首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Predators will often respond to reductions in preferred prey by switching to alternative prey resources. However, this may not apply to all alternative prey groups in patchy landscapes. We investigated the demographic and aggregative numerical and functional responses of Common Buzzards Buteo buteo in relation to variations in prey abundance on a moor managed for Red Grouse Lagopus lagopus scotica in south‐west Scotland over three consecutive breeding and non‐breeding seasons. We predicted that predation of Red Grouse by Buzzards would increase when abundance of their preferred Field Vole Microtus agrestis prey declined. As vole abundance fluctuated, Buzzards responded functionally by eating voles in relation to their abundance, but they did not respond demographically in terms of either breeding success or density. During a vole crash year, Buzzards selected a wider range of prey typical of enclosed farmland habitats found on the moorland edge but fewer Grouse from the heather moorland. During a vole peak year, prey remains suggested a linear relationship between Grouse density and the number of Grouse eaten (a Type 1 functional response), which was not evident in either intermediate or vole crash years. Buzzard foraging intensity varied between years as vole abundance fluctuated, and foraging intensity declined with increasing heather cover. Our findings did not support the prediction that predation of Red Grouse would increase when vole abundance was low. Instead, they suggest that Buzzards predated Grouse incidentally while hunting for voles, which may increase when vole abundances are high through promoting foraging in heather moorland habitats where Grouse are more numerous. Our results suggest that declines in their main prey may not result in increased predation of all alternative prey groups when predators inhabit patchy landscapes. We suggest that when investigating predator diet and impacts on prey, knowledge of all resources and habitats that are available to predators is important.  相似文献   

2.
The behavioural response of juvenile bluegill sunfish (Lepomis macrochirus) to predation risk when selecting between patches of artificial vegetation differing in food and stem density was investigated. Bluegill foraging activity was significantly affected by all three factors. Regardless of patch stem density or risk of predation bluegills preferred patches with the highest prey number. During each trial bluegill foraging activity was clearly divided into a between- and within-patch component. In the presence of a predator bluegills reduced their between-patch foraging activity by an equivalent amount regardless of patch stem density or food level, apparently showing a risk-adjusting behavioural response to predation risk. Within patches, however, foraging activity was affected by both food level and patch stem density. When foraging in a patch offering a refuge from predation, the presence of a predator had no effect on bluegill foraging activity within this patch. However, if foraging in a patch with only limited refuge potential, bluegill foraging activity was reduced significantly in the presence of a predator. Further, this reduction was significantly greater if the patch contained a low versus a high food level, indicating a risk-balancing response to predation with respect to within-patch foraging activity. Both these responses differ from the risk-avoidance response to predation demonstrated by juvenile bluegills when selecting among habitats. Therefore, our results demonstrate the flexibility of juvenile bluegill foraging behaviour.  相似文献   

3.
This study investigated the effects of predation risk, dune position and microhabitat on foraging of the Lesser Hairy‐footed Dunnart Sminthopsis youngsoni, a small insectivorous marsupial, in the Simpson Desert of western Queensland. The intensity of foraging was assessed by establishing feeding stations (dishes containing mealworms) in open and bush microhabitats at three levels on sand dunes, and recording the numbers of prey taken by dunnarts from the stations after nightly bouts of foraging. Risk of predation was manipulated by provision of artificial illumination at alternate feeding stations on each of five occasions when trials were run. The numbers of mealworms left after feeding bouts varied inconsistently across trials, providing little evidence that dunnarts respond to habitat or predation risk while foraging. These results contrast sharply with studies of arid zone rodents, where foraging is usually sensitive to both predation risk and resource distribution. We suggest that S. youngsoni forages equally in all habitats of its sandridge environment, and experiences relatively low risk of predation whilst doing so.  相似文献   

4.
Patch use in time and space for a meso-predator in a risky world   总被引:1,自引:0,他引:1  
Predator–prey studies often assume a three trophic level system where predators forage free from any risk of predation. Since meso-predators themselves are also prospective prey, they too need to trade-off between food and safety. We applied foraging theory to study patch use and habitat selection by a meso-predator, the red fox. We present evidence that foxes use a quitting harvest rate rule when deciding whether or not to abandon a foraging patch, and experience diminishing returns when foraging from a depletable food patch. Furthermore, our data suggest that patch use decisions of red foxes are influenced not just by the availability of food, but also by their perceived risk of predation. Fox behavior was affected by moonlight, with foxes depleting food resources more thoroughly (lower giving-up density) on darker nights compared to moonlit nights. Foxes reduced risk from hyenas by being more active where and when hyena activity was low. While hyenas were least active during moon, and most active during full moon nights, the reverse was true for foxes. Foxes showed twice as much activity during new moon compared to full moon nights, suggesting different costs of predation. Interestingly, resources in patches with cues of another predator (scat of wolf) were depleted to significantly lower levels compared to patches without. Our results emphasize the need for considering risk of predation for intermediate predators, and also shows how patch use theory and experimental food patches can be used for a predator. Taken together, these results may help us better understand trophic interactions.  相似文献   

