首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Effects of pertussis toxin treatment on the metabolism of rat adipocytes   总被引:10,自引:0,他引:10  
The protein toxin present in Bordetella pertussis vaccine blocks the inhibition of adenylate cyclase by prostaglandins and adenosine which may be secondary to ADP-ribosylation of an inhibitory guanine nucleotide-binding protein. The stimulatory effects of alpha 1-catecholamine agonists on 32P uptake into phosphatidic acid and phosphatidylinositol in isolated rat adipocytes were virtually abolished by pertussis toxin treatment. In contrast, the stimulatory effects of insulin were increased in adipocytes after pertussis toxin treatment. Pertussis toxin treatment did not alter insulin stimulation of glucose oxidation and actually increased glucose conversion to lipid. Basal lipolysis was elevated in adipocytes by pertussis toxin treatment but not basal cyclic AMP. However, the increases in cyclic AMP and lipolysis due to low concentrations of catecholamines and forskolin were markedly potentiated by pertussis toxin treatment. The inhibitory effects of adenosine on cyclic AMP stimulation due to catecholamines were abolished by pertussis toxin. These data indicate that pertussis toxin selectively interferes with inhibition of cyclic AMP accumulation in rat adipocytes by adenosine, potentiates the increases in cyclic AMP due to catecholamines, increases the stimulatory effects of insulin on adipocyte metabolism, and interferes with alpha 1-catecholamine stimulation of phosphatidylinositol turnover.  相似文献   

2.
The inhibition of prolactin secretion and cyclic AMP accumulation in GH3 cells by muscarinic agonists was blocked by preincubation of the cells with pertussis toxin (islet-activating protein). There was a lag of approx. 80 min in the onset of the effect on secretion. These results suggest that muscarinic agonists decrease prolactin secretion by inhibiting adenylate cyclase activity.  相似文献   

3.
We examined the mechanism by which adenosine inhibits prolactin secretion from GH3 cells, a rat pituitary tumour line. Prolactin release is enhanced by vasoactive intestinal peptide (VIP), which increases cyclic AMP, and by thyrotropin-releasing hormone (TRH), which increases inositol phosphates (IPx). Analogues of adenosine decreased prolactin release, VIP-stimulated cyclic AMP accumulation and TRH-stimulated inositol phospholipid hydrolysis and IPx generation. Inhibition of InsP3 production by R-N6-phenylisopropyladenosine (R-PIA) was rapid (15 s) and was not affected by the addition of forskolin or the removal of external Ca2+. Addition of adenosine deaminase or the potent adenosine-receptor antagonist, BW-A1433U, enhanced the accumulation of cyclic AMP by VIP, indicating that endogenously produced adenosine tonically inhibits adenylate cyclase. The potency order of adenosine analogues for inhibition of cyclic AMP and IPx responses (measured in the presence of adenosine deaminase) was N6-cyclopentyladenosine greater than R-PIA greater than 5'-N-ethylcarboxamidoadenosine. This rank order indicates that inhibitions of both cyclic AMP and InsP3 production are mediated by adenosine A1 receptors. Responses to R-PIA were blocked by BW-A1433U (1 microM) or by pretreatment of cells with pertussis toxin. A greater amount of toxin was required to eliminate the effect of R-PIA on inositol phosphate than on cyclic AMP accumulation. These data indicate that adenosine, in addition to inhibiting cyclic AMP accumulation, decreases IPx production in GH3 cells, possibly by directly inhibiting phosphoinositide hydrolysis.  相似文献   

