首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Ancient DNA research has developed rapidly over the past few decades due to improvements in PCR and next‐generation sequencing (NGS) technologies, but challenges still exist. One major challenge in relation to ancient DNA research is to recover genuine endogenous ancient DNA sequences from raw sequencing data. This is often difficult due to degradation of ancient DNA and high levels of contamination, especially homologous contamination that has extremely similar genetic background with that of the real ancient DNA. In this study, we collected whole‐genome sequencing (WGS) data from 6 ancient samples to compare different mapping algorithms. To further explore more effective methods to separate endogenous DNA from homologous contaminations, we attempted to recover reads based on ancient DNA specific characteristics of deamination, depurination, and DNA fragmentation with different parameters. We propose a quick and improved pipeline for separating endogenous ancient DNA while simultaneously decreasing homologous contaminations to very low proportions. Our goal in this research was to develop useful recommendations for ancient DNA mapping and for separation of endogenous DNA to facilitate future studies of ancient DNA.  相似文献   

2.
Molecular tip dating of phylogenetic trees is a growing discipline that uses DNA sequences sampled at different points in time to coestimate the timing of evolutionary events with rates of molecular evolution. In this context, beast , a program for Bayesian analysis of molecular sequences, is the most widely used phylogenetic tool. Here, we introduce tipdatingbeast , an r package built to assist the implementation of various phylogenetic tip‐dating tests using beast . tipdatingbeast currently contains two main functions. The first one allows preparing date‐randomization analyses, which assess the temporal signal of a data set. The second function allows performing leave‐one‐out analyses, which test for the consistency between independent calibration sequences and allow pinpointing those leading to potential bias. We apply those functions to an empirical data set and supply practical guidance for results interpretation.  相似文献   

3.
Fossil rodent middens are powerful tools in paleoecology. In arid parts of western North America, packrat (Neotoma spp.) middens preserve plant and animal remains for tens of thousands of years. Midden contents are so well preserved that fragments of endogenous ancient DNA (aDNA) can be extracted and analyzed across millennia. Here, we explore the use of shotgun metagenomics to study the aDNA obtained from packrat middens up to 32,000 C14 years old. Eleven Illumina HiSeq 2500 libraries were successfully sequenced, and between 0.11% and 6.7% of reads were classified using Centrifuge against the NCBI “nt” database. Eukaryotic taxa identified belonged primarily to vascular plants with smaller proportions mapping to ascomycete fungi, arthropods, chordates, and nematodes. Plant taxonomic diversity in the middens is shown to change through time and tracks changes in assemblages determined by morphological examination of the plant remains. Amplicon sequencing of ITS2 and rbcL provided minimal data for some middens, but failed at amplifying the highly fragmented DNA present in others. With repeated sampling and deep sequencing, analysis of packrat midden aDNA from well‐preserved midden material can provide highly detailed characterizations of past communities of plants, animals, bacteria, and fungi present as trace DNA fossils. The prospects for gaining more paleoecological insights from aDNA for rodent middens will continue to improve with optimization of laboratory methods, decreasing sequencing costs, and increasing computational power.  相似文献   

4.
Reconstructing the colonization and demographic dynamics that gave rise to extant forests is essential to forecasts of forest responses to environmental changes. Classical approaches to map how population of trees changed through space and time largely rely on pollen distribution patterns, with only a limited number of studies exploiting DNA molecules preserved in wooden tree archaeological and subfossil remains. Here, we advance such analyses by applying high‐throughput (HTS) DNA sequencing to wood archaeological and subfossil material for the first time, using a comprehensive sample of 167 European white oak waterlogged remains spanning a large temporal (from 550 to 9,800 years) and geographical range across Europe. The successful characterization of the endogenous DNA and exogenous microbial DNA of 140 (~83%) samples helped the identification of environmental conditions favouring long‐term DNA preservation in wood remains, and started to unveil the first trends in the DNA decay process in wood material. Additionally, the maternally inherited chloroplast haplotypes of 21 samples from three periods of forest human‐induced use (Neolithic, Bronze Age and Middle Ages) were found to be consistent with those of modern populations growing in the same geographic areas. Our work paves the way for further studies aiming at using ancient DNA preserved in wood to reconstruct the micro‐evolutionary response of trees to climate change and human forest management.  相似文献   

