首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Chronobiology international》2013,30(6):1103-1116
The aim of the study was to learn whether the lethal and the motor incoordination (ataxia) side effect of ondansetron (Zophren®) administration is dosing‐time dependent. Ondansetron is a serotonin 5‐HT3 receptor antagonist used primarily to control nausea and vomiting arising from cytotoxic chemo‐ and radiotherapy. A total of 210 male Swiss mice 10 to 12 weeks of age were synchronized for 3 weeks by 12h light (rest span)/12h dark (activity span). Different doses of ondansetron were injected intraperitoneally (i.p.) at fixed times during the day to determine both the sublethal (TD50) and lethal (LD50) doses, which were, respectively, 3.7 ± 0.6 mg/kg and 4.6 ± 0.5 mg/kg. In the chronotoxicologic study a single dose of ondansetron (3.5 mg/kg, i.p.) was administered to different and comparable groups of animals at four different circadian stages [1, 7, 13, and 19h after light onset (HALO)]. The lethal toxicity was statistically significantly dosing time‐dependent (χ2 = 21.51, p < 0.0001). Drug dosing at 1 HALO resulted in 100% survival rate whereas drug dosing at 19 HALO was only one‐half that (52%). Similarly, lowest and highest ataxia occurred when ondansetron was injected at 1 and 19 HALO, respectively (χ2 = 22.24, p < 0.0001). Effects on rectal temperature were also dosing‐time related (Cosinor analysis, p < 0.0001). The characteristics of the waveform describing the temporal patterns differed between the studied variables, e.g., lethal toxicity and survival rate showing two peaks and rectal temperature showing one peak in the 24h time series waveform pattern. Cosinor analysis also revealed a statistically significant ultradian (τ ≡ 8h) rhythmic component in the considered variables. Differences in curve patterns in toxicity elicited by ondansetron on a per end point basis are hypothesized to represent the phase relations between the identified 24h and 8h periodicities.  相似文献   

2.
Loratadine is a second-generation histamine H(1)-receptor antagonist used in the treatment of allergic diseases. The aim of the study was to assess whether lethal toxicity and motor incoordination (neurotoxicity) of loratadine is circadian rhythm-dependent. A total of 210 male Swiss mice, aged 10 wk, were synchronized for 3 wk to 12 h light (rest span)/12 h dark (activity span). The drug was administered per os. The choice of the sublethal (TD(50) = 82 mg/kg body weight) and the lethal (LD(50) = 4 g/kg body weight) dosage was based on preliminary studies. Each of these two doses was administered to comparable groups of animals at six different circadian time points (1, 5, 9, 13, 17, and 21 Hours After Light Onset [HALO]). The survival duration was dosing time-dependent (chi(2) = 16.96; p < 0.001). Drug dosing at 17 HALO resulted in best (67%) survival rate; whereas, dosing at 9 HALO resulted in poorest (21%) survival rate. Cosinor analyses (with a trial period tau = 24 h) validated a statistically significant circadian rhythm in survival rate (p < 0.04) with an acrophase (peak time ? of best tolerance to loratadine) being at 17.5 HALO +/- 4.65 h. Troughs of motor incoordination were located at the administration times of 5 and 17 HALO (60% and 32% of animals affected, respectively), whereas peaks were located at 9 and 21 HALO (87% and 68% of animals affected, respectively). The 24 h mean of the motor incoordination was 61%, the mean proportion of animals affected by the treatment for the six different circadian times studies. The extent of this neurotoxic effect varied as a function of loratadine dosing time (p < 0.001). A statistically significant ultradian component rhythm (p < 0.01) with a trial period tau = 12 h was also validated. The obtained results show that the dosing time of loratadine at the mid-activity (dark) span seems to be optimal, since it corresponds to the longest (21 vs. 12 days) survival span and to least neurotoxicity.  相似文献   

