首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Research in evolutionary biology involving nonmodel organisms is rapidly shifting from using traditional molecular markers such as mtDNA and microsatellites to higher throughput SNP genotyping methodologies to address questions in population genetics, phylogenetics and genetic mapping. Restriction site associated DNA sequencing (RAD sequencing or RADseq) has become an established method for SNP genotyping on Illumina sequencing platforms. Here, we developed a protocol and adapters for double‐digest RAD sequencing for Ion Torrent (Life Technologies; Ion Proton, Ion PGM) semiconductor sequencing. We sequenced thirteen genomic libraries of three different nonmodel vertebrate species on Ion Proton with PI chips: Arctic charr Salvelinus alpinus, European whitefish Coregonus lavaretus and common lizard Zootoca vivipara. This resulted in ~962 million single‐end reads overall and a mean of ~74 million reads per library. We filtered the genomic data using Stacks, a bioinformatic tool to process RAD sequencing data. On average, we obtained ~11 000 polymorphic loci per library of 6–30 individuals. We validate our new method by technical and biological replication, by reconstructing phylogenetic relationships, and using a hybrid genetic cross to track genomic variants. Finally, we discuss the differences between using the different sequencing platforms in the context of RAD sequencing, assessing possible advantages and disadvantages. We show that our protocol can be used for Ion semiconductor sequencing platforms for the rapid and cost‐effective generation of variable and reproducible genetic markers.  相似文献   

2.
The large and diverse genus Salix L. is of particular interest for decades of biological research. However, despite the morphological plasticity, the reconstruction of phylogenetic relationships was so far hampered by the lack of informative molecular markers. Infrageneric classification based on morphology separates dwarf shrubs (subg. Chamaetia) and taller shrubs (subg. Vetrix), while previous phylogenetic studies placed species of these two subgenera just in one largely unresolved clade. Here we want to test the utility of genomic RAD sequencing markers for resolving relationships at different levels of divergence in Salix. Based on a sampling of 15 European species representing 13 sections of the two subgenera, we used five different RAD sequencing datasets generated by Ipyrad to conduct phylogenetic analyses. Additionally we reconstructed the evolution of growth form and analyzed the genetic composition of the whole clade. The results showed fully resolved trees in both ML and BI analysis with high statistical support. The two subgenera Chamaetia and Vetrix were recognized as nonmonophyletic, which suggests that they should be merged. Within the Vetrix/Chamaetia clade, a division into three major subclades could be observed. All species were confirmed to be monophyletic. Based on our data, arctic‐alpine dwarf shrubs evolved four times independently. The structure analysis showed five mainly uniform genetic clusters which are congruent in sister relationships observed in the phylogenies. Our study confirmed RAD sequencing as a useful genomic tool for the reconstruction of relationships on different taxonomic levels in the genus Salix.  相似文献   

3.
Restriction site‐associated DNA sequencing (RAD‐Seq), a next‐generation sequencing‐based genome ‘complexity reduction’ protocol, has been useful in population genomics in species with a reference genome. However, the application of this protocol to natural populations of genomically underinvestigated species, particularly under low‐to‐medium sequencing depth, has not been well justified. In this study, a Bayesian method was developed for calling genotypes from an F2 population of bottle gourd [Lagenaria siceraria (Mol.) Standl.] to construct a high‐density genetic map. Low‐depth genome shotgun sequencing allowed the assembly of scaffolds/contigs comprising approximately 50% of the estimated genome, of which 922 were anchored for identifying syntenic regions between species. RAD‐Seq genotyping of a natural population comprising 80 accessions identified 3226 single nuclear polymorphisms (SNPs), based on which two sub‐gene pools were suggested for association with fruit shape. The two sub‐gene pools were moderately differentiated, as reflected by the Hudson's FST value of 0.14, and they represent regions on LG7 with strikingly elevated FST values. Seven‐fold reduction in heterozygosity and two times increase in LD (r2) were observed in the same region for the round‐fruited sub‐gene pool. Outlier test suggested the locus LX3405 on LG7 to be a candidate site under selection. Comparative genomic analysis revealed that the cucumber genome region syntenic to the high FST island on LG7 harbors an ortholog of the tomato fruit shape gene OVATE. Our results point to a bright future of applying RAD‐Seq to population genomic studies for non‐model species even under low‐to‐medium sequencing efforts. The genomic resources provide valuable information for cucurbit genome research.  相似文献   