5.
The genus Dioscorea is widely distributed in tropical and subtropical regions, and is economically important in terms of food supply and pharmaceutical applications. However, DNA barcodes are relatively unsuccessful in discriminating between Dioscorea species, with the highest discrimination rate (23.26%) derived from matK sequences. In this study, we compared genic and intergenic regions of three Dioscorea chloroplast genomes and found that the density of SNPs and indels in intergenic sites was about twice and seven times higher than that of SNPs and indels in the genic regions, respectively. A total of 52 primer pairs covering highly variable regions were designed and seven pairs of primers had 80%–100% PCR success rate. PCR amplicons of 73 Dioscorea individuals and assembled sequences of 47 Dioscorea SRAs were used for estimating intraspecific and interspecific divergence for the seven loci: The rpoB‐trnC locus had the highest interspecific divergence. Automatic barcoding gap discovery (ABGD), Poisson tree processes (PTP), and generalized mixed Yule coalescence (GMYC) analysis were applied for species delimitation based on the seven loci and successfully identified the majority of species, except for species in the Enantiophyllum section. Phylogenetic analysis of 51 Dioscorea individuals (28 species) showed that most individuals belonging to the same species tended to cluster in the same group. Our results suggest that the variable loci derived from comparative analysis of plastid genome sequences could be good DNA barcode candidates for taxonomic analysis and species delimitation.  相似文献   

6.
7.
8.
Small portions of the barcode region – mini‐barcodes – may be used in place of full‐length barcodes to overcome DNA degradation for samples with poor DNA preservation. 591,491,286 rbcL mini‐barcode primer combinations were electronically evaluated for PCR universality, and two novel highly universal sets of priming sites were identified. Novel and published rbcL mini‐barcode primers were evaluated for PCR amplification [determined with a validated electronic simulation (n = 2765) and empirically (n = 188)], Sanger sequence quality [determined empirically (n = 188)], and taxonomic discrimination [determined empirically (n = 30 472)]. PCR amplification for all mini‐barcodes, as estimated by validated electronic simulation, was successful for 90.2–99.8% of species. Overall Sanger sequence quality for mini‐barcodes was very low – the best mini‐barcode tested produced sequences of adequate quality (B20 ≥ 0.5) for 74.5% of samples. The majority of mini‐barcodes provide correct identifications of families in excess of 70.1% of the time. Discriminatory power noticeably decreased at lower taxonomic levels. At the species level, the discriminatory power of the best mini‐barcode was less than 38.2%. For samples believed to contain DNA from only one species, an investigator should attempt to sequence, in decreasing order of utility and probability of success, mini‐barcodes F (rbcL1/rbcLB), D (F52/R193) and K (F517/R604). For samples believed to contain DNA from more than one species, an investigator should amplify and sequence mini‐barcode D (F52/R193).  相似文献   

9.
10.
The extent of genetic diversity loss and former connectivity between fragmented populations are often unknown factors when studying endangered species. While genetic techniques are commonly applied in extant populations to assess temporal and spatial demographic changes, it is no substitute for directly measuring past diversity using ancient DNA (aDNA). We analysed both mitochondrial DNA (mtDNA) and nuclear microsatellite loci from 64 historical fossil and skin samples of the critically endangered Western Australian woylie (Bettongia penicillata ogilbyi), and compared them with 231 (= 152 for mtDNA) modern samples. In modern woylie populations 15 mitochondrial control region (CR) haplotypes were identified. Interestingly, mtDNA CR data from only 29 historical samples demonstrated 15 previously unknown haplotypes and detected an extinct divergent clade. Through modelling, we estimated the loss of CR mtDNA diversity to be between 46% and 91% and estimated this to have occurred in the past 2000–4000 years in association with a dramatic population decline. In addition, we obtained near‐complete 11‐loci microsatellite profiles from 21 historical samples. In agreement with the mtDNA data, a number of ‘new’ microsatellite alleles was only detected in the historical populations despite extensive modern sampling, indicating a nuclear genetic diversity loss >20%. Calculations of genetic diversity (heterozygosity and allelic rarefaction) showed that these were significantly higher in the past and that there was a high degree of gene flow across the woylie's historical range. These findings have an immediate impact on how the extant populations are managed and we recommend the implementation of an assisted migration programme to prevent further loss of genetic diversity. Our study demonstrates the value of integrating aDNA data into current‐day conservation strategies.  相似文献   