4.
J Simard  G Lefèvre  F Labrie 《Peptides》1987,8(2):199-205
We have investigated the effect of prior exposure to somatostatin (SRIF) alone or in combination with growth hormone-releasing factor (GRF) on the subsequent cyclic AMP and GH responses to GRF in rat anterior pituitary cells in primary culture. The maximal 4.5-fold stimulation of GH release induced by a 3-hr incubation with GRF is reduced by 60% following a prior 3-hr exposure to 30 nM GRF. A 3-hr preincubation with GRF in the presence of 30 nM SRIF doubles spontaneous GH release while the maximal amount of GH released during a subsequent 3-hr exposure to GRF is similar to that measured in cells pretreated with control medium, thus completely preventing the loss of GH responsiveness induced by prior exposure to GRF. The prevention by SRIF of the desensitizing action of GRF on GH release is not observed on the cyclic AMP response which remains almost completely inhibited in GRF-pretreated cells. Similar protective effects are obtained when SRIF is incubated with prostaglandin E2 (PGE2), thus completely preventing the desensitizing action of PGE2 on GH release. Prior treatment with pertussis toxin completely prevents the protective action of SRIF on GH responsiveness. Pretreatment with GRF + SRIF increases by 85 and 60% the maximal amount of GH release induced by cholera toxin and 8-bromoadenosine 3',5'-monophosphate, respectively. The post-SRIF rebound effect on GH release occurs mainly during the first 30 min following withdrawal of the tetradecapeptide. The present data demonstrate that simultaneous preincubation with SRIF and GRF prevents the marked inhibition of GH release during subsequent exposure to GRF.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Insulin inhibition of lipolysis in the presence of forskolin was reversed by a four hour exposure of adipocytes to pertussis toxin. In contrast, the antilipolytic action of insulin against lipolysis due to theophylline was unaffected by pertussis toxin as was the ability of insulin to lower cyclic AMP in the presence of either forskolin or theophylline. The stimulation of adenylate cyclase by norepinephrine in crude plasma membranes obtained from rat adipocytes was inhibited by N6-(Phenylisopropyl)adenosine (PIA) and abolished by pretreating rat adipocytes with pertussis toxin. The stimulation of glucose metabolism by insulin was not altered by pertussis toxin pretreatment of rat adipocytes. These findings suggest that pertussis toxin selectively abolishes the antilipolytic effect of insulin in the presence of forskolin through a cyclic AMP independent mechanism.  相似文献   

6.
Treatment of hepatocytes with islet activating protein (pertussis toxin) from Bordetella pertussis blocked the ability of insulin to inhibit adenylate cyclase activity both in broken plasma membranes and in intact hepatocytes. Such treatment of intact hepatocytes with pertussis toxin did not prevent insulin from activating the peripheral plasma membrane cyclic AMP phosphodiesterase although it did inhibit the ability of insulin to activate the 'dense-vesicle' cyclic AMP phosphodiesterase. The ability of glucagon pretreatment of hepatocytes to block insulin's activation of the plasma membrane cyclic AMP phosphodiesterase was abolished in pertussis toxin-treated hepatocytes. It is suggested that the ability of insulin to manipulate cyclic AMP concentrations by inhibiting adenylate cyclase and activating the plasma membrane and 'dense-vesicle' cyclic AMP phosphodiesterases involves interactions with the guanine nucleotide regulatory protein system occurring in liver plasma membranes.  相似文献   

7.
In the rat pituitary cell line GH3, carbachol inhibits PRL secretion in a pertussis toxin-sensitive manner. For elucidation of the underlying mechanisms, we studied the effect of carbachol on voltage-dependent Ca2+ currents. Under voltage-clamp conditions, carbachol inhibited whole-cell Ca2+ currents by about 25%. This inhibitory action of carbachol was not observed in cells treated with pertussis toxin, indicating the involvement of a pertussis toxin-sensitive G-protein. In membranes of GH3 cells, carbachol stimulated a pertussis toxin-sensitive high-affinity GTPase. In immunoblot experiments with peptide antisera, we identified two forms of the Gi alpha-subunit (41 and 40 kDa) and two forms of the Go alpha-subunit (40 and 39 kDa). The 40-kDa Gi alpha-subunit was recognized by an antibody specific for the Gi2 alpha-subunit, and the 39-kDa Go alpha-subunit was detected by an antibody specific for the Go2 alpha-subunit. Incubation of membranes with the photoreactive GTP analog [alpha-32P]GTP azidoanilide resulted in photo-labelling of 40- and 39-kDa pertussis toxin substrates comigrating with G-protein alpha-subunits of the corresponding molecular masses. Carbachol dose-dependently stimulated incorporation of the photoreactive GTP analog into the 39-kDa pertussis toxin substrate and, to a lesser extent, into 40-kDa pertussis toxin substrates. The data indicate that muscarinic receptors of GH3 cells couple preferentially to Go, which is likely to be involved in the inhibition of secretion, possibly by conferring an inhibitory effect to voltage-dependent Ca2+ channels.  相似文献   