4.
We are writing in response to the population and phylogenomics meeting review by Andrews & Luikart ( 2014 ) entitled ‘Recent novel approaches for population genomics data analysis’. Restriction‐site‐associated DNA (RAD) sequencing has become a powerful and useful approach in molecular ecology, with several different published methods now available to molecular ecologists, none of which can be considered the best option in all situations. A&L report that the original RAD protocol of Miller et al. ( 2007 ) and Baird et al. ( 2008 ) is superior to all other RAD variants because putative PCR duplicates can be identified (see Baxter et al. 2011 ), thereby reducing the impact of PCR artefacts on allele frequency estimates (Andrews & Luikart 2014 ). In response, we (i) challenge the assertion that the original RAD protocol minimizes the impact of PCR artefacts relative to that of other RAD protocols, (ii) present additional biases in RADseq that are at least as important as PCR artefacts in selecting a RAD protocol and (iii) highlight the strengths and weaknesses of four different approaches to RADseq which are a representative sample of all RAD variants: the original RAD protocol (mbRAD, Miller et al. 2007 ; Baird et al. 2008 ), double digest RAD (ddRAD, Peterson et al. 2012 ), ezRAD (Toonen et al. 2013 ) and 2bRAD (Wang et al. 2012 ). With an understanding of the strengths and weaknesses of different RAD protocols, researchers can make a more informed decision when selecting a RAD protocol.  相似文献   

5.
Here, we present an adaptation of restriction‐site‐associated DNA sequencing (RAD‐seq) to the Illumina HiSeq2000 technology that we used to produce SNP markers in very large quantities at low cost per unit in the Réunion grey white‐eye (Zosterops borbonicus), a nonmodel passerine bird species with no reference genome. We sequenced a set of six pools of 18–25 individuals using a single sequencing lane. This allowed us to build around 600 000 contigs, among which at least 386 000 could be mapped to the zebra finch (Taeniopygia guttata) genome. This yielded more than 80 000 SNPs that could be mapped unambiguously and are evenly distributed across the genome. Thus, our approach provides a good illustration of the high potential of paired‐end RAD sequencing of pooled DNA samples combined with comparative assembly to the zebra finch genome to build large contigs and characterize vast numbers of informative SNPs in nonmodel passerine bird species in a very efficient and cost‐effective way.  相似文献   

6.
7.
The pairwise sequentially Markovian coalescent (PSMC) method uses the genome sequence of a single individual to estimate demographic history covering a time span of thousands of generations. Although originally designed for whole‐genome data, we here use simulations to investigate its applicability to reference genome‐aligned restriction site associated DNA (RAD) data. We find that RAD data can potentially be used for PSMC analysis, but at present with limitations. The key factor is the proportion (p) of the genome that the RAD data covers. In our simulations, a proportion of 10% can still retain a substantial amount of coalescent information, whereas for 1% estimation becomes unreliable. The performance depends strongly on mutation rate (μ) and recombination rate (r) and is proportional to μ*p/r. When the value of this term is low, increasing the amount of data and number of iterations helps restoring the power of the estimation. We subsequently analyse one whole‐genome‐sequenced and 17 RAD‐sequenced three‐spined sticklebacks (Gasterosteus aculeatus) from a lake in Greenland. The whole‐genome sequence suggests a relatively recent expansion and decline within ca. 4000–40 000 generations ago, possibly reflecting postglacial expansion and founding of the lake population. RAD data, where chromosomes from 10 individuals are combined, identify a similar pattern. Our study provides guidance about the use of PSMC analysis and suggests measures that can improve its utility for RAD data. Finally, the study shows that RAD loci in general contain coalescent information that can be used for developing more targeted methods.  相似文献   

