首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
A promising approach for the analysis of surface electromyograms is to use wavelets to determine the spectral distribution of the signal intensity at any time. The authors have recently proposed using non-linearly scaled wavelets to obtain intensity patterns, which reflect the spectral distribution at any given time point. Further analysis of intensity-patterns is greatly facilitated by representing them as linear combinations of a base set of principal-patterns. The weight with which each principal-pattern contributes to the intensity-pattern can be represented on a set of orthogonal axes that span a previously introduced pattern space. The purpose of the present study was to show how to use pattern space to discriminate and classify male and female runners based on the electromyograms of five muscles of the limb. The results showed that there were significant gender specific differences, which allowed more than a 95% correct classification of the subjects as males or females. Classification was possible irrespective of the shod condition while running. Gender specific differences occurred at well-defined time periods during the movement. Common to both genders was that spectral changes did not parallel the changes in total signal intensity.  相似文献   

2.
The identification of differences between groups is often important in biomechanics. This paper presents group classification tasks using kinetic and kinematic data from a prospective running injury study. Groups composed of gender, of shod/barefoot running and of runners who developed patellofemoral pain syndrome (PFPS) during the study, and asymptotic runners were classified. The features computed from the biomechanical data were deliberately chosen to be generic. Therefore, they were suited for different biomechanical measurements and classification tasks without adaptation to the input signals. Feature ranking was applied to reveal the relevance of each feature to the classification task. Data from 80 runners were analysed for gender and shod/barefoot classification, while 12 runners were investigated in the injury classification task. Gender groups could be differentiated with 84.7%, shod/barefoot running with 98.3%, and PFPS with 100% classification rate. For the latter group, one single variable could be identified that alone allowed discrimination.  相似文献   

3.
The identification of differences between groups is often important in biomechanics. This paper presents group classification tasks using kinetic and kinematic data from a prospective running injury study. Groups composed of gender, of shod/barefoot running and of runners who developed patellofemoral pain syndrome (PFPS) during the study, and asymptotic runners were classified.

The features computed from the biomechanical data were deliberately chosen to be generic. Therefore, they were suited for different biomechanical measurements and classification tasks without adaptation to the input signals. Feature ranking was applied to reveal the relevance of each feature to the classification task.

Data from 80 runners were analysed for gender and shod/barefoot classification, while 12 runners were investigated in the injury classification task. Gender groups could be differentiated with 84.7%, shod/barefoot running with 98.3%, and PFPS with 100% classification rate. For the latter group, one single variable could be identified that alone allowed discrimination.  相似文献   

4.

Purpose

The classification between different gait patterns is a frequent task in gait assessment. The base vectors were usually found using principal component analysis (PCA) is replaced by an iterative application of the support vector machine (SVM). The aim was to use classifyability instead of variability to build a subspace (SVM space) that contains the information about classifiable aspects of a movement. The first discriminant of the SVM space will be compared to a discriminant found by an independent component analysis (ICA) in the SVM space.

Methods

Eleven runners ran using shoes with different midsoles. Kinematic data, representing the movements during stance phase when wearing the two shoes, was used as input to a PCA and SVM. The data space was decomposed by an iterative application of the SVM into orthogonal discriminants that were able to classify the two movements. The orthogonal discriminants spanned a subspace, the SVM space. It represents the part of the movement that allowed classifying the two conditions. The data in the SVM space was reconstructed for a visual assessment of the movement difference. An ICA was applied to the data in the SVM space to obtain a single discriminant. Cohen''s d effect size was used to rank the PCA vectors that could be used to classify the data, the first SVM discriminant or the ICA discriminant.

Results

The SVM base contains all the information that discriminates the movement of the two shod conditions. It was shown that the SVM base contains some redundancy and a single ICA discriminant was found by applying an ICA in the SVM space.

Conclusions

A combination of PCA, SVM and ICA is best suited to extract all parts of the gait pattern that discriminates between the two movements and to find a discriminant for the classification of dichotomous kinematic data.  相似文献   

5.
Running is a sport that has continued to see growth in numbers over the years. Recently, there has been a movement promoting running barefoot and in light, "minimalist" shoes. Advocates of barefoot running believe that a more primitive style of running may result in fewer running-related injuries and even possibly improve performance. To identify the current interest level and participation in barefoot or minimalist shod running, an electronic survey was developed and dispersed to 6,082 runners. The survey instrument examined demographics, motivating factors, used resources, perceived barriers, and expectations in runners who add barefoot or in minimalist shod running to their training. Seven hundred eighty-five (13%) runners completed the survey. Six hundred and thirty (75.7%) indicated they were at least somewhat interested in running barefoot or in minimalist shoes. One hundred seventy-two (21.9%) runners had previously tried barefoot running, whereas 239 (30.4%) had previously tried minimalist shoes. The primary motivating factor for those running barefoot or in minimalist shoes (n = 283) was to prevent future injury (n = 97, 34.3%). Advice from friends (n = 68, 24.5%) or books (n = 68, 24.5%) was the most commonly used resource in transitioning to barefoot or minimalist shod running. Fear of possible injury (n = 424, 54%) was the most prevalent perceived barrier in transitioning to barefoot or minimalist shod running. An overwhelming 671 (85.5%) indicated that they were at least somewhat likely to continue with or to add barefoot or minimalist shod running if provided sufficient instruction. Runners who are men, of younger age, and who consider themselves elite runners are somewhat more likely to be interested in barefoot or minimalist shod running.  相似文献   