8.
Chronic pertussis toxin treatment (5 days) of NG108-15 neuroblastoma X glioma hybrid cells had no significant effect on basal cyclic AMP levels whereas it effectively blocked the inhibitory action of acute (10 min) exposure of carbachol (10(-4)M) on intracellular cyclic AMP accumulation, stimulated by prostaglandin E1. This action of pertussis toxin was found to be long lasting: exposure of the cells to pertussis toxin (100 ng/ml) for only 24 h followed by a 5-day withdrawal period still was shown effective on day 7 in abolishing the inhibitory action of carbachol on prostaglandin E1-stimulated cyclic AMP production. Chronic exposure (5 days) of NG108-15 cells to carbachol (10(-5)M) causes an increase in basal cyclic AMP levels by 98%, and a desensitization of the muscarinic inhibition of cyclic AMP accumulation, assessed after a 24-h withdrawal period. When carbachol treatment is carried out in the presence of pertussis toxin (100 ng/ml) both of these effects of carbachol are abolished.  相似文献   

9.
Pertussis toxin was purified approx. 1800-fold from pertussis vaccine. Administration of as little as 1 microgram of toxin/100 g body weight to hamsters markedly decreased the sensitivity of their adipocytes to agents that inhibit adenylate cyclase through receptor-mediated, GTP-dependent mechanisms such as alpha 2-adrenergic amines, prostaglandins, phenylisopropyladenosine and nicotinic acid. On the contrary, the inhibitory effect of 2',5'-dideoxyadenosine on cyclic AMP accumulation was not affected by the toxin. Activation of adenylate cyclase by isoproterenol, ACTH or forskolin was not diminished by the toxin but the maximum cyclic AMP accumulation was consistently increased. Furthermore, the dose-response curves for ACTH and forskolin were clearly shifted to the left in adipocytes from toxin-treated hamsters as compared to control adipocytes. It is concluded that pertussis toxin blocks the transfer of inhibitory information from the receptors to adenylate cyclase.  相似文献   

10.
The influence of protein kinase C (PKC) activation on cyclic AMP production in GH3 cells has been studied. The stimulation of cyclic AMP accumulation induced by forskolin and cholera toxin was potentiated by 4 beta-phorbol 12,13-dibutyrate (PDBu). Moreover, PDBu, which causes attenuation of the maximal response to vasoactive intestinal polypeptide (VIP), also induced a small right shift in the dose-response curve for VIP-induced cyclic AMP accumulation. PDBu-stimulated cyclic AMP accumulation was unaffected by pretreatment of cells with pertussis toxin or the inhibitory muscarinic agonist, oxotremorine. PDBu stimulation of adenylate cyclase activity required the presence of a cytosolic factor which appeared to translocate to the plasma membrane in response to the phorbol ester. The diacylglycerol-generating agents thyroliberin, bombesin and bacterial phospholipase C each stimulated cyclic AMP accumulation, but, unlike PDBu, did not attenuate the stimulation induced by VIP. These results suggest that PKC affects at least two components of the adenylate cyclase complex. Stimulation of cyclic AMP accumulation is probably due to modification of the catalytic subunit, whereas attenuation of VIP-stimulated cyclic AMP accumulation appears to be due to the phosphorylation of a different site, which may be the VIP receptor.  相似文献   

11.
Pretreatment of A-10 cells with pertussis toxin had no effect on [arginine]vasopressin-mediated inhibition of cyclic nucleotide accumulation. Pretreatment of the cells with the same concentration of pertussis toxin produced 90-95% inhibition of [32P]ADP ribosylation in membranes, suggesting that these cells possess pertussis-toxin substrate and that the toxin enters the cells to reach its site of action. The functional integrity of the pertussis-toxin substrate in these cells is confirmed by the observation that in these cell membranes increasing concentrations of GTP inhibited basal, forskolin- and NaF-stimulated adenylate cyclase activities, and this inhibition was abolished when the cells were pretreated with pertussis toxin. In addition, thrombin-mediated inhibition of isoprenaline-stimulated cyclic AMP accumulation was also inhibited by pertussis-toxin pretreatment of the cells. These data suggest that, unlike thrombin, [arginine]vasopressin-induced inhibitory effects on cyclic nucleotide accumulation in smooth-muscle cells are not mediated by pertussis-toxin substrate.  相似文献   