8.
Tony Gamble 《Molecular ecology》2016,25(10):2114-2116
Next‐generation sequencing methods have initiated a revolution in molecular ecology and evolution (Tautz et al. 2010 ). Among the most impressive of these sequencing innovations is restriction site‐associated DNA sequencing or RAD‐seq (Baird et al. 2008 ; Andrews et al. 2016 ). RAD‐seq uses the Illumina sequencing platform to sequence fragments of DNA cut by a specific restriction enzyme and can generate tens of thousands of molecular genetic markers for analysis. One of the many uses of RAD‐seq data has been to identify sex‐specific genetic markers, markers found in one sex but not the other (Baxter et al. 2011 ; Gamble & Zarkower 2014 ). Sex‐specific markers are a powerful tool for biologists. At their most basic, they can be used to identify the sex of an individual via PCR. This is useful in cases where a species lacks obvious sexual dimorphism at some or all life history stages. For example, such tests have been important for studying sex differences in life history (Sheldon 1998 ; Mossman & Waser 1999 ), the management and breeding of endangered species (Taberlet et al. 1993 ; Griffiths & Tiwari 1995 ; Robertson et al. 2006 ) and sexing embryonic material (Hacker et al. 1995 ; Smith et al. 1999 ). Furthermore, sex‐specific markers allow recognition of the sex chromosome system in cases where standard cytogenetic methods fail (Charlesworth & Mank 2010 ; Gamble & Zarkower 2014 ). Thus, species with male‐specific markers have male heterogamety (XY) while species with female‐specific markers have female heterogamety (ZW). In this issue, Fowler & Buonaccorsi ( 2016 ) illustrate the ease by which RAD‐seq data can generate sex‐specific genetic markers in rockfish (Sebastes). Moreover, by examining RAD‐seq data from two closely related rockfish species, Sebastes chrysomelas and Sebastes carnatus (Fig.  1 ), Fowler & Buonaccorsi ( 2016 ) uncover shared sex‐specific markers and a conserved sex chromosome system.  相似文献   

9.
Inferring phylogenetic relationships between closely related taxa can be hindered by three factors: (1) the lack of informative molecular variation at short evolutionary timescale; (2) the lack of established markers in poorly studied taxa; and (3) the potential phylogenetic conflicts among different genomic regions due to incomplete lineage sorting or introgression. In this context, Restriction site Associated DNA sequencing (RAD‐seq) seems promising as this technique can generate sequence data from numerous DNA fragments scattered throughout the genome, from a large number of samples, and without preliminary knowledge on the taxa under study. However, divergence beyond the within‐species level will necessarily reduce the number of conserved and non‐duplicated restriction sites, and therefore the number of loci usable for phylogenetic inference. Here, we assess the suitability of RAD‐seq for phylogeny using a simulated experiment on the 12 Drosophila genomes, with divergence times ranging from 5 to 63 million years. These simulations show that RAD‐seq allows the recovery of the known Drosophila phylogeny with strong statistical support, even for relatively ancient nodes. Notably, this conclusion is robust to the potentially confounding effects of sequencing errors, heterozygosity, and low coverage. We further show that clustering RAD‐seq data using the BLASTN and SiLiX programs significantly improves the recovery of orthologous RAD loci compared with previously proposed approaches, especially for distantly related species. This study therefore validates the view that RAD sequencing is a powerful tool for phylogenetic inference.  相似文献   

10.
The role of rice (Oryza sativa) COM1 in meiotic homologous recombination (HR) is well understood, but its part in somatic double‐stranded break (DSB) repair remains unclear. Here, we show that for rice plants COM1 conferred tolerance against DNA damage caused by the chemicals bleomycin and mitomycin C, while the COM1 mutation did not compromise HR efficiencies and HR factor (RAD51 and RAD51 paralogues) localization to irradiation‐induced DSBs. Similar retarded growth at the post‐germination stage was observed in the com1‐2 mre11 double mutant and the mre11 single mutant, while combined mutations in COM1 with the HR pathway gene (RAD51C) or classic non‐homologous end joining (NHEJ) pathway genes (KU70, KU80, and LIG4) caused more phenotypic defects. In response to γ‐irradiation, COM1 was loaded normally onto DSBs in the ku70 mutant, but could not be properly loaded in the MRE11RNAi plant and in the wortmannin‐treated wild‐type plant. Under non‐irradiated conditions, more DSB sites were occupied by factors (MRE11, COM1, and LIG4) than RAD51 paralogues (RAD51B, RAD51C, and XRCC3) in the nucleus of wild‐type; protein loading of COM1 and XRCC3 was increased in the ku70 mutant. Therefore, quite differently to its role for HR in meiocytes, rice COM1 specifically acts in an alternative NHEJ pathway in somatic cells, based on the Mre11–Rad50–Nbs1 (MRN) complex and facilitated by PI3K‐like kinases. NHEJ factors, not HR factors, preferentially load onto endogenous DSBs, with KU70 restricting DSB localization of COM1 and XRCC3 in plant somatic cells.  相似文献   