3.
Ondansetron (Zophren((R))) is a serotonin 5HT(3)-receptor antagonist used primarily to control nausea and vomiting caused by cytotoxic chemo-and radio-therapy. Tolerance to this drug shows both 24 and 8 h periodicities. In this framework, this study aimed to determine whether these ondansetron tolerance rhythms are modulated by season. The chronotoxic effect of a fixed dose (3.5 mg/kg, i.p.) of the drug was investigated with reference to both time of the day and year dependencies. Season-related studies were performed on 560 male Swiss mice, 10 to 12 wks old, synchronized with L:D=12:12 for three weeks. During a 1 yr span (2005), four 24 h studies were performed with a single dosing time at 1, 7, 13, and 19 hours after light onset (HALO), respectively. Tolerance was assessed daily during a 40-day span after acute ondansetron treatment. Both chi(2) test and cosinor methods were used to analyze the time series data. Statistically significant dosing time-dependent changes were validated in both yearly and daily time scales. The 24 h mean survival rate peaked in spring (92%) compared to fall (72%), the 20% difference being statistically significant (chi(2) test with p<0.05 and cosinor with p<0.0001 for seasonal rhythm detection and with a peak time, ?,=April 3+/-6.6 days). A 24 h rhythm was also detected in each of the seasonal time points. However, the curve pattern was monophasic in fall as well as spring. In fall, a large amplitude (A) circadian rhythm was detected that peaked at 19 HALO, while in the spring, a small circadian rhythm was detected that peaked at 1 HALO. The curve pattern was biphasic in summer (with large A) and in winter (with a small A). The existence of two peaks of equal magnitude in winter (100% survival rate) and in summer (100% and 90%) suggests the presence of both circadian and ultradian rhythms rather than an ultradian component of the 24 h period. The seasonal modulation of ondansetron circadian chronotolerance seems to involve several rhythm parameters: season-related changes in the 24 h mean (M), amplitude (A), acrophase location (?), as well as bimodal curve patterns including the coexistence of rhythms with respectively 24 and 8 h periods in winter and summer. In conclusion, tolerance to ondansetron varies not only according to the 24 and 8 h periods but also according to seasons, which suggests the complexity of ondansetron toxicity rhythms. Seasonal modulation of ondansetron tolerance may also influence the strategies of chemo-and chrono-therapy, and it is therefore necessary to take it into account in clinical drug-delivery protocols to minimize side effects of cytotoxic anticancer and antiemetic agents.  相似文献   

4.
Immunosuppressive drugs may have varying toxicity or efficacy depending on the administration time. This study investigates whether the liver toxicity of the mycophenolate mofetil (MMF) varies according to the circadian dosing-time in rats. 300 mg/kg of MMF was injected by intraperitonal route to different groups of animals at four different circadian stages (1, 7, 13, and 19 h after light onset, HALO). Biochemical variable (transaminase, alkaline phosphatase) and histopathological examinations on liver section were performed. The results obtained showed that MMF treatment induced hepato-toxicity depending on the circadian time. A severe toxicity in the liver was observed when the drug was injected at 7 HALO. The data obtained indicate that the maximum of hepato-toxicity is observed when MMF was injected in the middle of the light-rest span of rats which is physiologically analogous to the end of the activity of the diurnal phase in human patients.  相似文献   

5.
Ondansetron (Zophren®) is a serotonin 5HT3-receptor antagonist used primarily to control nausea and vomiting caused by cytotoxic chemo‐and radio‐therapy. Tolerance to this drug shows both 24 and 8 h periodicities. In this framework, this study aimed to determine whether these ondansetron tolerance rhythms are modulated by season. The chronotoxic effect of a fixed dose (3.5 mg/kg, i.p.) of the drug was investigated with reference to both time of the day and year dependencies. Season‐related studies were performed on 560 male Swiss mice, 10 to 12 wks old, synchronized with L:D=12:12 for three weeks. During a 1 yr span (2005), four 24 h studies were performed with a single dosing time at 1, 7, 13, and 19 hours after light onset (HALO), respectively. Tolerance was assessed daily during a 40‐day span after acute ondansetron treatment. Both χ2 test and cosinor methods were used to analyze the time series data. Statistically significant dosing time‐dependent changes were validated in both yearly and daily time scales. The 24 h mean survival rate peaked in spring (92%) compared to fall (72%), the 20% difference being statistically significant (χ2 test with p<0.05 and cosinor with p<0.0001 for seasonal rhythm detection and with a peak time, Ø,=April 3±6.6 days). A 24 h rhythm was also detected in each of the seasonal time points. However, the curve pattern was monophasic in fall as well as spring. In fall, a large amplitude (A) circadian rhythm was detected that peaked at 19 HALO, while in the spring, a small circadian rhythm was detected that peaked at 1 HALO. The curve pattern was biphasic in summer (with large A) and in winter (with a small A). The existence of two peaks of equal magnitude in winter (100% survival rate) and in summer (100% and 90%) suggests the presence of both circadian and ultradian rhythms rather than an ultradian component of the 24 h period. The seasonal modulation of ondansetron circadian chronotolerance seems to involve several rhythm parameters: season‐related changes in the 24 h mean (M), amplitude (A), acrophase location (Ø), as well as bimodal curve patterns including the coexistence of rhythms with respectively 24 and 8 h periods in winter and summer. In conclusion, tolerance to ondansetron varies not only according to the 24 and 8 h periods but also according to seasons, which suggests the complexity of ondansetron toxicity rhythms. Seasonal modulation of ondansetron tolerance may also influence the strategies of chemo‐and chrono‐therapy, and it is therefore necessary to take it into account in clinical drug‐delivery protocols to minimize side effects of cytotoxic anticancer and antiemetic agents.  相似文献   