12.
Somatostatin inhibits both forskolin and (-) isoproterenol-stimulated cyclic AMP accumulation in AtT-20 cells. Pretreatment of these cells with pertussis toxin prevents somatostatin's inhibitory effects on cyclic AMP production. This pretreatment also enhances the cyclic AMP response to forskolin and (-) isoproterenol without affecting basal cyclic AMP levels. The blockade of somatostatin's inhibitory effect was dependent both on the time of preincubation and concentration of pertussis toxin used. The rise in forskolin-stimulated cyclic AMP formation following pertussis toxin treatment preceded the blockade of somatostatin's inhibitory actions. The results suggest that somatostatin acts through an inhibitory guanine nucleotide regulatory protein to affect adenylate cyclase activity.  相似文献   

13.
The role of a pertussis toxin sensitive GTP-binding protein in mediating between cholecystokinin receptors and phosphatidylinositol 4,5-bisphosphate phosphodiesterase as well as in preventing cholecystokinin from increasing cellular cyclic AMP has been investigated using dispersed acini from rabbit pancreas. Pertussis toxin pretreatment (500 ng/ml, 2 h) did not affect cholecystokinin(octapeptide) (CCK-8)-induced increases in cytosolic free Ca2+ as judged from changes in fluorescence obtained from quin2-loaded acini. Although pretreatment with pertussis toxin was also without effect on resting acinar cell cyclic AMP levels, adenylate cyclase activity was increased, since inhibition of cyclic AMP phosphodiesterase activity by isobutylmethylxanthine (IBMX) resulted in an additional increase in cyclic AMP levels in toxin-treated acini, indicating that acinar cell adenylate cyclase activity is under some tonic inhibitory control by the pertussis toxin-sensitive inhibitory GTP-binding protein (Gi) of the adenylate cyclase system. CCK-8 gave an increase in cyclic AMP levels in both control (1.6-fold) and toxin-treated (2.3-fold) acini, leading to cyclic AMP levels in the toxin-treated acini 2-times as high as those in control acini. In the presence of IBMX, the cyclic AMP response to CCK-8 was again markedly enhanced in acini pretreated with the toxin (3.2- vs. 1.8-fold), resulting in cAMP levels in the toxin-treated acini 3.7-times those in the absence of IBMX, 2.5-times those in control acini in the presence of IBMX and 7.0-times those in control acini in the absence of IBMX. Neither the pretreatment with pertussis toxin, nor the presence of IBMX alone, nor the combination had an effect on basal amylase secretion. However, all three treatments potentiated the stimulatory effect of CCK-8 on amylase secretion and the amount of potentiation was proportional to the cyclic AMP levels reached. Our findings suggest that in the intact pancreatic acinar cell Gi inhibition of the catalytic subunit of the adenylate cyclase may largely be responsible for preventing cholecystokinin from increasing cellular cyclic AMP. They moreover show that cyclic AMP is a modulatory agent in rabbit pancreatic enzyme secretion, not able to stimulate secretion itself, but potentiating effects mediated by the phosphatidylinositol-calcium pathway.  相似文献   

14.
In rat osteosarcoma (ROS 17/2.8) cells, which express osteoblastic features in culture, basic fibroblast growth factor (bFGF) reduces the level of alkaline phosphatase, type I collagen, and osteocalcin mRNA and increases osteopontin mRNA, independent of growth stimulation. The fibroblast growth factor (FGF) effects are dose dependent (EC50 about 6 pM) and are detected 24 h after addition of the growth factor. bFGF also reduces parathyroid hormone-stimulatable adenylate cyclase and alkaline phosphatase activity in these cells. Concomitant treatment with pertussis toxin (20 ng/ml) opposes the FGF effects. Although cyclic AMP elevating agents mimic pertussis toxin action on some parameters, they produce opposite effects on others, indicating that antagonism between pertussis toxin and bFGF is not mediated by cyclic AMP. bFGF caused a small reduction in steady state NAD-dependent ADP-ribosylation and had no detectable effects on the steady-state levels of the Gi alpha (alpha subunit of the inhibitory G protein) 1, 2, and 3, visualized with specific antibodies in these cells. Although the site of interaction of pertussis toxin and FGF remains to be determined, the findings presented here suggest separate control of growth and differentiation by bFGF and show that pertussis toxin treatment can modulate differentiation in these cells, presumably via Gi proteins.  相似文献   