5.
Sean M. Naman  Rui Ueda  Takuya Sato 《Oikos》2019,128(7):1005-1014
Dominance hierarchies and the resulting unequal resource partitioning among individuals are key mechanisms of population regulation. The strength of dominance hierarchies can be influenced by size‐dependent tradeoffs between foraging and predator avoidance whereby competitively inferior subdominants can access a larger proportion of limiting resources by accepting higher predation risk. Foraging‐predation risk tradeoffs also depend on resource abundance. Yet, few studies have manipulated predation risk and resource abundance simultaneously; consequently, their joint effect on resource partitioning within dominance hierarchies are not well understood. We addressed this gap by measuring behavioural responses of masu salmon Oncorhynchus masou ishikawae to experimental manipulations of predation risk and resource abundance in a natural temperate forest stream. Responses to predation risk depended on body size and social status such that larger fish (often social dominants) exhibited more risk‐averse behaviour (e.g. lower foraging and appearance rates) than smaller subdominants after exposure to a simulated predator. The magnitude of this effect was lower when resources were elevated, indicating that dominant fish accepted a higher predation risk to forage on abundant resources. However, the influence of resource abundance did not extend to the population level, where predation risk altered the distribution of foraging attempts (a proxy for energy intake) from being skewed towards large individuals to being skewed towards small individuals after predator exposure. Our results imply that size‐dependent foraging–predation risk tradeoffs can weaken the strength of dominance hierarchies by allowing competitively inferior subdominants to access resources that would otherwise be monopolized.  相似文献   

6.
The influence of hunger level and predation risk on habitat choice and foraging in crucian carp, Carassius carassius, were studied in a laboratory experiment. Experiments were carried out in aquaria with or without a predator (pike, Esox lucius). Habitat use and foraging activity of three-fish foraging groups of either fed or hungry crucian carp were studied. Fish were allowed to choose between an open (risky) habitat with Tubifex worms and a habitat with dense vegetation (safe) without food. Habitat use was significantly affected by both risk of predation and hunger level. Crucian carp spent less time in the open habitat when there was a predator present and they also spent less time there when fed than when hungry. Furthermore, there was a significant interaction between risk of predation and hunger level, indicating a state-dependent trade-off between food acquisition and predator avoidance.  相似文献   

7.
In group‐foraging species with no alarm signals, the sudden departure of neighbours can be used to inform the rest of the group about the detection of a threat. However, sudden departures are ambiguous because they can be triggered by factors unrelated to predator detection. We evaluated how animals react to the sudden departure of neighbours in groups of foraging house sparrows (Passer domesticus). We focussed on false alarms that occurred for no apparent reasons to us because predation attempts were not frequent. Three factors can explain how the sudden departure of a neighbour can influence reaction times, namely group size, the distance between neighbours, and predation risk. We predicted reaction times to be longer in larger groups where individual vigilance levels are low, and when group members are further apart and cannot easily monitor each other. In addition, we expected reaction times to be longer when predation risk is lower. Departures that are more temporally clumped are also expected to be less ambiguous and should trigger faster reaction times. Our results show that sparrows reacted faster, not more slowly, to the sudden departures of neighbours in larger groups, and, as predicted, more slowly when neighbours were more distant from each other. Reaction times were longer in one of the two study years in which predation risk was deemed lower. Sparrows reacted more quickly when earlier departures were more temporally clumped. The results thus provided partial support for the predictions, and future work is needed to assess how individuals react to fleeing responses by their neighbours in species with no alarm signals.  相似文献   