11.
该研究利用基于全基因组限制性酶切位点简化基因组测序技术(RAD seq技术),开发濒危植物羊踯躅(Rhododendron molle G. Don)全基因组SSR标记,并对3个群体共63份羊踯躅材料进行验证鉴定,为进一步研究羊踯躅的遗传多样性和群体遗传结构以及保护利用提供技术支持。结果显示:(1)羊踯躅基因组测序获得原始数据7.653G bp,过滤后为7.513G bp;经组装发现,羊踯躅171.534 M bp的基因组分布在498 252 contigs中。(2)通过SSR检测,在11 961 SSR位点中获得了11 687对SSR分子标记,并且二核苷酸为基序的重复类型最丰富,达51.76%。(3)随机选取128对SSR标记在6个羊踯躅株系中进行PCR扩增,获得20对高多态性的SSR标记。(4)用所选的20对多态性SSR标记对3个群体共63份羊踯躅材料进行验证分析发现,这些多态性SSR标记位点的等位基因数为4~16个,期望杂合度(He)为0.489~0.908。 研究表明,羊踯躅的SSR丰度适中,且二核苷酸为羊踯躅中最丰富的重复序列,该实验进一步证明RAD seq技术是一种经济有效的基因测序方法,实验中开发的SSR引物将有助于进一步研究羊踯躅和其他近缘种的群体结构和多样性。  相似文献   

12.
We have cloned, sequenced and disrupted the checkpoint genes RAD17, RAD24 and MEC3 of Saccharomyces cerevisiae. Mec3p shows no strong similarity to other proteins currently in the database. Rad17p is similar to Rec1 from Ustilago maydis, a 3′ to 5′ DNA exonuclease/checkpoint protein, and the checkpoint protein Rad1p from Schizosaccharomyces pombe (as we previously reported). Rad24p shows sequence similarity to replication factor C (RFC) subunits, and the S. pombe Rad17p checkpoint protein, suggesting it has a role in DNA replication and/or repair. This hypothesis is supported by our genetic experiments which show that overexpression of RAD24 strongly reduces the growth rate of yeast strains that are defective in the DNA replication/repair proteins Rfc1p (cdc44), DNA polα (cdc17) and DNA polδ (cdc2) but has much weaker effects on cdc6, cdc9, cdc15 and CDC + strains. The idea that RAD24 overexpression induces DNA damage, perhaps by interfering with replication/repair complexes, is further supported by our observation that RAD24 overexpression increases mitotic chromosome recombination in CDC + strains. Although RAD17, RAD24 and MEC3 are not required for cell cycle arrest when S phase is inhibited by hydroxyurea (HU), they do contribute to the viability of yeast cells grown in the presence of HU, possibly because they are required for the repair of HU-induced DNA damage. In addition, all three are required for the rapid death of cdc13 rad9 mutants. All our data are consistent with models in which RAD17, RAD24 and MEC3 are coordinately required for the activity of one or more DNA repair pathways that link DNA damage to cell cycle arrest. Received: 8 April 1997 / Accepted: 10 May 1997  相似文献   

13.
High‐throughput sequencing has revolutionized population and conservation genetics. RAD sequencing methods, such as 2b‐RAD, can be used on species lacking a reference genome. However, transferring protocols across taxa can potentially lead to poor results. We tested two different IIB enzymes (AlfI and CspCI) on two species with different genome sizes (the loggerhead turtle Caretta caretta and the sharpsnout seabream Diplodus puntazzo) to build a set of guidelines to improve 2b‐RAD protocols on non‐model organisms while optimising costs. Good results were obtained even with degraded samples, showing the value of 2b‐RAD in studies with poor DNA quality. However, library quality was found to be a critical parameter on the number of reads and loci obtained for genotyping. Resampling analyses with different number of reads per individual showed a trade‐off between number of loci and number of reads per sample. The resulting accumulation curves can be used as a tool to calculate the number of sequences per individual needed to reach a mean depth ≥20 reads to acquire good genotyping results. Finally, we demonstrated that selective‐base ligation does not affect genomic differentiation between individuals, indicating that this technique can be used in species with large genome sizes to adjust the number of loci to the study scope, to reduce sequencing costs and to maintain suitable sequencing depth for a reliable genotyping without compromising the results. Here, we provide a set of guidelines to improve 2b‐RAD protocols on non‐model organisms with different genome sizes, helping decision‐making for a reliable and cost‐effective genotyping.  相似文献   

