL-1. Amplification of the mitogenic action of EGF by dexamethasone appears to be mediated by different mechanism.  相似文献   

10.
We investigated the mechanism of cytostasis mediated by activated human plastic-adherent peripheral blood mononuclear cells (PBMC) in two cell lines, L.P3 cells (TNF alpha sensitive) and A375 cells (TNF alpha insensitive), using two biological response modifiers, lipopolysaccharide (LPS) and a protein-bound polysaccharide extracted from a fungus, PSK. In L.P3/LPS, L.P3/PSK, and A375/LPS cultures, the cytostatic effects were significantly reversed by anti-TNF alpha antibody, while in the A375/PSK culture they were not. In concordance with this, LPS was a good inducer of TNF alpha, but PSK was not. In A375/PSK culture, PSK-activated cells arrested A375 cells at the boundary between G1 and S, presumably through inhibition of polyamine synthesis. This growth inhibition may be mediated by an unknown soluble factor which is different from TNF alpha, IL-1, IL-6, and TGF beta.  相似文献   

11.
BACKGROUND: The receptor of ciliary neurotrophic factor (CNTF) contains the signal transduction protein gp130, which is also a component of the receptors of cytokines such as interleukin (IL)-6, leukemia-inhibitory factor (LIF), IL-11, and oncostatin M. This suggests that these cytokines might share common signaling pathways. We previously reported that CNTF augments the levels of corticosterone (CS) and of IL-6 induced by IL-1 and induces the production of the acute-phase protein serum amyloid A (SAA). Since the elevation of serum CS is an important feedback mechanism to limit the synthesis of proinflammatory cytokines, particularly tumor necrosis factor (TNF), we have investigated the effect of CNTF on both TNF production and lipopolysaccharide (LPS) toxicity. MATERIALS AND METHODS: To induce serum TNF levels, LPS was administered to mice at 30 mg/kg i.p. and CNTF was administered as a single dose of 10 micrograms/mouse i.v., either alone or in combination with its soluble receptor sCNTFR alpha at 20 micrograms/mouse. Serum TNF levels were the measured by cytotoxicity on L929 cells. In order to measure the effects of CNTF on LPS-induced TNF production in the brain, mice were injected intracerebroventricularly (i.c.v.) with 2.5 micrograms/kg LPS. Mouse spleen cells cultured for 4 hr with 1 microgram LPS/ml, with or without 10 micrograms CNTF/ml, were also analyzed for TNF production. RESULTS: CNTF, administered either alone or in combination with its soluble receptor, inhibited the induction of serum TNF levels by LPS. This inhibition was also observed in the brain when CNTF and LPS were administered centrally. In vitro, CNTF only marginally affected TNF production by LPS-stimulated mouse splenocytes, but it acted synergistically with dexamethasone (DEX) in inhibiting TNF production. Most importantly, CNTF administered together with sCNTFR alpha protected mice against LPS-induced mortality. CONCLUSIONS: These data suggest that CNTF might act as a protective cytokine against TNF-mediated pathologies both in the brain and in the periphery.  相似文献   

12.
We have previously demonstrated that incubation with IL-2 can induce ADCC activity in murine cells and that this activity was mediated by asialo GM1+, FcR+ cells. In the present study we show that the cytokines IFN-alpha and IFN-gamma, TNF-alpha, and IL-1 alpha are unable to induce antibody-dependent cellular cytotoxicity (ADCC) in murine cells; however, TNF-alpha and IL-1 alpha could substantially augment the ADCC induced by IL-2. IL-1 increased the IL-2-induced ADCC activity in a dose-dependent fashion and in cells isolated from the thymus and spleen. The precursors of the ADCC induced by the combination of IL-1 and IL-2 were asialo GM1+ cells, similar to the precursor cells of IL-2-induced ADCC. The effect of IL-1 and TNF on ADCC was not the result of an increase in the FcR density on the cell surface or the result of an increase in the number of FcR+ cells although IL-1 increased the recovery of viable cells in culture. The main effect of IL-1 and TNF was the enhancement of the lytic ability of the IL-2 cultured cells as indicated by increased intra-cellular benzyloxycarbonyl L-lysine thiobenzylester-esterase activity. These results suggest that lymphokines such as IL-1 and TNF may synergize with IL-2 in the induction of ADCC and could thus potentially be useful for the immunotherapy of established tumors when combined with the administration of specific anti-tumor antibodies.  相似文献   