6.
AimsWhile glucocorticoids are widely used to treat patients with various diseases, they often cause adverse effects such as bone fractures. In this study, we investigated whether the decrease in bone density induced by glucocorticoid therapy was ameliorated by optimizing a dosing-time.Main methodsRats were administered with dexamethasone (Dex) orally (1 mg/kg/day) for 6 weeks at a resting or an active period. After the end of the treatment, bone density of femur, biomarkers of bone formation and resorption, and other biomedical variables were measured.Key findingsBone density of femur was significantly decreased by the 6-week treatment with Dex, and the degree of decrease in the 14 HALO (hours after light on) dosing group (an active period) was larger than that in the 2 HALO dosing group (a resting period). Although urinary calcium excretion was accelerated by Dex treatment, secondary hyperparathyroidism was not detected. Histomorphometry analysis showed that Dex suppressed bone resorption, which was larger in the 2 HALO than in the 14 HALO groups. These data indicate that Dex equally suppressed bone formation in the 2 and 14 HALO groups, but inhibited bone resorption more in the 2 HALO than in the 14 HALO groups.SignificanceThis study shows that the decrease in bone density induced by Dex was changed by its dosing-time.  相似文献   

7.
Immunosuppressive drugs such as Mycophenolate Mofetil (MMF) are used to suppress the immune system activity in transplant patients and reduce the risk of organ rejection. The present study investigates whether the potential cytotoxicity and genotoxicity varied according to MMF dosing-time in Wistar Rat. A potentially toxic MMF dose (300 mg/kg) was acutely administered by the i.p. route in rats at four different circadian stages (1, 7, 13 and 19 hours after light onset, HALO). Rats were sacrificed 3 days following injection, blood and bone marrow were removed for determination of cytotoxicity and genotoxicity analysis. The genotoxic effect of this pro-drug was investigated using the comet assay and the micronucleus test. Hematological changes were also evaluated according to circadian dosing time. MMF treatment induced a significant decrease at 7 HALO in red blood cells, in the hemoglobin rate and in white blood cells. These parameters followed a circadian rhythm in controls or in treated rats with an acrophase located at the end of the light-rest phase. A significant, thrombocytopenia was observed according to MMF circadian dosing time. Furthermore, abnormally shaped red cells, sometimes containing micronuclei, poikilocytotic in red cells and hypersegmented neutrophil nuclei were observed with MMF treatment. The micronucleus test revealed damage to chromosomes in rat bone marrow; the comet assay showed significant DNA damage. This damage varied according to circadian MMF dosing time. The injection of MMF in the middle of the dark-activity phase produced a very mild hematological toxicity and low genotoxicity. Conversely, it induced maximum hematological toxicity and genotoxicity when the administration occurred in the middle of the light-rest phase, which is physiologically analogous to the end of the activity of the diurnal phase in human patients.  相似文献   