14.
The key process in speciation concerns the formation and maintenance of reproductive isolating barriers between diverging lineages. Although species boundaries are frequently investigated between two species across many taxa, reproductive isolating barriers among multiple species (>2) that would represent the most common phenomenon in nature, remain to be clarified. Here, we use double digest restriction‐site associated DNA (ddRAD) sequencing to examine patterns of hybridization at a sympatric site where three Ligularia species grow together and verify whether those patterns contribute to the maintenance of boundaries among species. The results based on the RAD SNP datasets indicated hybridization Ligularia cyathiceps × L. duciformis and L. duciformis × L. yunnanensis were both restricted to F1s plus a few first‐generation backcrosses and no gene introgression were identified, giving rise to strong reproductive isolation among hybridizing species. Moreover, hybrid swarm simulation, using HYBRIDLAB, indicated the RAD SNP datasets had sufficient discriminatory power for accurate hybrid detection. We conclude that parental species show strong reproductive isolation and they still maintain species boundaries, which may be the key mechanism to maintain species diversity of Ligularia in the eastern Qinghai‐Tibetan Plateau and adjacent areas. Moreover, this study highlights the effectiveness of RAD sequencing in hybridization studies.  相似文献   

15.
Restriction-site associated DNA (RAD) sequencing is a powerful new method for targeted sequencing across the genomes of many individuals. This approach has broad potential for genetic analysis of non-model organisms including genotype-phenotype association mapping, phylogeography, population genetics and scaffolding genome assemblies through linkage mapping. We constructed a RAD library using genomic DNA from a Plutella xylostella (diamondback moth) backcross that segregated for resistance to the insecticide spinosad. Sequencing of 24 individuals was performed on a single Illumina GAIIx lane (51 base paired-end reads). Taking advantage of the lack of crossing over in homologous chromosomes in female Lepidoptera, 3,177 maternally inherited RAD alleles were assigned to the 31 chromosomes, enabling identification of the spinosad resistance and W/Z sex chromosomes. Paired-end reads for each RAD allele were assembled into contigs and compared to the genome of Bombyx mori (n = 28) using BLAST, revealing 28 homologous matches plus 3 expected fusion/breakage events which account for the difference in chromosome number. A genome-wide linkage map (1292 cM) was inferred with 2,878 segregating RAD alleles inherited from the backcross father, producing chromosome and location specific sequenced RAD markers. Here we have used RAD sequencing to construct a genetic linkage map de novo for an organism that has no previous genome data. Comparative analysis of P. xyloxtella linkage groups with B. mori chromosomes shows for the first time, genetic synteny appears common beyond the Macrolepidoptera. RAD sequencing is a powerful system capable of rapidly generating chromosome specific data for non-model organisms.  相似文献   

16.
17.
Repeated Quaternary glaciations have significantly shaped the present distribution and diversity of several European species in aquatic and terrestrial habitats. To study the phylogeography of freshwater invertebrates, patterns of intraspecific variation have been examined primarily using mitochondrial DNA markers that may yield results unrepresentative of the true species history. Here, population genetic parameters were inferred for a montane aquatic caddisfly, Thremma gallicum, by sequencing a 658‐bp fragment of the mitochondrial CO1 gene, and 12,514 nuclear RAD loci. T. gallicum has a highly disjunct distribution in southern and central Europe, with known populations in the Cantabrian Mountains, Pyrenees, Massif Central, and Black Forest. Both datasets represented rangewide sampling of T. gallicum. For the CO1 dataset, this included 352 specimens from 26 populations, and for the RAD dataset, 17 specimens from eight populations. We tested 20 competing phylogeographic scenarios using approximate Bayesian computation (ABC) and estimated genetic diversity patterns. Support for phylogeographic scenarios and diversity estimates differed between datasets with the RAD data favouring a southern origin of extant populations and indicating the Cantabrian Mountains and Massif Central populations to represent highly diverse populations as compared with the Pyrenees and Black Forest populations. The CO1 data supported a vicariance scenario (north–south) and yielded inconsistent diversity estimates. Permutation tests suggest that a few hundred polymorphic RAD SNPs are necessary for reliable parameter estimates. Our results highlight the potential of RAD and ABC‐based hypothesis testing to complement phylogeographic studies on non‐model species.  相似文献   

