首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Yang HP  Tanikawa AY  Kondrashov AS 《Genetics》2001,157(3):1285-1292
To investigate the molecular nature and rate of spontaneous mutation in Drosophila melanogaster, we screened 887,000 individuals for de novo recessive loss-of-function mutations at eight loci that affect eye color. In total, 28 mutants were found in 16 independent events (13 singletons and three clusters). The molecular nature of the 13 events was analyzed. Coding exons of the locus were affected by insertions or deletions >100 nucleotides long (6 events), short frameshift insertions or deletions (4 events), and replacement nucleotide substitutions (1 event). In the case of 2 mutant alleles, coding regions were not affected. Because approximately 70% of spontaneous de novo loss-of-function mutations in Homo sapiens are due to nucleotide substitutions within coding regions, insertions and deletions appear to play a much larger role in spontaneous mutation in D. melanogaster than in H. sapiens. If so, the per nucleotide mutation rate in D. melanogaster may be lower than in H. sapiens, even if their per locus mutation rates are similar.  相似文献   

2.
3.
Abortive gap repair: underlying mechanism for Ds element formation.   总被引:6,自引:0,他引:6       下载免费PDF全文
The mechanism by which the maize autonomous Ac transposable element gives rise to nonautonomous Ds elements is largely unknown. Sequence analysis of native maize Ds elements indicates a complex chimeric structure formed through deletions of Ac sequences with or without insertions of Ac-unrelated sequence blocks. These blocks are often flanked by short stretches of reshuffled and duplicated Ac sequences. To better understand the mechanism leading to Ds formation, we designed an assay for detecting alterations in Ac using transgenic tobacco plants carrying a single copy of Ac. We found frequent de novo alterations in Ac which were excision rather than sequence dependent, occurring within Ac but not within an almost identical Ds element and not within a stable transposase-producing gene. The de novo DNA rearrangements consisted of internal deletions with breakpoints usually occurring at short repeats and, in some cases, of duplication of Ac sequences or insertion of Ac-unrelated fragments. The ancient maize Ds elements and the young Ds elements in transgenic tobacco showed similar rearrangements, suggesting that Ac-Ds elements evolve rapidly, more so than stable genes, through deletions, duplications, and reshuffling of their own sequences and through capturing of unrelated sequences. The data presented here suggest that abortive Ac-induced gap repair, through the synthesis-dependent strand-annealing pathway, is the underlying mechanism for Ds element formation.  相似文献   

4.
The genetic characterization of four previously reported mutants of human respiratory syncytial (RS) virus resistant to monoclonal antibody 63G is described. Sequences of the G protein genes were obtained from: (i) mRNA derived cDNA recombinants, (ii) direct mRNA sequencing and (iii) amplified vRNA derived cDNAs. The results obtained indicate that the original escape mutants, recovered from individual plaques, contained heterogeneous viral populations. This heterogeneity affected the number of adenosine residues present after nucleotides 588 or 623 of the G protein gene. Mutant viruses recovered after a second plaque purification step generated homogeneous sequences but contained single adenosine insertions or deletions at those two sites compared with the Long sequence. These genetic alterations introduced frameshift changes which are reflected in both the antigenic and structural properties of the mutant G proteins. The origin and importance of frameshift mutations in the RS virus G protein gene are discussed.  相似文献   

5.
The multiple species de novo gene prediction problem can be stated as follows: given an alignment of genomic sequences from two or more organisms, predict the location and structure of all protein-coding genes in one or more of the sequences. Here, we present a new system, N-SCAN (a.k.a. TWINSCAN 3.0), for addressing this problem. N-SCAN can model the phylogenetic relationships between the aligned genome sequences, context dependent substitution rates, and insertions and deletions. An implementation of N-SCAN was created and used to generate predictions for the entire human genome and the genome of the fruit fly Drosophila melanogaster. Analyses of the predictions reveal that N-SCAN's accuracy in both human and fly exceeds that of all previously published whole-genome de novo gene predictors.  相似文献   