13.
J D Wolchok  J Vilcek 《Cytokine》1992,4(6):520-527
Expression of HLA class I antigens is known to be regulated by various cytokines at both the mRNA and protein levels. We have examined the induction of HLA-B7 by tumor necrosis factor alpha (TNF), interleukin 1 alpha (IL-1) and interferon beta (IFN-beta) in normal human diploid FS-4 fibroblasts. Optimal induction of HLA-B7 by TNF at 24 h was shown to require a continuous presence of TNF. Since TNF also induces IFN-beta in these cells and the latter cytokine itself has the capacity to upregulate HLA class I expression, we investigated the role of autocrine IFN-beta in the induction of HLA-B7 by TNF. Experiments with neutralizing polyclonal antibodies to recombinant IFN-beta showed that the induction of HLA-B7 mRNA by TNF was partially dependent on autocrine IFN-beta. However, TNF and IFN-beta induced HLA-B7 mRNA with similar kinetics and treatment with saturating concentrations of both TNF and IFN-beta resulted in an additive or possibly synergistic response. The latter findings support the idea that induction of HLA class I by TNF is not mediated solely by autocrine IFN-beta produced in response to TNF. In addition, experiments with the protein synthesis inhibitor cycloheximide suggested that the induction of mRNAs for both the heavy and light (beta 2-microglobulin) chains of the HLA class I antigen by TNF did not require de novo protein synthesis. IL-1 was also shown to increase steady-state mRNA levels of HLA-B7 with kinetics similar to those of TNF and IFN-beta in FS-4 cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The cytokines IL-1 and TNF-alpha are involved in inflammation and their production is stimulated by various agents, especially endotoxin (LPS). Here, using the human IL-1 receptor antagonist (IL-1RA) and a new monoclonal antibody (mAb 7F11) to rabbit TNF, the role of endogenous IL-l and TNF production in acute (3h) leukocyte (PMNL) recruitment to dermal inflammation in rabbits has been studied. IL-1RA inhibited by 27% the PMNL accumulation in reactions induced by killed Escherichia coli (p < 0.05) but not by LPS. The monoclonal antibody to TNF inhibited by 27% and 38% (p < 0.002) the PMNL accumulation in LPS and E. coli reactions respectively, but a combination of the mAb with IL-1RA was not more effective. Treatment of human umbilical vein endothelium with LPS for 3 h activated endothelium to induce PMNL transendothelial migration in vitro, which was not inhibited by IL-1RA, antibody to TNF-alpha, IL-1 or to IL-8. In conclusion, TNF and IL-1 may partially mediate acute PMNL infiltration in vivo to LPS and Gram negative bacteria, but there is a major IL-1/TNF independent mechanism, at least in dermal inflammation, which may be due to direct LPS activation of the microvasculature or perhaps the generation of cytokines other than IL-1 and TNF.  相似文献   

15.
The cytokine IFN-beta 2/IL-6 has emerged as an important means of communication between cells--both within the immune system as well as outside it. In exploring the link between the endocrine and the immune systems, we have studied the secretion of IFN-beta 2/IL-6 by freshly explanted human endometrial stromal cells and its modulation by estrogens. Endometrial stromal cells produced IFN-beta 2/IL-6 in response to other inflammation-associated cytokines such as IL-1 alpha or beta, TNF, and IFN-gamma. This secretion was strongly inhibited by estradiol-17 beta at concentrations as low as 10(-9) M. Multiple species of stromal cell IFN-beta 2/IL-6 in the size range 23 to 30 kDa were detected using immunoprecipitation or immunoblotting procedures. The endometrial stromal cell IFN-beta 2/IL-6 species were phosphorylated and differentially glycosylated in a manner comparable to IFN-beta 2/IL-6 secreted by induced human peripheral blood monocytes or foreskin fibroblasts. However, in contrast to peripheral blood monocytes and fibroblasts, bacterial LPS did not induce IFN-beta 2/IL-6 production in endometrial stromal cells. Additionally, the IFN-beta 2/IL-6 identified in medium from IL-1 alpha-induced stromal cells is biologically active on hepatocytes. These observations, taken together with the observation that IFN-beta 2/IL-6 strongly inhibits the proliferation of human epithelial cells, suggest the possibility that stromal cell secreted IFN-beta 2/IL-6 may affect the physiology of the overlying epithelium in an hormonally modulated manner. Estrogen-regulated production of endometrial IFN-beta 2/IL-6 may participate in gender-specific systemic immunomodulation.  相似文献   