6.
Summary The intercellular clefts of the brain and the leptomeninges, and the perivascular spaces were studied with reference to the results obtained in a previous study (Krisch et al. 1983). The spatial relationships of these compartments were analyzed at the electron-microscopic level. Horse-radish peroxidase (HRP) was injected into the brain or into the contralateral ventricle.The pattern of distribution of HRP depends on the boundary situation in the individual compartments. The inner and outer pial layers accompany the vessels intruding into the brain. In the Virchow-Robin space the pial funnel obliterates within a short distance. The inner arachnoid layer is continuous with the outer arachnoid layer when it covers the vessels traversing the meningeal space. The perivascular compartment is not in communication with the arachnoid space; moreover, the pial funnel within the Virchow-Robin space is sealed off against the arachnoid space.Thus, blood vessels traversing the meningeal spaces and subsequently penetrating the brain surface are exposed to the common intercellular compartment represented by the intercellular clefts of the brain and the leptomeninges; this compartment does not communicate with the other compartments. The cerebrospinal fluid located in this intercellular compartment is preferentially drained into the upper cervical lymph nodes.Supported by the Deutsche Forschungsgemeinschaft (Grant Nr. Kr 569/5) and the Stiftung Volkswagenwerk.  相似文献   

7.
Stiffness adaptations in shod running   总被引:3,自引:0,他引:3  
When mechanical parameters of running are measured, runners have to be accustomed to testing conditions. Nevertheless, habituated runners could still show slight evolutions of their patterns at the beginning of each new running bout. This study investigated runners' stiffness adjustments during shoe and barefoot running and stiffness evolutions of shoes. Twenty-two runners performed two 4-minute bouts at 3.61 m.s-1 shod and barefoot after a 4-min warm-up period. Vertical and leg stiffness decreased during the shoe condition but remained stable in the barefoot condition, p < 0.001. Moreover, an impactor test showed that shoe stiffness increased significantly during the first 4 minutes, p < 0.001. Beyond the 4th minute, shoe properties remained stable. Even if runners were accustomed to the testing condition, as running pattern remained stable during barefoot running, they adjusted their leg and vertical stiffness during shoe running. Moreover, as measurements were taken after a 4-min warm-up period, it could be assumed that shoe properties were stable. Then the stiffness adjustment observed during shoe running might be due to further habituations of the runners to the shod condition. To conclude, it makes sense to run at least 4 minutes before taking measurements in order to avoid runners' stiffness alteration due to shoe property modifications. However, runners could still adapt to the shoe.  相似文献   

8.
9.
A magnetotactic multicellular prokaryote (MMP) is an assembly of bacterial cells organized side by side in a hollow sphere in which each cell faces both the external environment and an internal acellular compartment in the center of the multicellular organism. MMPs swim as a unit propelled by the coordinated beating of the many flagella on the external surface of each cell. At every stage of its life cycle, MMPs are multicellular. Initially, a spherical MMP grows by enlarging the size of each of its cells, which then divide. Later, the cells separate into two identical spheres. Swimming individual cells of MMPs have never been observed. Here we have used fluorescent dyes and electron microscopy to study the viability of individual MMP cells. When separated from the MMP, the cells cease to move and they no longer respond to magnetic fields. Viability tests indicated that, although several cells could separate from a MMP before completely losing their motility and viability, all of the separated cells were dead. Our data show that the high level of cellular organization in MMPs is essential for their motility, magnetotactic behavior, and viability.  相似文献   

10.
11.
12.
The study compares the timing and frequency changes of surface EMGs recorded from osteoarthritis patients with previous traumatic ankle injury and normal subjects during level walking. EMG intensity (power) was obtained by a wavelet analysis. There were intensity values for each frequency characterized by the wavelets for every time point. The intensities were compounded into Multi Muscle Patterns (MMP) simultaneously showing the time and spectral aspects of the lower leg muscle activity.The aim of the study was to test the hypothesis that the differences between the group of the MMPs from the affected leg (AFL) and the not affected leg (NAL) allow detecting whether a newly measured MMP results from an AFL or NAL. This hypothesis was tested by a spherical classification procedure yielding the correctly classified MMPs thus indicating the significance of the differences between the MMPs of the AFL and NAL. The hypothesis was supported (not falsified) by the results. Thus there were common features of muscle activity in the AFL of most osteoarthritis patients that allowed detecting whether the MMP of a new patient was of the kind seen in most other osteoarthritis patients. The spectral, timing and intensity factors in the MMP that allowed this classification were visualized in the mean MMPs of the patients and the control group. The comparison revealed where on average the relative timing and spectral differences of the muscle activation of osteoarthritis patients and control subjects occurred.  相似文献   