6.
7.
Mutations in the methyl-CpG-binding protein 2 (MECP2) gene are associated with Rett syndrome (RTT). The MECP2 gene has some unique characteristics: (1) it is mainly affected by de novo mutations, due to recurrent independent mutational events in a defined "hot spot" regions or positions; (2) complex mutational events along a single allele are frequently found in this gene; (3) most mutations arise on paternal X chromosome. The recurrent point mutations involve mainly CpG dinucleotides, where C>T transitions are explained by methylation-mediated deamination. The complex mutational events might be explained by the genomic architecture of the region involving the MECP2 gene. The finding that most spontaneous mutations arise on paternal X-chromosome supports the higher contribution of replication-mediated mechanism of mutagenesis. We present 9 types of mutations in the MECP2 gene, detected in a group of 22 Bulgarian and 6 Romanian classical RTT patients. Thirteen patients were clarified on molecular level (46.4%). The point mutations in our sample account for 61.5%. One intraexonic deletion was detected in the present study (7.7%). One novel insertion c.321_322insGAAG, p.(Lys107_Leu108insGluAlafs2*) was found (7.7%). Large deletions and complex mutations account for 23%. A novel complex mutational event c.[584_624del41insTT; 638delTinsCA] was detected in a Romanian patient. We discuss different types of the MECP2 mutations detected in our sample in the light of the possible mechanisms of mutagenesis. Complex gene rearrangements involving a combination of deletions and insertions have always been most difficult to detect, to specify precisely and hence to explain in terms of their underlying mutational mechanisms.  相似文献   

8.
Sexual ambiguity can be a difficult and sometimes confusing diagnostic problem in children. Recent developments in molecular biology have provided the opportunity to analyze the gene responsible for testicular determination, SRY, the androgen receptor gene and the gene encoding the cP450 enzyme specific for 21-hydroxylation, CYP21B, whose defects are responsible for congenital adrenal hyperplasia. Southern-blotting studies and PCR analyses of SRY, androgen receptor and CYP21B genes can be routinely used for the direct diagnosis of gonadal dysgenesis, androgen insensitivity syndromes and congenital adrenal hyperplasia, respectively. In sex-reversed XY females, several de novo mutations or deletions in the SRY gene have been reported. Defects in the human androgen receptor cause a spectrum of defects in male phenotypic sexual development associated with abnormalities in the receptor protein. Analyses of the androgen receptor gene structure have identified the causative mutation in some families: mutations that result in large-scale alterations of the structure of the androgen receptor, mRNA or gene mutations that alter the primary structure of the androgen receptor protein and mutations that alter the level of mRNA. The diversity of clinical phenotypes, apparent in 21-hydroxylase deficiency, is paralleled by a considerable degree of mutational heterogeneity in the CYP21 gene locus. Various changes causing severe 21-hydroxylase deficiency have been reported: point mutations, gene conversions and gene deletions. In conclusion, substantial progress has been made elucidating genetic defects causing sex reversal in XY females, the androgen insensitivity syndrome and congenital adrenal hyperplasia. Molecular genetics can also be applied for carrier identification and prenatal diagnosis.  相似文献   

9.
Cystic fibrosis is a common human genetic disease caused by mutations in CFTR, a gene that codes for a chloride channel that is regulated by phosphorylation and cytosolic nucleotides. As part of a program to discover natural animal models for human genetic diseases, we have determined the genomic sequence of CFTR in the Rhesus monkey, Macaca mulatta. The coding region of rhesus CFTR is 98.3% identical to human CFTR at the nucleotide level and 98.2% identical and 99.7% similar at the amino acid level. Partial sequences of flanking introns (5582 base pair positions analyzed) revealed 91.1% identity with human introns. Relative to rhesus intronic sequence, the human sequences had 27 insertions and 22 deletions. Primer sequences for amplification of rhesus genomic CFTR sequences are provided. The accession number is AF013753 (all 27 exons and some flanking intronic sequence). Received: 27 August 1992 / Accepted: 5 December 1997  相似文献   

10.
Human l1 retrotransposition is associated with genetic instability in vivo   总被引:9,自引:0,他引:9  
Retrotransposons have shaped eukaryotic genomes for millions of years. To analyze the consequences of human L1 retrotransposition, we developed a genetic system to recover many new L1 insertions in somatic cells. Forty-two de novo integrants were recovered that faithfully mimic many aspects of L1s that accumulated since the primate radiation. Their structures experimentally demonstrate an association between L1 retrotransposition and various forms of genetic instability. Numerous L1 element inversions, extra nucleotide insertions, exon deletions, a chromosomal inversion, and flanking sequence comobilization (called 5' transduction) were identified. In a striking number of integrants, short identical sequences were shared between the donor and the target site's 3' end, suggesting a mechanistic model that helps explain the structure of L1 insertions.  相似文献   