8.
Sixty 3-month-old homozygote male mice were studied for circadian rhythmicity in the toxicity of florfenicol overdose. Animals were kept under a regimen of 12h light, 12h darkness (12:12 LD) with food and water available ad libitum. The LD50 (median lethal) dose was determined in a preliminary experiment and was administered to groups of 10 mice at six different clock times (hours) after light onset (HALO): 0, 4, 8, 12, 16, and 20 HALO. Cosinor analysis verified a statistically significant (P < .04) circadian rhythm in the toxic effect (mortality) of florfenicol. Mortality was greatest when the drug was injected 4h after the commencement of the activity span (16 HALO) and least when injected 4h after the start of the diurnal rest span (4 HALO). Mortality was 2.5 times greater when drug injection was given at 16 HALO than at 4 HALO.  相似文献   

9.
Sixty 3-month-old homozygote male mice were studied for circadian rhythmicity in the toxicity of florfenicol overdose. Animals were kept under a regimen of 12h light, 12h darkness (12:12 LD) with food and water available ad libitum. The LD50 (median lethal) dose was determined in a preliminary experiment and was administered to groups of 10 mice at six different clock times (hours) after light onset (HALO): 0, 4, 8, 12, 16, and 20 HALO. Cosinor analysis verified a statistically significant (P <. 04) circadian rhythm in the toxic effect (mortality) of florfenicol. Mortality was greatest when the drug was injected 4h after the commencement of the activity span (16 HALO) and least when injected 4h after the start of the diurnal rest span (4 HALO). Mortality was 2.5 times greater when drug injection was given at 16 HALO than at 4 HALO. (Chronobiology International, 18(3), 567–572, 2001)  相似文献   

10.
The chronopharmacological effect of raloxifene, a selective estrogen-receptor modulator, was evaluated by repeated dosing of ovariectomized rats. Bilateral ovariectomy or sham operation was performed at age 12 wks, and animals were kept in rooms with a 12 h light-12 h dark cycle. Raloxifene (3 mg/kg, once daily for 10 wks) or vehicle was given repeatedly at either 2 h after lights-on (2 HALO) or 14 h after lights-on (14 HALO). Plasma fibrinogen concentration at the end of the study was reduced by the drug, and the reduction was significantly prominent in rats in whom the drug was dosed at 2 HALO rather than 14 HALO. Femur bone density decreased, and urinary excretion of deoxypyridinoline, an index of bone resorption capacity of osteoclasts, increased in ovariectomized animals at the end of the study. Treatment with raloxifene ameliorated these changes in a dosing time-independent manner. Serum calcium, ALT, and total protein concentrations at the end of the study also did not differ according to treatment regime, which indicates that protein synthesis and liver function may not contribute to the effects. This is the first study to determine dosing time-dependent changes in the efficacy of raloxifene in an animal model of osteoporosis. Because fibrinogen concentration is reported to be a marker of cardiovascular events, consideration of dosing time of raloxifene may be important to obtain a better cardioprotective effect of this medication when it is prescribed to postmenopausal women with osteoporosis.  相似文献   

11.
This study aims to investigate whether hepatic and renal valproic acid (VPA) toxicities varied according to the dosing time in the 24-h scale in mice. VPA was administered by i.p. route to different groups of animals at four different circadian stages (1, 7, 13, and 19 h after light onset (HALO)). Biochemical study and histopathological examinations on liver and kidney sections were performed. The results showed that the hepatic and renal toxicity induced by VPA was time related. Animals treated at 19 HALO showed vacuolar degenerative changes, congestions, and inflammatory areas on liver parenchyma. Lesions within proximal tubules were observed in the kidney in groups treated at 19 HALO. The largest increases in alanine aminotransferase, alkaline phosphatase and plasma creatinine activities were also observed at 19 HALO. The obtained data indicate that the optimal hepatic and renal tolerance is observed when VPA was injected in the middle of the light-rest span of mice.  相似文献   