18.
A major barrier to evolutionary studies of sex determination and sex chromosomes has been a lack of information on the types of sex‐determining mechanisms that occur among different species. This is particularly problematic in groups where most species lack visually heteromorphic sex chromosomes, such as fish, amphibians and reptiles, because cytogenetic analyses will fail to identify the sex chromosomes in these species. We describe the use of restriction site‐associated DNA (RAD) sequencing, or RAD‐seq, to identify sex‐specific molecular markers and subsequently determine whether a species has male or female heterogamety. To test the accuracy of this technique, we examined the lizard Anolis carolinensis. We performed RAD‐seq on seven male and ten female A. carolinensis and found one male‐specific molecular marker. Anolis carolinensis has previously been shown to possess male heterogamety and the recently published A. carolinensis genome facilitated the characterization of the sex‐specific RAD‐seq marker. We validated the male specificity of the new marker using PCR on additional individuals and also found that it is conserved in some other Anolis species. We discuss the utility of using RAD‐seq to identify sex‐determining mechanisms in other species with cryptic or homomorphic sex chromosomes and the implications for the evolution of male heterogamety in Anolis.  相似文献   

19.
Summary Nitrogen mustard (HN2) mutagenesis of a plasmid-borne copy of the Saccharomyces cerevisiae SUP4-o gene was examined in a repair-proficient yeast strain and isogenic derivatives defective for excision (radl) or DNA double-strand break (rad52) repair. The excision repair deficiency sensitized the cells to killing by HN2 and abolished mutation induction. Inactivation of RAD52 had no influence on the lethality of HN2 treatment but diminished the induced mutation frequency by 50% at all doses tested. DNA sequence analysis of HN2-induced SUP4-o mutations suggested that RAD52 contributed to the production of basepair substitutions at G·C sites. The rad52 defect appeared to alter the distribution of G·C A·T transitions in SUP4-o relative to the distribution for the wild-type strain. This difference did not seem to be due to an effect of RAD52 on the relative fractions of HN2-induced transitions at localized (flanked by A·T pairs) or contiguous (flanked by at least one G·C pair) G·C sites but instead to an influence on the strand specificity of HN2 mutagenesis. In the repair-proficient strain, the transitions showed a small bias for sites having the guanine on the transcribed strand and this preference was eliminated by inactivation of RAD52.  相似文献   

20.
Synthesis‐dependent strand annealing (SDSA) and single‐strand annealing (SSA) are the two main homologous recombination (HR) pathways in double‐strand break (DSB) repair. The involvement of rice RAD51 paralogs in HR is well known in meiosis, although the molecular mechanism in somatic HR remains obscure. Loss‐of‐function mutants of rad51 paralogs show increased sensitivity to the DSB‐inducer bleomycin, which results in greatly compromised somatic recombination efficiencies (xrcc3 in SDSA, rad51b and xrcc2 in SSA, rad51c and rad51d in both). Using immunostaining, we found that mutations in RAD51 paralogs (XRCC3, RAD51C, or RAD51D) lead to tremendous impairment in RAD51 focus formation at DSBs. Intriguingly, the RAD51C mutation has a strong effect on the protein loading of its partners (XRCC3 and RAD51B) at DSBs, which is similar to the phenomenon observed in the case of blocking PI3K‐like kinases in wild‐type plant. We conclude that the rice CDX3 complex acts in SDSA recombination while the BCDX2 complex acts in SSA recombination in somatic DSB repair. Importantly, RAD51C serves as a fulcrum for the local recruitment of its partners (XRCC3 for SDSA and RAD51B for SSA) and is positively modulated by PI3K‐like kinases to facilitate both the SDSA and SSA pathways in RAD51 paralog‐dependent somatic HR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号