11.
We have compared the partial nucleotide and derived amino acid sequences of a phaseolin seed storage protein gene ofPhaseolus vulgaris (1) and a conglycinin storage protein gene ofGlycine max (2). Although these proteins are not antigenically related to one another, the architecture of the genes is similar throughout the sequences compared here. Intervening sequences interrupt the same amino acid positions in both genes. Within the 28% of theG. max gene and the 38% of theP. vulgaris gene represented in this comparison, 73% of the nucleotides in the coding and intervening sequences are identical, excluding the insertions and deletions. The nucleotide mismatches found in the coding sequences are distributed throughout the three codon positions with little bias towards the third codon position. In addition to the single nucleotide differences, six insertions or deletions, ranging from three to twenty-seven nucleotides in length, occur in this portion of the coding region and these are partially responsible for the molecular weight differences of the conglycinin α′-subunit and the phaseolin subunit.  相似文献   

12.
Bacteriophage P22 which are incapable of making functional tail protein can be propagated by the addition of purified mature tail protein trimers to either liquid or solidified medium. This unique in vitro complementation condition has allowed us to isolate 74 absolute lethal tail protein mutants of P22 after hydroxylamine mutagenesis. These phage mutants have an absolute requirement for purified P22 tail protein to be present in a soft agar overlay in order to form plaques and do not grow on any nonsense suppressing strains of Salmonella typhimurium. In order to genetically map and physically locate these mutations we have constructed two complementary sets of fine structure deletion mapping strains using a collection of Tn1 insertions in gene 9, the structural gene for the tail protein. Fourteen bacteriophage P22 strains carrying unique Tn1 transposon insertions (Ap phage) in gene 9 have been crossed with Ap phage carrying Tn1 insertions in gene 20. Phage carrying deletions that arose from homologous recombination between the Tn1 elements were isolated as P22 lysogens. The deletion prophage were shown to be missing all genetic information bracketed by the parental Tn1 elements and thus form a set of deletions into gene 9 from the 5' end of the gene. From the frequency of production of these deletion phage the orientation of the Tn1 insertions in gene 9 could be deduced. The genetic end points of the deletions in gene 9 and thus the order of Tn1 insertions were determined by marker rescue experiments using the original Ap phage. The genetic end points of the deletions in gene 20 were determined in similar experiments using nonsense mutations in gene 20. To locate the physical end points of these deletions in gene 9, DNA containing the Tn1 element has been cloned from each of the original Ap phage into plasmids. The precise point of insertion of Tn1 into gene 9 was determined by restriction enzyme mapping and DNA sequencing of the relevant portions of each of these plasmids. In vitro deletion of different 3' gene 9 sequences in the plasmid clones was accomplished through the use of unique restriction endonuclease sites in Tn1. The resulting plasmids form a set of deletions extending into the 3' end of the gene which are complementary compared to the deletion lysogens.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
14.
Tumor-associated mutations of rat mitochondrial transfer RNA genes.   总被引:4,自引:3,他引:1       下载免费PDF全文
Mitochondrial DNA is a sensitive target of chemical carcinogens (Backer and Weinstein (1980) Science 209, 297-299), suggesting that mutations of the mitochondrial genome occur in tumor cells. We examined this point by comparing mitochondrial DNA sequences in four rat tumors with those of normal rat liver. Some novel mutations found in the tRNA genes of tumor mitochondria were as follows: nucleotides deletions in the aminoacyl-acceptor stem of the tRNATyr gene or in the anticodon stem of the tRNATrp gene and insertions in the "YpsiC" loop of the tRNACys gene. These structures are extraordinary compared with those of the tRNA genes of other mammals, indicating that these mutations are each associated with a corresponding tumor.  相似文献   