13.
Agrin is a heparan sulfate proteoglycan, which plays an essential role in the development and maintenance of the neuromuscular junction. Agrin is a stable component of the synaptic basal lamina and strong evidence supports the hypothesis that agrin directs the formation of the postsynaptic apparatus, including aggregates of AChRs, and junctional folds. Changes in the distribution of agrin during synaptic remodeling, denervation and reinnervation reveal that agrin can be quickly and efficiently removed from the synaptic basal lamina in a regulated manner. In order to fully understand this mechanism we sought to identify those molecules that were responsible for the removal of agrin. Matrix Metalloproteinases (MMPs) were the most likely molecules since MMPs are involved in the regulation of the pericellular space, including the cleavage of matrix proteins. In particular, MMP3 has been shown to be effective in cleaving heparan sulfate proteoglycans. Antibodies to MMP3 recognize molecules concentrated in the extracellular matrix of perisynaptic Schwann cells. MMP3 specific phylogenic compounds reveal that active MMP3 is localized to the neuromuscular junction. Purified recombinant MMP3 can directly cleave agrin, and it can also remove agrin from synaptic basal lamina. MMP3 activity is itself regulated as activation of MMP3 is lost in denervated muscles. MMP3 null mutant mice have altered neuromuscular junction structure and function, with increased AChRs, junctional folds and agrin immunoreactivity. Altogether these results support the hypothesis that synaptic activity induces the activation of MMP3, and the activated MMP3 removes agrin from the synaptic basal lamina.  相似文献   

14.
15.
Matrix metalloproteinases (MMPs) are a large family (>20) of cation-dependent proteinases believed to be important modulators of normal human lung development and potentially harmful mediators of lung damage. Little is known about MMP production and secretion by the lung during childhood or how alterations in MMP levels may be involved in lung damage. We examined endotracheal aspirates from children (<19 years) without lung disease for the presence of MMP activity. Only gelatinase activity was detectable, and inhibitor profiles suggest they represented one or more MMPs. Comparison of gelatinase activity, MMP expression, and MMP activity in children without pulmonary disease with children who required mechanical ventilation for respiratory failure show: 1) gelatinase activity was approximately five- to sixfold higher in respiratory failure; 2) MMP-7, MMP-8, and MMP-9 concentrations and MMP-8 and MMP-9 activities were markedly elevated in respiratory failure; and 3) MMP-7, MMP-8, and MMP-9 levels were significantly correlated in children with lung disease. These studies provide compelling evidence that specific MMPs are present in the diseased lung and may participate in the pathogenesis of pediatric respiratory failure.  相似文献   

16.
Abstract. Ultrastructural features of the pharynx, esophagus, and associated intrinsic visceral muscular and nervous structures of the booklouse, Liposcelis divinatorius , were studied to determine whether the anatomical arrangements of these structures differed from the general pattern found in insects. The results are compared with previous light microscope studies of this tiny insect. Variations from the usual arrangement reported for intrinsic visceral muscles associated with the pharynx in insects are described. Intrinsic visceral muscles include a narrow band of circularly disposed fibers and both extra-circular and intra-circular longitudinally disposed fibers. This represents a departure from the slightly developed inner longitudinal and more prominent outer circular fibers seen in most insects. The outer surface of some circular muscle cells has apparently unique pouches packed with mitochondria, which contain many cristae. Numerous bacteroids appear in the esophageal epithelial cells and in the sub-esophageal ganglion. Nerve processes associated with the foregut contain neurotubules, synaptic vesicles, and electron-dense granules.  相似文献   