8.
Wirsing AJ  Heithaus MR  Dill LM 《Oecologia》2007,153(4):1031-1040
Predators can influence plants indirectly by altering spatial patterns of herbivory, so studies assessing the relationship between perceived predation risk and habitat use by herbivores may improve our understanding of community organization. In marine systems, the effects of predation danger on space use by large herbivores have received little attention, despite the possibility that predator-mediated alterations in patterns of grazing by these animals influence benthic community structure. We evaluated the relationship between habitat use by foraging dugongs (Dugong dugon) and the threat of tiger shark predation in an Australian embayment (Shark Bay) between 1997 and 2004. Dugong densities were quantified in shallow (putatively dangerous) and deep (putatively safe) habitats (seven survey zones allocated to each habitat), and predation hazard was indexed using catch rates of tiger sharks (Galeocerdo cuvier); seagrass volume provided a measure of food biomass within each zone. Overall, dugongs selected shallow habitats, where their food is concentrated. Foragers used shallow and deep habitats in proportion to food availability (input matching) when large tiger sharks were scarce and overused deep habitats when sharks were common. Furthermore, strong synchrony existed between daily measures of shark abundance and the extent to which deep habitats were overused. Thus, dugongs appear to adaptively manage their risk of death by allocating time to safe but impoverished foraging patches in proportion to the likelihood of encountering predators in profitable but more dangerous areas. This apparent food-safety trade-off has important implications for seagrass community structure in Shark Bay, as it may result in marked temporal variability in grazing pressure. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

9.
Predator–prey interactions are strongly influenced by habitat structure, particularly in coastal marine habitats such as seagrasses in which structural complexity (SC) may vary over small spatial scales. For seagrass mesopredators such as juvenile fishes, optimality models predict that fitness will be maximized at levels of SC that enhance foraging but minimize predation risk, both of which are functions of body size. We tested the hypothesis that in eelgrass (Zostera marina) habitat, optimal SC for juvenile giant kelpfish (Heterostichus rostratus), an abundant eelgrass mesopredator in southern California, changes through ontogeny. To do this, we quantified eelgrass SC effects on habitat associations, relative predation risk, and foraging efficiency for three size classes of juvenile giant kelpfish. We found that habitat selection differed with fish size: small fish selected dense eelgrass, whereas larger fish selected sparse eelgrass. Small kelpfish experienced the lowest relative predation risk in dense eelgrass but also had higher foraging efficiency in dense eelgrass, suggesting that dense eelgrass is selected by these fish because it minimizes risk and maximizes potential for growth. Surprisingly, larger kelpfish did not experience lower predation risk than small kelpfish. However, larger kelpfish experienced higher foraging efficiency in sparse eelgrass vs. dense eelgrass, suggesting that they select sparse eelgrass to maximize foraging efficiency. Our study highlights that trade-offs between predation risk and foraging can occur within a single habitat type, that studies should consider how habitat value changes through ontogeny, and that seagrass habitat value may be maximal when within-patch variability in SC is high.  相似文献   

10.
Competitor coexistence is often facilitated by spatial segregation. Traditionally, spatial segregation is predicted to occur when species differ in the habitat in which they are either superior at competing for resources or less susceptible to predation. However, predictions from a behavioural model demonstrate that spatial segregation and coexistence can also occur in the absence of such interspecific trade‐offs in competitive ability and vulnerability to predation. Unlike other models of competitor coexistence this model predicts that when species rank both habitat productivity and ‘riskinesses’ similarly, but differ slightly in their habitat‐specific vulnerabilities to predators, they will tend to segregate across habitats, with the species experiencing the higher ratio of mortality risk across the habitats occurring primarily in the safer habitat. Here, we investigate the hypothesis that intraspecific trade‐offs between resource availability and mortality risk can lead to spatial segregation of competing species by (1) documenting the spatial (i.e. intertidal) distribution of two marine snails, Littorina sitkana and L. subrotundata and (2) performing field experiments to quantify growth and mortality rates of each species at ‘low’ and ‘high’ intertidal heights. Our results indicate that both species agree on the rankings of habitat riskiness and productivity, experiencing higher predation and higher growth in low‐ than in high‐intertidal habitats. However, L. sitkana and L. subrotundata experienced differences in their habitat‐specific mortality risks and growth rates. Despite both species being similarly at risk of predation in high‐intertidal habitats (where mortality was lower), L. subrotundata was subject to significantly higher mortality than L. sitkana at the low‐intertidal height. In contrast, growth rate differences between habitats were greater for L. sitkana than for L. subrotundata. Whereas both species grew at the same rate at the high‐intertidal level (where growth was lower), L. sitkana individuals grew more rapidly than L. subrotundata snails at the low‐intertidal level. As predicted by the behavioural model, the species that experienced the higher ratio of mortality across habitats (i.e. L. subrotundata) occurred exclusively in the safer, high‐intertidal habitat. Taken together, these results provide support for the hypothesis that spatial segregation, and potentially competitor coexistence, can occur in the absence of interspecific trade‐offs in resource acquisition ability or vulnerability to predation.  相似文献   