15.
Noradrenaline- and clonidine-induced inhibition of insulin release from intact and electrically permeabilized rat islets was markedly relieved by prior exposure to 100 ng of Bordetella pertussis toxin/ml. The reversal of catecholamine inhibition of insulin secretion by this toxin was not associated with a decrease in specific binding of the alpha 2-adrenergic ligand [3H]yohimbine, and could not be fully explained by an increase in intracellular cyclic AMP. Exposure of intact islets to 1 microgram of pertussis toxin/ml for 2 h, followed by electrical permeabilization and incubation with 5 microCi of [alpha-32P]NAD+, resulted in the ADP-ribosylation in situ of a protein of molecular mass approx. 41 kDa. These results suggest that pertussis toxin alleviates catecholamine inhibition of beta-cell secretory responses by ADP-ribosylating at least one protein of molecular mass 41 kDa. In analogous systems the 41 kDa substrate of pertussis toxin has been shown to be the alpha subunit of Gi, but catecholamine-activated G proteins linked to effector systems other than adenylate cyclase might also be modified by this toxin in pancreatic beta-cells.  相似文献   

16.
Pretreatment of bovine aortic endothelial cells with pertussis toxin inhibited partially the accumulation of inositol phosphates in response to ATP, whereas cholera toxin had no effect. Both pertussis and cholera toxins enhanced the stimulatory effect of ATP on prostacyclin release from the same cells. This action of cholera toxin was mimicked neither by an increase of cyclic AMP nor by the dissociated subunits of the toxin. Cholera and pertussis toxins, as well as aluminum fluoride, also potentiated the release of prostacyclin induced by ionophore A23187. These results suggest that a pertussis toxin-sensitive GTP-binding protein is involved in the coupling between P2-purinergic receptors and phospholipase C. In addition, another GTP-binding protein would play a crucial role at a further step in the control of PGI2 biosynthesis.  相似文献   

17.
In vivo microdialysis of cyclic AMP from prefrontal cortex complemented by ex vivo measures was used to investigate the possibility that lithium produces functional changes in G proteins that could account for its effects on adenylate cyclase activity. Four weeks of lithium administration (serum lithium concentration of 0.85 +/- 0.05 mM; n = 11) significantly increased the basal cyclic AMP content in dialysate from prefrontal cortex of anesthetized rats. Forskolin infused through the probe increased dialysate cyclic AMP, but the magnitude of this increase was unaffected by chronic lithium administration. Inactivation of the inhibitory guanine nucleotide binding protein Gi with pertussis toxin increased dialysate cyclic AMP in control rats, as did stimulation with cholera toxin (which activates the stimulatory guanine nucleotide binding protein Gs). The effect of pertussis toxin was abolished following chronic lithium, whereas the increase in cyclic AMP after cholera toxin was enhanced. In vitro pertussis toxin-catalyzed ADP ribosylation of alpha i (and alpha o) was increased by 20% in prefrontal cortex from lithium-treated rats, but the alpha i and alpha s contents (as determined by immunoblot) as well as the cholera toxin-catalyzed ADP ribosylation of alpha s were unchanged. Taken together, these results suggest that chronic lithium administration may interfere with the dissociation of Gi into its active components and thereby remove a tonic inhibitory influence on adenylate cyclase, with resultant enhanced basal and cholera toxin-stimulated adenylate cyclase activity.  相似文献   

