首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Synthesis and maintenance of primary cilia are regulated by the von Hippel-Lindau (VHL) tumour suppressor protein. Recent studies indicate that this regulation is linked to microtubule-dependent functions of pVHL such as orienting microtubule growth and increasing plus-end microtubule stability, however little is known how this occurs. We have identified the kinesin-2 motor complex, known to regulate cilia, as a novel and endogenous pVHL binding partner. The interaction with kinesin-2 facilitates pVHL binding to microtubules. These data suggest that microtubule-dependent functions of pVHL are influenced by kinesin-2.  相似文献   

2.
In patients with von Hippel-Lindau (VHL) disease, renal cysts and clear cell renal cell carcinoma (ccRCC) arise from renal tubular epithelial cells containing biallelic inactivation of the VHL tumour suppressor gene. However, it is presumed that formation of renal cysts and their conversion to ccRCC involve additional genetic changes at other loci. Here, we show that cystic lesions in the kidneys of patients with VHL disease also demonstrate activation of the phosphatidylinositol-3-kinase (PI3K) pathway. Strikingly, combined conditional inactivation of Vhlh and the Pten tumour suppressor gene, which normally antagonises PI3K signalling, in the mouse kidney, elicits cyst formation after short latency, whereas inactivation of either tumour suppressor gene alone failed to produce such a phenotype. Interestingly, cells lining these cysts frequently lack a primary cilium, a microtubule-based cellular antenna important for suppression of uncontrolled kidney epithelial cell proliferation and cyst formation. Our results support a model in which the PTEN tumour suppressor protein cooperates with pVHL to suppress cyst development in the kidney.  相似文献   

3.
Amongst other clinical manifestations, patients with the von Hippel-Lindau (VHL) cancer syndrome are predisposed to develop kidney cysts, which are considered to be precursor lesions of clear cell renal cell carcinoma (ccRCC). Recent evidence has highlighted an unexpected function of the VHL tumour suppressor protein (pVHL) in maintaining the structural integrity of the primary cilium, a microtubule-based cellular antenna important for suppression of uncontrolled proliferation of kidney epithelial cells and cyst formation. Intriguingly, this function of pVHL is directly linked to its capacity to regulate the microtubule cytoskeleton independent of its well-characterized role in the degradation of hypoxia inducible factor alpha (HIFα) subunits. However, loss of pVHL alone does not suffice for a cell to lose the primary cilium. Other pathways need to be additionally inactivated, including one involving glycogen synthase kinase 3 beta (GSK3β). These new findings draw attention to a primary cilium-maintenance network as new territory for pVHL tumour suppressive activity and have implications for understanding the development of kidney pathology in the setting of VHL disease.  相似文献   

4.
von Hippel-Lindau (VHL) disease is a hereditary cancer syndrome caused by germline mutations of the VHL tumour suppressor gene. The VHL gene product, pVHL, forms multiprotein complexes that contain elongin B, elongin C and Cul-2, and negatively regulates hypoxia-inducible mRNAs. pVHL is suspected to play a role in ubiquitination given the similarity of elongin C and Cul-2 with Skp1 and Cdc53, respectively. pVHL can also interact with fibronectin and is required for the assembly of a fibronectin matrix. Finally, pVHL, at least indirectly, plays a role in the ability of cells to exit the cell cycle. Thus, pVHL is a tumour suppressor protein that regulates angiogenesis, extracellular matrix formation and the cell cycle.  相似文献   

5.
Multitasking by pVHL in tumour suppression   总被引:1,自引:0,他引:1  
Functional inactivation of the von Hippel-Lindau (VHL) tumour suppressor gene product, pVHL, leads to cancer in humans. It is widely accepted that pVHL functions to destabilise hypoxia inducible factor alpha (HIFalpha) subunits, key effectors of the hypoxia signalling pathway. However, growing evidence indicates that tumour suppression by pVHL also involves the control of a wide variety of HIFalpha-independent processes including microtubule dynamics, primary cilium maintenance, cell proliferation, neuronal apoptosis, extracellular matrix deposition and responses to DNA damage. Moreover, it is becoming apparent that tumour initiation requires not only VHL mutation but also the alteration of additional cooperating cancer pathways. These studies are beginning to provide insights into the signalling networks involving pVHL that normally control diverse cellular processes and how disruption of these networks leads to tumour formation.  相似文献   