11.
We previously developed a model, based on the precepts of optimal patch use, to compare habitat quality both within and between environments. Here we illustrate the use of this model in a study estimating quality of winter habitats (deer yards) of white‐tailed deer Odocoileus virginianus near the northern limit of their range by following their foraging behaviour. We compare giving up densities (GUDs), the amount of food remaining in a patch when a forager ceases foraging there, with and without the presence of supplemental food in order to draw inferences about the relative quality either of habitats within an environment or of distinct environments. We use our model to evaluate the impact of alterations to the winter habitat of deer at two distinct sites that differed in their level of predation risk and food availability. The first site, the Mont Rigaud deer yard, was surrounded by farm land and gradually‐expanding suburbs. Predators were rare and food was available in winter either in farm fields or around private homes but deer browsing in the past had left little food in the forest. At the second site, the Calumet deer yard, deer experienced a higher predation risk and did not have access to supplemental food from farm fields or private homes. However, past browsing by deer had not drastically reduced food in the forest. We offered food to deer in four habitats per site (forest, forest edge, clearing, clearing edge) with four to six replicates per site and measured the GUDs after 24 h. Analysis of these data, interpreted according to our model, suggests that deer are more sensitive to metabolic costs at Mont Rigaud and food availability at Calumet; predation risk does not alter deer behaviour between the two sites. Within habitats, deer at Mont Rigaud reacted to clearings as though they imposed higher metabolic costs than the forest. They also reacted to an interaction in which missed food costs influenced GUD only when metabolic costs were not too high. Thus our model appears to provide a convenient tool for comparing habitat quality both within and between environments.  相似文献   

12.
Temporal variation of antipredatory behavior and a uniform distribution of predation risk over refuges and foraging sites may create foraging patterns different from those anticipated from risk in heterogenous habitats. We studied the temporal variation in foraging behavior of voles exposed to uniform mustelid predation risk and heterogeneous avian predation risk of different levels induced by vegetation types in eight outdoor enclosures (0.25 ha). We manipulated mustelid predation risk with weasel presence or absence and avian predation risk by reducing or providing local cover at experimental food patches. Foraging at food patches was monitored by collecting giving-up densities at artificial food patches, overall activity was automatically monitored, and mortality of voles was monitored by live-trapping and radiotracking. Voles depleted the food to lower levels in the sheltered patches than in the exposed ones. In enclosures with higher avian predation risk caused by lower vegetation height, trays were depleted to lower levels. Unexpectedly, voles foraged in more trays and depleted trays to lower levels in the presence of weasels than in the absence. Weasels match their prey's body size and locomotive abilities and therefore increase predation risk uniformly over both foraging sites and refuge sites that can both be entered by the predator. This reduces the costs of missing opportunities other than foraging. Voles changed their foraging strategy accordingly by specializing on the experimental food patches with predictable returns and probably reduced their foraging in the matrix of natural food source with unpredictable returns and high risk to encounter the weasel. Moreover, after 1 day of weasel presence, voles shifted their main foraging activities to avoid the diurnal weasel. This behavior facilitated bird predation, probably by nocturnal owls, and more voles were killed by birds than by weasels. Food patch use of voles in weasel enclosures increased with time. Voles had to balance the previously missed feeding opportunities by progressively concentrating on artificial food patches.  相似文献   

13.
Foraging birds can manage time spent vigilant for predators by forming groups of various sizes. However, group size alone will not always reliably determine the optimal level of vigilance. For example, variation in predation risk or food quality between patches may also be influential. In a field setting, we assessed how simultaneous variation in predation risk and intake rate affects the relationship between vigilance and group size in foraging Ruddy Turnstones Arenaria interpres. We compared vigilance, measured as the number of ‘head‐ups’ per unit time, in habitat types that differed greatly in prey energy content and proximity to cover from which predators could launch surprise attacks. Habitats closer to predator cover provided foragers with much higher potential net energy intake rates than habitats further from cover. Foragers formed larger and denser flocks on habitats closer to cover. Individual vigilance of foragers in all habitats declined with increasing flock size and increased with flock density. However, vigilance by foragers on habitats closer to cover was always higher for a given flock size than vigilance by foragers on habitats further from cover, and habitat remained an important predictor of vigilance in models including a range of potential confounding variables. Our results suggest that foraging Ruddy Turnstones can simultaneously assess information on group size and the general likelihood of predator attack when determining their vigilance contribution.  相似文献   