12.
Little is known about the chronopharmacokinetics of loratadine, a long-acting tricyclic antihistamine H(1) widely used in the treatment of allergic diseases. Hence, the pharmacokinetics of loratadine and its major metabolite, desloratadine, were investigated after a 20 mg/kg dose of loratadine had been orally administered to comparable groups of mice (n=33), synchronized for three weeks to 12 h light (rest span)/12 h dark (activity span). The drug was administered at three different circadian times (1, 9, and 17 h after light onset [HALO]). Multiple blood samples were collected over 48 h, and plasma concentrations of loratadine and desloratadine were determined by high performance liquid chromatography. There were no significant differences in T(max) of loratadine and desloratadine between treatment-time different groups. However, the elimination half-life (t1/2) of the parent compound and its metabolite was significantly longer (p<0.01) following administration at 9 HALO (t1/2 loratadine and desloratadine 5.62 and 4.08 h at 9 HALO vs. 4.29 and 2.6 h at 17 HALO vs. 3.26 and 3.27 at 1 HALO). There were relevant (p<0.05) differences in C(max) between the three treated groups for loratadine and desloratadine; 133.05+/-3.55 and 258.07+/-14.45 ng/mL at 9 HALO vs. 104.5+/-2.61 and 188.62+/-7.20 ng/mL at 1 HALO vs. 94.33+/-20 and 187.75+/-10.79 ng/mL at 17 HALO. Drug dosing at 17 HALO resulted in highest loratadine and desloratadine total apparent clearance values: 61.46 and 15.97 L/h/kg, respectively, whereas loratadine and desloratadine clearances (CL) were significantly slower (p<0.05) at the other administration times (loratadine and desloratadine CL was 57.3 and 14.22 L/h/kg at 1 HALO vs. 43.79 and 12.89 L/h/kg at 9 HALO, respectively). The area under the concentration-time curve (AUC) of loratadine and desloratadine was significantly (p<0.05) greater following drug administration at 9 HALO (456.75 and 1550.57 (ng/mL) . h, respectively); it was lowest following treatment at 17 HALO (325.39 and 1252.53 (ng/mL) . h, respectively). These pharmacokinetic data indicate that the administration time of loratadine significantly affected its pharmacokinetics: the elimination of loratadine and its major metabolite desloratadine.  相似文献   

13.
Ketamine is commonly administered in combination with benzodiazepines to achieve surgical anaesthesia in rats. The aim of the present study was to analyze the pharmacological response of the combination ketamine-midazolam injected intraperitoneally at different times of day to rats. The study was conducted in July 2003, during the winter in the Southern hemisphere. Female prepuberal Sprague-Dawley rats synchronized to a 12h light:12h dark cycle (light, 07:00-19:00h) were used as experimental animals. A combination treatment of ketamine (40 mg/kg) and midazolam (2 mg/kg) was administered to five different clock-time groups of rats (n=7/group). Duration of the latency period, ataxia, loss-of-righting reflex (LRR), post-LRR ataxia, and total pharmacological response were assessed by visual assessment. Significant treatment-time differences were detected in the duration of LRR, post-LRR ataxia, and total pharmacological response duration. The longest pharmacological response occurred in rats injected during the light (rest) phase, and the shortest pharmacological response occurred in rats injected during the dark (activity) phase. Cosinor analysis documented circadian rhythmicity in the duration of post-LRR ataxia. The findings of the study indicate the duration of CNS-depression of the ketamine-midazolam combination exhibits treatment-time-dependent variation in the rat.  相似文献   

14.
In a previous report, we showed that the circadian rhythm of cisplatin (cis-diamminedichloroplatinum, CDDP) toxicity in healthy mice was modified by buthionine sulfoximine (BSO), a specific inhibitor of glutathione (GSH) synthesis. In the present study, the effects of BSO on the rhythms of CDDP toxicity and antitumor efficacy were investigated in mice bearing a transplantable pancreatic adenocarcinoma (PO3). B6D2F1 mice were inoculated widi two 4 mm3 tumor fragments, one in each flank, then were synchronized with an alternation of 12h of light (L) and 12h of darkness (D) (LD 12: 12). Three weeks later, a single dose of CDDP (12 mg/kg iv) was injected at 3h, 7h, 11h, 15h, 19h, or 23h after light onset (HALO) with or without prior BSO (450 mg/kg ip 4h earlier). The antitumor activity of CDDP as assessed by tumor weight change and tumor growth delay was weak in this tumor model irrespective of prior BSO administration or CDDP dosing time. Nevertheless, toxic effects of CDDP as gauged by body weight loss or survival varied significantly according to CDDP dosing time. Body weight loss was least in mice receiving CDDP alone at the mid-to-late active span. Survival rate was 97% in mice treated with CDDP alone and 47% in those receiving prior BSO (χ2 = 23.6, p <. 0001). BSO pretreatment further shifted the period of survival or body weight change from 24h to (10 + 24)h, an effect similar to that earlier reported in healthy mice. Thus, PO3 tumor at a measurable stage altered neither the circadian rhythm in CDDP toxicity nor the ultradian rhythm in the toxicity of BSO-CDDP combination. The results suggest that rhythms in target tissues for drug actions can be manipulated with biochemical modulators, thus partly escaping central clock control.  相似文献   