6.
7.
Defects in the structure or function of the primary cilium, an antennae-like structure whose functional integrity has been linked to the suppression of uncontrolled kidney epithelial cell proliferation, are a common feature of genetic disorders characterized by kidney cysts. However, the mechanisms by which primary cilia are maintained remain poorly defined. von Hippel-Lindau (VHL) disease is characterized by the development of premalignant renal cysts and arises because of functional inactivation of the VHL tumour suppressor gene product, pVHL. Here, we show that pVHL and glycogen synthase kinase (GSK)3beta are key components of an interlinked signalling pathway that maintains the primary cilium. Although inactivation of either pVHL or GSK3beta alone did not affect cilia maintenance, their combined inactivation leads to loss of cilia. In VHL patients, GSK3beta is subjected to inhibitory phosphorylation in renal cysts, but not in early VHL mutant lesions, and these cysts exhibit reduced frequencies of primary cilia. We propose that pVHL and GSK3beta function together in a ciliary-maintenance signalling network, disruption of which enhances the vulnerability of cells to lose their cilia, thereby promoting cyst formation.  相似文献   

8.
Von Hippel-Lindau (VHL) tumour suppressor gene inactivation is linked to the development of haemangioblastomas in the central nervous system and retina, often in association with other tumours, such as clear-cell carcinomas of the kidney and phaeochromocytomas. Here we show that the VHL protein (pVHL) is a microtubule-associated protein that can protect microtubules from depolymerization in vivo. Both the microtubule binding and stabilization functions of pVHL depend on amino acids 95-123 of pVHL, a mutational 'hot-spot' in VHL disease. From analysis of naturally occurring pVHL mutants, it seems that only point mutations such as pVHL(Y98H) and pVHL(Y112H) (that predispose to haemangioblastoma and phaeochromocytoma, but not to renal cell carcinoma) disrupt pVHL's microtubule-stabilizing function. Our data identify a role for pVHL in the regulation of microtubule dynamics and potentially provide a link between this function of pVHL and the pathogenesis of haemangioblastoma and phaeochromocytoma in the context of VHL disease.  相似文献   

9.
10.
11.
The ubiquitin-mediated degradation of hypoxia-inducible factor-α (HIF-α) by a von Hippel-Lindau tumor suppressor protein (pVHL) is mechanistically responsible for controlling gene expression due to oxygen availability. Germline mutations in the VHL gene cause dysregulation of HIF and induce an autosomal dominant cancer syndrome referred to as VHL disease. However, it is unclear whether HIF accumulation caused by VHL mutations is sufficient for tumorigenesis. Recently, we found that pVHL directly associates and positively regulates the tumor suppressor p53 by inhibiting Mdm2-mediated ubiquitination, and by subsequently recruiting p53-modifying enzymes. Moreover, VHL-deleted RCC cells showed attenuated apoptosis or abnormal cell-cycle arrest upon DNA damage, but became normal when pVHL was restored. Thus, pVHL appears to play a pivotal role in tumor suppression by participating actively as a component of p53 transactivation complex during DNA damage response.  相似文献   

12.

Background  

Mutational inactivation of the von Hippel-Lindau (VHL) tumor suppressor gene has been linked to hereditary as well as sporadic clear cell renal carcinomas. The product of the VHL gene, pVHL, acts to target hypoxia-inducible factor alpha (HIF-α) subunits for ubiquitination and subsequent degradation. Using an RNA interference approach to lower levels of HIF-2α in two different renal cell lines that lack functional pVHL, we have tested the contribution of HIF-2α toward cellular pVHL activities.  相似文献   

13.
The VHL tumor suppressor protein (pVHL) is part of an E3 ubiquitin ligase that targets HIF for destruction. pVHL-defective renal carcinoma cells exhibit increased NF-kappaB activity but the mechanism is unclear. NF-kappaB affects tumorigenesis and therapeutic resistance in some settings. We found that pVHL associates with the NF-kappaB agonist Card9 but does not target Card9 for destruction. Instead, pVHL serves as an adaptor that promotes the phosphorylation of the Card9 C terminus by CK2. Elimination of these sites markedly enhanced Card9's ability to activate NF-kappaB in VHL(+/+) cells, and Card9 siRNA normalized NF-kappaB activity in VHL(-/-) cells and restored their sensitivity to cytokine-induced apoptosis. Furthermore, downregulation of Card9 in VHL(-/-) cancer cells reduced their tumorigenic potential. Therefore pVHL can serve as an adaptor for both a ubiquitin conjugating enzyme and a kinase. The latter activity, which promotes Card9 phosphorylation, links pVHL to control of NF-kappaB activity and tumorigenesis.  相似文献   