14.
The formation of mixed-species social groups, whereby heterospecifics form and maintain either transient or stable groups with each other, can confer substantial fitness benefits to individuals. Such benefits may arise via multiple mechanisms associated with both predation avoidance and foraging efficiency. In fishes, mixed-species shoaling reportedly occurs where displaced tropical species (known as “vagrants”) interact with resident temperate species, although little is known about the nature and frequency of such interactions. To investigate this phenomenon, we used displaced tropical Indo-pacific Sergeant Abudefduf vaigiensis settling in temperate south-eastern Australia as a model system. Underwater visual surveys revealed shoal composition and size differed significantly between open-water and reef habitats, with shoals in open habitats being larger and more speciose. Shoals containing A. vaigiensis were mainly mixed-species, and larger and more speciose in open habitats than nearer to reef. Since both foraging efficiency (via access to plankton) and predation threat likely increase with increasing distance from reef habitat, we suggest that mixed-species shoaling mitigates predation risk whilst allowing increased foraging opportunities for A. vaigiensis in open areas. These findings provide support for the importance of mixed-species shoaling to the persistence of tropical reef fishes in temperate regions.  相似文献   

15.
In theory, survival rates and consequent population status might be predictable from instantaneous behavioural measures of how animals prioritize foraging vs. avoiding predation. We show, for the 30 most common small bird species ringed in the UK, that one quarter respond to higher predation risk as if it is mass-dependent and lose mass. Half respond to predation risk as if it only interrupts their foraging and gain mass thus avoiding consequent increased starvation risk from reduced foraging time. These mass responses to higher predation risk are correlated with population and conservation status both within and between species (and independently of foraging habitat, foraging guild, sociality index and size) over the last 30 years in Britain, with mass loss being associated with declining populations and mass gain with increasing populations. If individuals show an interrupted foraging response to higher predation risk, they are likely to be experiencing a high quality foraging environment that should lead to higher survival. Whereas individuals that show a mass-dependent foraging response are likely to be in lower quality foraging environments, leading to relatively lower survival.  相似文献   

16.
It is theoretically and empirically well established that body mass variation in small birds reflects a trade-off between starvation risk and predation risk. This occurs because carrying increased fat reserves reduces starvation risk but also results in a higher predation risk due to reduced escape flight performance and/or the increased foraging exposure needed to maintain a higher body mass. In principle, therefore, the theory of mass-dependent predation risk could be used to understand how a bird perceives and responds to the risks in its environment, because its mass will reflect the predictability of foraging opportunities and predation risk. Mass in birds may then provide a relatively straightforward way of assessing the foraging environment of birds and so the potential conservation problems a species faces. This study tests, for the first time for any species, how body mass changes in response to changing starvation risk, changing predation risk and changing population status. Common Starling Sturnus vulgaris mass varies as predicted by starvation–predation risk trade-off theory: mass is lower when foraging conditions are more favourable and when predation risk is increased. The populations that are declining the most strongly have higher mass, which is most likely indicative of a poor foraging environment, leading to lower relative survival. The results suggest that increased mass in Starlings, and possibly in other species, may provide an indication of the poor quality of the foraging environment and/or rapidly declining populations.  相似文献   

17.
Behaviour is shaped by evolution as to maximise fitness by balancing gains and risks. Models on decision making in biology, psychology or economy have investigated choices among options which differ in gain and/or risk. Meanwhile, there are decision contexts with uniform risk distributions where options are not differing in risk while the overall risk level may be high. Adequate predictions for the emerging investment patterns in risk uniformity are missing. Here we use foraging behaviour as a model for decision making. While foraging, animals often titrate food and safety from predation and prefer safer foraging options over riskier ones. Risk uniformity can occur when habitat structures are uniform, when predators are omnipresent or when predators are ideal-free distributed in relation to prey availability. However, models and empirical investigations on optimal foraging have mainly investigated choices among options with different predation risks. Based on the existing models on local decision making in risk-heterogeneity we test predictions extrapolated to a landscape level with uniform risk distribution. We compare among landscapes with different risk levels. If the uniform risk is low, local decisions on the marginal value of an option should lead to an equal distribution of foraging effort. If the uniform risk is high, foraging should be concentrated on few options, due to a landscape-wide reduction of the value of missed opportunity costs of activities other than foraging. We provide experimental support for these predictions using foraging small mammals in artificial, risk uniform landscapes. In high risk uniform landscapes animals invested their foraging time in fewer options and accepted lower total returns, compared to their behaviour in low risk-uniform landscapes. The observed trade off between gain and risk, demonstrated here for food reduction and safety increase, may possibly apply also to other contexts of economic decision making.  相似文献   