17.
Matrix metalloproteinases (MMPs) are metal-dependent endopeptidases that play pivotal roles in tumor disease progression. In many solid tumors, MMPs are indeed produced by tumor stromal cells, rather than by tumor cells. This expression pattern is, at least in part, regulated by tumor-stroma interaction via tumor cell-associated extracellular matrix metalloproteinase inducer (EMMPRIN). In vitro, recombinant EMMPRIN dose-dependently stimulated MMP-1 production by primary human fibroblast cells. Interestingly, in addition to stimulating MMP expression, EMMPRIN also induced its own gene expression. To further explore this potential positive feedback regulatory mechanism, we generated human breast cancer cells expressing different levels of EMMPRIN. Coculture of EMMPRIN-positive tumor cells with fibroblast cells resulted in a concomitant stimulation of MMP-2, MMP-9, and EMMPRIN production. This induction was EMMPRIN dependent, was further enhanced by overexpression, and was reduced by antisense suppression of EMMPRIN expression in tumor cells. Increased expression of membrane-associated EMMPRIN was accompanied by an MMP-dependent generation of a soluble form of EMMPRIN representing a proteolytic cleavage product lacking the carboxyl terminus. On the basis of these findings, we propose a model in which tumor cell-associated EMMPRIN stimulates MMPs, as well as EMMPRIN expression in tumor stroma. Increased MMP activity in tumor local environment results in proteolytic cleavage of membrane-associated EMMPRIN, releasing soluble EMMPRIN. Soluble EMMPRIN in turn acts in a paracrine fashion on stroma cells that are both adjacent and distant to tumor sites to further stimulate the production of MMPs and additional EMMPRIN, which consequently contributes to tumor angiogenesis, tumor growth, and metastasis.  相似文献   

18.
Matrix metalloproteinases (MMPs) are a family of neutral proteinases that are involved in tissue remodeling by mediating degradation of extracellular matrix components in both physiology and pathology. As MMPs appear to play a key role in the degradation of cartilage matrix in the progression of arthritic disease, MMPs are considered as potential therapeutic targets. The effect of chondroitin sulfate A (CSA) on MMPs in type II collagen-induced experimental arthritis was studied. The anti-arthritic effect of CSA was evidenced by a decrease in marker activities like lysosomal beta-hexosaminidase and beta-glucuronidase. Arthritic animals showed significantly higher activity of MMP2 and MMP9 and increased levels of other MMPs, including MMP3 and MT-1 MMP in cartilage and serum. Treatment with CSA significantly decreased the activity of MMPs, particularly MMP9 in serum and synovial effusate and cartilage. The effect of CSA was further studied by fragmenting CSA into low-molecular-weight oligosaccharides. The oligosaccharide-treated animals showed considerably lower MMP activity (particularly MMP9) compared with arthritic controls. The CSA (and the oligosaccharides derived from it) not only reduced the activity of MMPs but also decreased the protein level expression of MMPs, indicating that the production of MMPs is affected. These results indicate that the antiarthritic effect of CSA involves down-regulation of MMPs, which are critically involved in the progression of arthritic disease.  相似文献   

19.
Biomechanical analysis of the stance phase during barefoot and shod running   总被引:4,自引:0,他引:4  
This study investigated spatio-temporal variables, ground reaction forces and sagittal and frontal plane kinematics during the stance phase of nine trained subjects running barefoot and shod at three different velocities (3.5, 4.5, 5.5 m s(-1)). Differences between conditions were detected with the general linear method (factorial model). Barefoot running is characterized by a significantly larger external loading rate than the shod condition. The flatter foot placement at touchdown is prepared in free flight, implying an actively induced adaptation strategy. In the barefoot condition, plantar pressure measurements reveal a flatter foot placement to correlate with lower peak heel pressures. Therefore, it is assumed that runners adopt this different touchdown geometry in barefoot running in an attempt to limit the local pressure underneath the heel. A significantly higher leg stiffness during the stance phase was found for the barefoot condition. The sagittal kinematic adaptations between conditions were found in the same way for all subjects and at the three running velocities. However, large individual variations were observed between the runners for the rearfoot kinematics.  相似文献   

20.
The mitochondrial inner membrane contains a large protein complex crucial for membrane architecture, the mitochondrial inner membrane organizing system (MINOS). MINOS is required for keeping cristae membranes attached to the inner boundary membrane via crista junctions and interacts with protein complexes of the mitochondrial outer membrane. To study if outer membrane interactions and maintenance of cristae morphology are directly coupled, we generated mutant forms of mitofilin/Fcj1 (formation of crista junction protein 1), a core component of MINOS. Mitofilin consists of a transmembrane anchor in the inner membrane and intermembrane space domains, including a coiled-coil domain and a conserved C-terminal domain. Deletion of the C-terminal domain disrupted the MINOS complex and led to release of cristae membranes from the inner boundary membrane, whereas the interaction of mitofilin with the translocase of the outer membrane (TOM) and the sorting and assembly machinery (SAM) were enhanced. Deletion of the coiled-coil domain also disturbed the MINOS complex and cristae morphology; however, the interactions of mitofilin with TOM and SAM were differentially affected. Finally, deletion of both intermembrane space domains disturbed MINOS integrity as well as interactions with TOM and SAM. Thus, the intermembrane space domains of mitofilin play distinct roles in interactions with outer membrane complexes and maintenance of MINOS and cristae morphology, demonstrating that MINOS contacts to TOM and SAM are not sufficient for the maintenance of inner membrane architecture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号