15.
One-half of all cases of Wilms tumor (WT), a childhood kidney tumor, show loss of heterozygosity at chromosomal band 11p13 loci, suggesting that mutation of one allele and subsequent mutation or loss of the homologous allele are important events in the development of these tumors. The previously reported nonrandom loss of maternal alleles in these tumors implied that the primary mutation occurred on the paternally derived chromosome and that it was "unmasked" by loss of the normal maternal allele. This, in turn, suggests that the paternally derived allele is more mutable than the maternal one. To investigate whether germinal mutations are seen with equal frequency in maternally versus paternally inherited chromosomes, we determined the parental origin of the de novo germinal 11p13 deletions in eight children by typing lymphocyte DNA from these children and from their parents for 11p13 RFLPs. In seven of the eight cases, the de novo deletion was of paternal origin. The one case of maternal origin was unremarkable in terms of the size or extent of the 11p13 deletion, and the child did develop WT. Transmission of 11p13 deletions by both maternal and paternal carriers of balanced translocations has been reported, although maternal inheritance predominates. These data, in addition to the general preponderance of paternally derived, de novo mutations at other loci, suggest that the increased frequency of paternal deletions we observed is due to an increased germinal mutation rate in males.  相似文献   

16.
Kabuki syndrome (KS) is one of the classical, clinically well-known multiple anomalies/mental retardation syndromes, mainly characterized by a very distinctive facial appearance in combination with additional clinical signs such as developmental delay, short stature, persistent fingerpads, and urogenital tract anomalies. In our study, we sequenced all 54 coding exons of the recently identified MLL2 gene in 34 patients with Kabuki syndrome. We identified 18 distinct mutations in 19 patients, 11 of 12 tested de novo. Mutations were located all over the gene and included three nonsense mutations, two splice-site mutations, six small deletions or insertions, and seven missense mutations. We compared frequencies of clinical symptoms in MLL2 mutation carriers versus non-carriers. MLL2 mutation carriers significantly more often presented with short stature and renal anomalies (p?=?0.026 and 0.031, respectively), and in addition, MLL2 carriers obviously showed more frequently a typical facial gestalt (17/19) compared with non-carriers (9/15), although this result was not statistically significant (p?=?0.1). Mutation-negative patients were subsequently tested for mutations in ten functional candidate genes (e.g. MLL, ASC2, ASH2L, and WDR5), but no convincing causative mutations could be found. Our results indicate that MLL2 is the major gene for Kabuki syndrome with a wide spectrum of de novo mutations and strongly suggest further genetic heterogeneity.  相似文献   

17.
Mutations in the large gene of clotting factor VIII (FVIII) are the most common events leading to severe human bleeding disorder. The high proportion of de novo mutations observed in this gene raises the possibility that a significant proportion of such mutations does not derive from a single germ cell but instead should be attributed to a germline or somatic mosaic originating from a mutation during early embryogenesis. The present study explores this hypothesis by using allele-specific PCR to analyze 61 families that included members who had sporadic severe hemophilia A and known FVIII gene defects. The presence of somatic mosaicisms of varying degrees (0.2%-25%) could be shown in 8 (13%) of the 61 families and has been confirmed by a mutation-enrichment procedure. All mosaics were found in families with point mutations (8 [25%] of 32 families). In the subgroup of 8 families with CpG transitions, the percentage with mosaicism increased to 50% (4 of 8 families). In contrast, no mosaics were observed in 13 families with small deletions/insertions or in 16 families with intron 22 inversions. Our data suggest that mosaicism may represent a fairly common event in hemophilia A. As a consequence, risk assessment in genetic counseling should include consideration of the possibility of somatic mosaicism in families with apparently de novo mutations, especially families with the subtype of point mutations.  相似文献   

18.
Methylmalonic acidemia (MMA) can be caused by mutations in the gene coding for the methylmalonyl CoA mutase (MCM) apoenzyme or by mutations in genes required for provision of its adenosylcobalamin cofactor. We have characterized MCM activity, gene structure, and expression in a series of primary fibroblast cell lines derived from patients with MCM apoenzyme deficiency. Southern blot analysis reveals normal HindIII and TaqI polymorphisms but no gross insertions, deletions, rearrangements, or point mutations at restriction endonuclease recognition sequences. Northern blot analysis demonstrates that several cell lines have specifically decreased steady-state levels of MCM mRNA. At least six independent alleles can be delineated by a haplotype of HindIII and TaqI polymorphisms, the level of mRNA expression, and the biochemical phenotype of the cells. These studies confirm the wide phenotypic spectrum of MMA and provide molecular genetic evidence for a variety of independent alleles underlying this disorder.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号