18.
Body size affects key life‐history parameters including dietary requirements and predation risk. We examined these effects on diel habitat use in a community of three sexually‐dimorphic macropodid marsupial species: western grey kangaroo Macropus fuliginosus, red‐necked wallaby M. rufogriseus and swamp wallaby Wallabia bicolor. In particular, our study seeks evidence of these effects operating concurrently at the intra‐ and interspecific levels. We used radio‐tracking to quantify habitat use and characterised each used location by recording the cover of plant functional groups and the presence of plant species. During nocturnal foraging periods we predicted that smaller animals (between and within species) should use habitats with higher‐quality forage, which is often less abundant, than larger animals, as metabolic demand scales with body size. During diurnal resting periods we predicted that smaller animals (between and within species), being more vulnerable to predation, should use greater concealment cover than larger animals. Western grey kangaroos and swamp wallabies behaved as predicted during foraging periods, but red‐necked wallabies did not, using more open, poorer‐quality habitats than expected. Only western grey kangaroos showed a within‐species effect on habitat use: the relatively smaller females foraged in higher‐quality patches. Habitats used by animals during the resting period generally offered greater concealment cover than those used during the foraging period, but there were no clear body size effects on the density of vegetation used. In our system, body size alone could not explain all of the observed patterns, suggesting that there may also be individual differences in habitat requirements influenced by factors such as reproductive costs, predation risk and social facilitation.  相似文献   

19.
Vigilance is a key to the early detection of predators, but may be costly if it impairs foraging efficiency. Hence, we would expect vigilance to be suppressed and/or counter‐selected in predator‐free environments, although this might depend on the environmental drivers influencing perceived predation risk. We studied vigilance in two populations of Sitka black‐tailed deer (Odocoileus hemionus sitkensis) on Haida Gwaii (Canada) which have not been exposed to predators since they colonized the study islands approx. 60 yr ago. In this context, anti‐predator behavior should not have any obvious current benefit. Moreover, its maintenance should be particularly costly in our study populations because these deer have depleted their food resources and, thus, anti‐predator behaviors should interfere with time spent searching for scarce resources. We used bait stations equipped with camera traps to assess vigilance under standardized feeding conditions. We expected to observe lower vigilance levels than those observed elsewhere in locations with predators. We investigated how vigilance varied in relation to the amount of bait, the level of visibility, and between day and night. During the day, deer spent, on average, 14% of their time in overt vigilance during foraging bouts, a level similar to, although in the lower range of, values reported at sites where predators are present. Levels of vigilance were lower at night, and decreased with increasing visibility, but not during the day. Deer were less vigilant when bait availability was high, but only when visibility was also high. We discuss why the maintenance of vigilance is here best explained by the ghosts of predators past, and how, at the temporal scale of a few generations, the ecological factors driving vigilance levels might override the absence of significant risk from large predators.  相似文献   

20.
Habitat use and foraging behavior of two benthic insectivorous gobies, Rhinogobius sp. CO (cobalt type) and Rhinogobius sp. DA (dark type), were examined in relation to their predation effects on local prey density in a small coastal stream in southwestern Shikoku, Japan. Correlations among the foraging range, frequency of foraging attempts and current velocity indicated that individuals using fast-current habitats had small foraging ranges and infrequently made foraging attempts while those in slow currents frequently foraged over large areas. The former and the latter were recognized as ambush and wandering foragers, respectively. Interspecific comparisons of habitat use, foraging behavior and prey preference suggested that Rhinogobius sp. CO selectively forage mobile prey by ambushing in fast currents, whereas Rhinogobius sp. DA randomly forage available prey by wandering in slow-current habitats. A cage experiment was conducted to assess prey immigration rate and the degree of predation effects on local prey density in relation to current velocity. The results of the experiment support, at least in part, our initial predictions: (1) prey immigration rates increase with current velocity and (2) the effects of fish predation on local prey density are reduced as current velocity increases. Overall results illustrated a link between the foraging modes of the stream gobies and their predation effects on local prey density: fish adopt ambush foraging in fast currents, where the decrease in prey density tends to be less, whereas fish actively forage over large areas in slow currents, where the decrease in prey is relatively large.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号