14.
15.
16.
17.
Von Hippel-Lindau (VHL) is an important tumor suppressor, and its inactivation is a hallmark of inherited VHL disease and most sporadic clear cell renal cell carcinoma (ccRCC). VHL protein (pVHL) with missense point mutations are unstable and degraded by the proteasome because of the disruption of elongin binding. Deubiquitylase ovarian tumor domain-containing 6B (OTUD6B) had been documented to couple pVHL and elongin B to form stable VHL - elonginB - elonginC complex, which protects pVHL from degradation. However, whether OTUD6B governs the stability of pVHL wild type and the missense mutants in ccRCC remains largely elusive. Here, we reported that low OTUD6B level predicted poorer survival in ccRCC patients with VHL missense mutation, but not frameshift deletion and nonsense mutation. OTUD6B is able to interact with wild type pVHL and tumor-derived pVHL missense mutants, except for pVHL I151T, and decrease their ubiquitylation and proteasomal degradation in ccRCC cells. Functionally, we revealed that OTUD6B depletion enhanced cell migration and HIF-2α level in ccRCC cells in a pVHL dependent manner. In addition, OTUD6B depletion reduced the inhibitory effects of ectopic pVHL missense mutants on cell migration and HIF-2α level, except for pVHL I151T. Thus, we speculated that I151 residue might be one of key sites of pVHL binding to OTUD6B. These results suggested that OTUD6B is an important regulator for the stability of pVHL missense mutants, which provides a potential therapeutic strategy for ccRCC with VHL mutations.Subject terms: Ubiquitylation, Renal cell carcinoma  相似文献   

18.
Inactivation of the von Hippel-Lindau (VHL) tumor suppressor gene is linked to the hereditary VHL disease and sporadic clear cell renal cell carcinomas (CCRCC). VHL-associated tumors are highly vascularized, a characteristic associated with overproduction of vascular endothelial growth factor (VEGF). The VHL protein (pVHL) is a component of the ubiquitin ligase E3 complex, targeting substrate proteins for ubiquitylation and subsequent proteasomic degradation. Here, we report that the pVHL can directly bind to the human RNA polymerase II seventh subunit (hsRPB7) through its beta-domain, and naturally occurring beta-domain mutations can decrease the binding of pVHL to hsRPB7. Introducing wild-type pVHL into human kidney tumor cell lines carrying endogenous mutant non-functional pVHL facilitates ubiquitylation and proteasomal degradation of hsRPB7, and decreases its nuclear accumulation. pVHL can also suppress hsRPB7-induced VEGF promoter transactivation, mRNA expression and VEGF protein secretion. Together, our results suggest that hsRPB7 is a downstream target of the VHL ubiquitylating complex and pVHL may regulate angiogenesis by targeting hsRPB7 for degradation via the ubiquitylation pathway and preventing VEGF expression.  相似文献   

19.
Comparative genome analysis may provide novel insights into gene evolution and function. To investigate the von Hippel-Lindau (VHL) disease tumor suppressor gene, we sequenced the VHL gene in seven primate species. Comparative analysis was performed for human, primate, and rodent VHL genes and for a putative Caenorhabditis elegans VHL homologue identified by database analysis. The VHL gene has two translation initiation sites (at codons 1 and 54); however, the relative importance of the full-length translation product (pVHL30) and that translated from the second internal translation initiation site (pVHL19) is unclear. The N-terminal sequence of pVHL30 contains eight copies of a GXEEX acidic repeat motif in human and higher primates, but only three copies were present in the marmoset, and only one copy was present in rodent VHL genes. Evolutionary analysis suggested that the N-terminal repetitive sequence in pVHL30 was of less functional importance than those regions present in both pVHL30 and pVHL19. The VHL gene product is reported to form complexes with various proteins including elongin B, elongin C, VBP-1, fibronectin, Spl, CUL2, and HIF-1. Although most of the regions in pVHL that had been implicated in binding specific proteins demonstrated evolutionary conservation, the carboxy-terminal putative VBP-1 binding site was less well conserved, suggesting that VBP-1 binding may have less functional significance. Although an amino acid substitution (K171T) close to the pVHL elongin binding region was found in baboon, analysis of the structure of human pVHL suggested that this substitution would not interfere with pVHL/elongin C interaction. In general, there was a good correlation between the pVHL domains that demonstrated most evolutionary conservation and those that were most frequently mutated in tumors. Analysis of human/C. elegans conservation and human germline and somatic mutation patterns identified a highly conserved mutation cluster region between codons 74 and 90. However, this region is likely to be important for the structural integrity of pVHL rather than representing an additional protein binding domain.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号