15.
The effects of the time of day of drug administration on the subchronic toxicity and pharmacokinetics of gentamicin, as well as the role of feeding schedule on circadian rhythms, were investigated in mice. ICR male mice were housed in a light-dark (LD) cycle (12:12) with food and water ad libitum (ALF) or under a time-restricted feeding (TRF) schedule (feeding time: 8 h during the light phase) for 1 day or 14 days before drug administration. The animals were given a single subcutaneous dose of gentamicin 180 mg/kg for the kinetic studies and subcutaneous doses of gentamicin 180 mg/kg/day for 14 days or 220 mg/kg/day for 18 days for the subchronic toxicity studies. A significant dosing-time dependency was shown for mortality and body weight loss, with higher values at midlight and lower ones at the middark (p > 0.05). A significant circadian rhythm was also found for gentamicin kinetics in ALF mice, with the highest clearance at middark and the lowest one at midlight (p > 0.01). The kinetic rhythm of gentamicin coincided well with the toxicity rhythm of the drug. The TRF schedule had a marked influence on the rhythms of gentamicin kinetics and toxicity, showing lowest clearance and higher toxicity at middark. The rhythm of subchronic toxicity of gentamicin seems to be due, at least in part, to the rhythm in kinetics and is strongly influenced by the feeding schedule. Thus, the timing of dosing is an important factor in the kinetics and the subchronic toxicity of gentamicin administration in mice, and the manipulation of feeding schedule can modify the rhythm of the toxicity by changing the rhythm of gentamicin kinetics.  相似文献   

16.
The effects of vinorelbine (VRL) on the circadian rhythms in body temperature and locomotor activity were investigated in unrestrained B6D2F1 mice implanted with radio-telemetry transmitters. A single intravenous VRL dose (24 or 12 mg/kg) was given at 7 h after light onset (HALO), a time of high VRL toxicity, and resulted in transient suppression of temperature and activity circadian rhythms in mice kept in light-dark (LD) 12h:12h. Such suppression was dose-dependent. It occurred within 1-5 d after VRL dosing. Recovery of both rhythms was partially complete within 5 d following the high dose and within 2 or 3 d after the low dose and was not influenced by suppression of photoperiodic synchronization by housing in continuous darkness. Moreover, VRL induced a dose-dependent relative decrease in amplitude and phase shift of the temperature circadian rhythm. The mesor and amplitude of the activity rhythm were markedly reduced following the VRL administration. The relevance of VRL dosing time was studied in mice housed in LD 12h:12h. Vinorelbine was injected weekly (20 mg/kg/injection) for 3 wk at 6 or 18 HALO. Vinorelbine treatment ablated the rest-activity and temperature rhythms 3-6 d after each dose, with fewer alterations after VRL dosing at 18 HALO compared to 6 HALO, especially for the body temperature rhythm. There was at least partial recovery 1 wk after dosing, suggesting the weekly schedule of drug treatment is acceptable for therapeutic purposes. Our findings demonstrate that VRL can transiently, yet profoundly, alter circadian clock function. Vinorelbine-induced circadian dysfunction may contribute to the toxicokinetics of this and possibly other anticancer drugs.  相似文献   