16.
17.
BACKGROUND: Cytokines and cytokine antagonists modulate human immunodeficiency virus (HIV) replication in vitro and may be involved in HIV disease pathogenesis. An understanding of these cytokine networks may suggest novel treatment strategies for HIV-seropositive persons. MATERIALS AND METHODS: U1 cells, a chronically infected promonocytic cell line, were stimulated with interleukin 1 alpha (IL-1 alpha), IL-1 beta or tumor necrosis factor (TNF) for 24 hr. The effects of these cytokines, and of anti-IL-1 receptor type 1 and type 2 (IL-1RI and II) antibody, IL-1 receptor antagonist (IL-1Ra), and recombinant human TNF binding protein type 1 (rhTBP-1, a form of TNF receptor p55), on HIV-1 replication, as measured by ELISA for HIV-1 p24 antigen, were determined. The effects of IL-1 and IL-1Ra on nuclear factor-kappa B (NF-kappa B) DNA binding activity, as measured by electrophoretic mobility shift assays, were also determined. RESULTS: IL-1 alpha and IL-1 beta increased p24 antigen production in a concentration-dependent manner. IL-1Ra completely, and rhTBP-1 partially, suppressed IL-1-induced p24 antigen production. IL-1 increased NF-kappa B DNA binding activity and IL-1Ra blocked this effect. Since IL-1Ra blocks IL-1 from binding to both the IL-1RI and Il-1RII, monoclonal antibodies directed against each receptor were used to ascertain which IL-1R mediates IL-1-induced HIV-1 expression. Antibody to the IL-1RI reduced IL-1-induced p24 antigen production. Although anti-IL-1RII antibody blocked the binding of 125IL-1-1 alpha to U1 cells by 99%, this antibody did not affect IL-1-induced p24 antigen production. IL-1 beta enhanced TNF alpha-induced HIV expression when added before or simultaneously with TNF alpha. CONCLUSIONS: IL-1 induces HIV-1 expression (via the IL-1RI) and NF-kappa B activity in U1 cells. These effects are blocked by IL-1Ra and partially mediated by TNF. IL-1 enhances TNF alpha-induced HIV replication in U1 cells.  相似文献   

18.
It has been reported that the Fc gamma R-mediated phagocytic activity of polymorphonuclear leukocytes (PMN) from patients with acute bacterial infections is markedly enhanced when compared with healthy controls. Inasmuch as several potent cytokines are known to be involved in inflammatory and infectious processes, we studied the effects of three such cytokines (IL-1 beta, IL-2, and TNF-alpha) on normal PMN Fc gamma R-mediated phagocytosis. IL-1 beta and TNF alpha both caused a significant increase in the ingestion of EIgG by adherent PMN. In combination, IL-1 beta and TNF-alpha had an additive effect, even when each was used at its optimal concentration. In contrast to the enhancing effects mediated by IL-1 beta and TNF-alpha, IL-2 alone had no significant effect on PMN phagocytosis. Notably, however, IL-2 at a concentration of 10(4) U/ml partially inhibited TNF-alpha-mediated enhancement of phagocytosis by decreasing TNF binding to the PMN cell surface. This inhibitory effect of IL-2 on TNF was reversed by anti-IL-2 antibody and mAb directed against the low affinity IL-2R (anti-Tac), whereas mAb directed against the intermediate affinity receptor (mik-beta 1) had no such effect. These findings may have important physiologic implications, because patients receiving IL-2 therapy have been shown to have increased susceptibility to infection.  相似文献   

19.
The effects of interleukin-4(IL-4) on the growth and differentiation of mouse myeloid leukemia M1 cells induced by various differentiation inducers were investigated. IL-4 alone did not have any significant effect on the growth or differentiation of M1 cells, but inhibited their differentiation induced by dexamethasone, D-factor/leukemia inhibitory factor, or interleukin 6. IL-4 also restored the proliferation of M1 cells after growth inhibition during their induction of differentiation by inducers. In contrast, IL-4 enhanced inhibition of growth and induction of differentiation of M1 cells by 1 alpha,25-dihydroxyvitamin D3. These results indicate that modulation of differentiation of M1 cells by IL-4 depends on the differentiation inducer.  相似文献   

20.
Human IL-1 beta and TNF alpha production by normal and transformed monocytoid cells was studied using biological assays, cytokine specific ELISA and by immunocytochemical methods on a single cell level. Quiescent human blood monocytes and cultured in vitro transformed human monocytoid cell lines U-937, THP-1 and HL-60 did not contain IL-1 beta and TNF alpha in their cytoplasm. IL-1 beta synthesis and secretion was induced by LPS stimulation in nearly 90% monocytes, 15-20% U-937, 3-5% THP-1 and in no HL-60 cells. Normal human blood monocytes had a more rapid kinetics of IL-1 beta synthesis. IL-1 beta positive cells stained with antibodies to human IL-1 beta appeared at 1-2 hours after LPS application, while in monocytic cell lines only after 4-6 hours. Using immunoperoxidase staining of U-937 cells pulse labelled with 3H-thymidine, it was shown that proliferating cells did not synthetize IL-1 beta. Instead of IL-1 beta, TNF alpha could be induced by LPS in U-937 cells only after preliminary differentiation with PMA. Recombinant IL-1 beta induced a very low level of TNF alpha production in PMA-treated cells. Similarly recombinant TNF alpha alone induced IL-1 beta synthesis only in a few U-937 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号