18.
Using purified rat ventricular myocytes and membranes prepared from them, we have previously found that alpha 1-adrenergic stimulation causes decreased cyclic AMP accumulation and decreased activation of cyclic AMP-dependent protein kinase. We have now analyzed the mechanism by which alpha 1 stimulation is linked to cyclic AMP metabolism. In an adenylate cyclase assay in which carbachol inhibits the stimulatory effect of norepinephrine, the addition of prazosin (alpha 1-antagonist) has no effect on the response to norepinephrine. In membranes prepared from myocytes treated with pertussis toxin, norepinephrine competes for alpha 1-receptors (assessed by [3H]prazosin binding) with two components, binding to the high affinity component being sensitive to exogenous GTP, exactly as in membranes prepared from control myocytes. In intact cells labeled with [3H]adenine in which carbachol antagonizes the norepinephrine response, prazosin enhances accumulation of [3H]cyclic AMP due to norepinephrine. Treatment of cells with pertussis toxin eliminates inhibition by carbachol but does not alter prazosin's capacity to enhance the norepinephrine response. Addition of phosphodiesterase inhibitors eliminates this effect of alpha 1 blockade. In [3H]adenine-labeled cells loaded with [3H]cyclic AMP by prior treatment with isoproterenol, alpha 1-adrenergic stimulation enhances disappearance of [3H]cyclic AMP. Measurements of cellular cyclic AMP give results similar to those obtained with the adenine labeling technic. We conclude that occupation of the myocyte alpha 1-receptor results in stimulation of cyclic AMP phosphodiesterase activity.  相似文献   

19.
The effect of pertussis toxin on GTP-binding protein of bovine rod cell outer segments (transducin) was studied. Pertussis toxin was shown to ADP ribosylate either alpha subunit of free transducin or transducin-GDP complex, whereas GTP and its analogue Gpp(NH)p strongly inhibit ADP ribosylation of transducin. Pertussis toxin inhibits rod outer segment membrane GTPase and GTPase of homogeneous transducin by 40% and 70-80%, respectively. Activation of rod cell cyclic nucleotide phosphodiesterase by transducin is reduced after its preincubation with pertussis toxin. In transducin modified by pertussis toxin, 83% of GDP becomes tightly bound and cannot be exchanged with Gpp(NH)p. The stabilization of complex transducin-GDP after ADP ribosylation can explain the inhibitory effect of pertussis toxin on GTP hydrolysis by transducin, and on phosphodiesterase activation by guanyl nucleotides.  相似文献   

20.
The neuropeptide bombesin acts on a variety of target cells to stimulate the processes of secretion and cell proliferation. In this study we determined whether bombesin receptors interact with known guanine nucleotide-binding proteins in four different cell types: GH4C1 pituitary cells, HIT pancreatic islet cells, Swiss 3T3 fibroblasts, and rat brain tissue. Maximal concentrations of nonhydrolyzable GTP analogs decreased agonist binding to bombesin receptors in membranes from all four sources. In GH4C1 and HIT cell membranes GTP analogs inhibited bombesin receptor binding with IC50 values of about 0.1 microM, whereas GDP analogs were approximately 10-fold less potent. In contrast, GMP and the nonhydrolyzable ATP analog adenylyl-imidodiphosphate had no effect at 100 microM. Equilibrium binding experiments in GH4C1 and HIT cell membranes indicated a single class of binding sites with a dissociation constant (Kd) for [125I-Tyr4]bombesin of 24.4 +/- 7.0 pM and a binding capacity of 176 +/- 15 fmol/mg protein. Guanine nucleotides decreased the apparent affinity of the receptors without significantly changing receptor number. Consistent with this observation, guanine nucleotides also increased the rate of ligand dissociation. Pretreatment of GH4C1 or HIT cells with either pertussis toxin (100 ng/ml) or cholera toxin (500 ng/ml) for 18 h did not affect agonist binding to membrane bombesin receptors, its regulation by guanine nucleotides, or bombesin stimulation of hormone release. Although pertussis toxin pretreatment has been reported to block bombesin stimulation of DNA synthesis in Swiss 3T3 cells, it did not alter the binding properties of bombesin receptors in Swiss 3T3 membranes or inhibit the rapid increase in intracellular [Ca2+] produced by bombesin in these cells. In summary, our results indicate that the bombesin receptor interacts with a guanine nucleotide-binding protein which exhibits a different toxin sensitivity from those which regulate adenylate cyclase as well as those which couple some receptors to phospholipases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号