17.
Chronotoxicity of nedaplatin in rats   总被引:3,自引:0,他引:3  
Chronotoxicologic profiles of nedaplatin, a platinum compound, were evaluated in rats maintained under a 12 light/12 dark cycle with light from 07:00h to 19:00 h. Nedaplatin (5 mg/kg) was injected intravenously, once a week for 5 weeks at 08:00h or 20:00h. The suppression of body weight gain and reduction of creatinine clearance were significantly greater with the 20:00h than 08:00h treatment. Accumulation of nedaplatin in the renal cortex and bone marrow were also greater with 20:00 h treatment. There were significant relationships between the nedaplatin content in the kidney and bone marrow and degree of injury to each. These results suggest that the nedaplatin-induced toxicity depends on its dosing-time, and it is greater with treatment at 20:00 h, during the active phase. The dosing-time dependency in the accumulation of nedaplatin in the tissue of the organs might be involved in this chronotoxicologic phenomenon.  相似文献   

18.
《Chronobiology international》2013,30(4-5):601-611
Chronotoxicologic profiles of nedaplatin, a platinum compound, were evaluated in rats maintained under a 12 light/12 dark cycle with light from 07:00 h to 19:00 h. Nedaplatin (5 mg/kg) was injected intravenously, once a week for 5 weeks at 08:00 h or 20:00 h. The suppression of body weight gain and reduction of creatinine clearance were significantly greater with the 20:00 h than 08:00 h treatment. Accumulation of nedaplatin in the renal cortex and bone marrow were also greater with 20:00 h treatment. There were significant relationships between the nedaplatin content in the kidney and bone marrow and degree of injury to each. These results suggest that the nedaplatin-induced toxicity depends on its dosing-time, and it is greater with treatment at 20:00 h, during the active phase. The dosing-time dependency in the accumulation of nedaplatin in the tissue of the organs might be involved in this chronotoxicologic phenomenon.  相似文献   

19.
Dosing-time-dependent changes in the effect and toxicity of morphine were examined in mice housed under alternating 12 h light (07:00 to 19:00 h) and dark (19:00 to 07:00 h) cycles. Morphine (0.5 mg/kg) was injected intraperitoneally (i.p.) in animals to assess its beneficial effect (i.e., protection against the kaolin-induced, bradykinin-mediated, writhing reaction) and its toxicity (i.e., alteration of the hepatic enzymes of aspartate aminotransferase [AST] alanine aminotransferase [ALT], and glutathione [GSH] in separate experiments). The magnitude of the analgesic effect of morphine depended on dosing time, with minimum effect at 02:00 h and maximum effect at 14:00 h. The serum hepatic enzyme levels of AST and ALT increased after dosing morphine (100 mg/kg) at 02:00 and 14:00 h. Time courses of these enzymes did not differ between the two trials. However, hepatic GSH, which is involved in the detoxification of chemical compounds, significantly decreased after i.p. morphine injection at 02:00 but not at 14:00 h. Overall, the results suggest that the analgesic effect of morphine is greater after dosing during the resting than during the activity phase of mice that have been induced with bradykinin-mediated pain. Drug-induced hepatic damage as inferred by GSH alteration, however, may be greater after dosing during the active phase.  相似文献   

20.
The chronopharmacological effect of raloxifene, a selective estrogen‐receptor modulator, was evaluated by repeated dosing of ovariectomized rats. Bilateral ovariectomy or sham operation was performed at age 12 wks, and animals were kept in rooms with a 12 h light‐12 h dark cycle. Raloxifene (3 mg/kg, once daily for 10 wks) or vehicle was given repeatedly at either 2 h after lights‐on (2 HALO) or 14 h after lights‐on (14 HALO). Plasma fibrinogen concentration at the end of the study was reduced by the drug, and the reduction was significantly prominent in rats in whom the drug was dosed at 2 HALO rather than 14 HALO. Femur bone density decreased, and urinary excretion of deoxypyridinoline, an index of bone resorption capacity of osteoclasts, increased in ovariectomized animals at the end of the study. Treatment with raloxifene ameliorated these changes in a dosing time‐independent manner. Serum calcium, ALT, and total protein concentrations at the end of the study also did not differ acccording to treatment regime, which indicates that protein synthesis and liver function may not contribute to the effects. This is the first study to determine dosing time‐dependent changes in the efficacy of raloxifene in an animal model of osteoporosis. Because fibrinogen concentration is reported to be a marker of cardiovascular events, consideration of dosing time of raloxifene may be important to obtain a better cardioprotective effect of this medication when it is prescribed to postmenopausal women with osteoporosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号