11.
The performance of hybridization capture combined with next‐generation sequencing (NGS) has seen limited investigation with samples from hot and arid regions until now. We applied hybridization capture and shotgun sequencing to recover DNA sequences from bone specimens of ancient‐domestic dromedary (Camelus dromedarius) and its extinct ancestor, the wild dromedary from Jordan, Syria, Turkey and the Arabian Peninsula, respectively. Our results show that hybridization capture increased the percentage of mitochondrial DNA (mtDNA) recovery by an average 187‐fold and in some cases yielded virtually complete mitochondrial (mt) genomes at multifold coverage in a single capture experiment. Furthermore, we tested the effect of hybridization temperature and time by using a touchdown approach on a limited number of samples. We observed no significant difference in the number of unique dromedary mtDNA reads retrieved with the standard capture compared to the touchdown method. In total, we obtained 14 partial mitochondrial genomes from ancient‐domestic dromedaries with 17–95% length coverage and 1.27–47.1‐fold read depths for the covered regions. Using whole‐genome shotgun sequencing, we successfully recovered endogenous dromedary nuclear DNA (nuDNA) from domestic and wild dromedary specimens with 1–1.06‐fold read depths for covered regions. Our results highlight that despite recent methodological advances, obtaining ancient DNA (aDNA) from specimens recovered from hot, arid environments is still problematic. Hybridization protocols require specific optimization, and samples at the limit of DNA preservation need multiple replications of DNA extraction and hybridization capture as has been shown previously for Middle Pleistocene specimens.  相似文献   

12.
Xinjiang is at the crossroads between East and West Eurasia, and it harbors a relatively complex genetic history. In order to better understand the population movements and interactions in this region, mitochondrial and Y chromosome analyses on 40 ancient human remains from the Tianshanbeilu site in eastern Xinjiang were performed. Twenty‐nine samples were successfully assigned to specific mtDNA haplogroups, including the west Eurasian maternal lineages of U and W and the east Eurasian maternal lineages of A, C, D, F, G, Z, M7, and M10. In the male samples, two Y chromosome haplogroups, C* and N1 (xN1a, N1c), were successfully assigned. Our mitochondrial and Y‐chromosomal DNA analyses combined with the archaeological studies revealed that the Di‐qiang populations from the Hexi Corridor had migrated to eastern Xinjiang and admixed with the Eurasian steppe populations in the early Bronze Age. Am J Phys Anthropol 157:71–80, 2015. © 2014 Wiley Periodicals, Inc.  相似文献   

13.
14.
In this study msap, an R package which analyses methylation‐sensitive amplified polymorphism (MSAP or MS‐AFLP) data is presented. The program provides a deep analysis of epigenetic variation starting from a binary data matrix indicating the banding pattern between the isoesquizomeric endonucleases HpaII and MspI, with differential sensitivity to cytosine methylation. After comparing the restriction fragments, the program determines if each fragment is susceptible to methylation (representative of epigenetic variation) or if there is no evidence of methylation (representative of genetic variation). The package provides, in a user‐friendly command line interface, a pipeline of different analyses of the variation (genetic and epigenetic) among user‐defined groups of samples, as well as the classification of the methylation occurrences in those groups. Statistical testing provides support to the analyses. A comprehensive report of the analyses and several useful plots could help researchers to assess the epigenetic and genetic variation in their MSAP experiments. msap is downloadable from CRAN ( http://cran.r-project.org/ ) and its own webpage ( http://msap.r-forge.R-project.org/ ). The package is intended to be easy to use even for those people unfamiliar with the R command line environment. Advanced users may take advantage of the available source code to adapt msap to more complex analyses.  相似文献   

15.
Viviparity, the bearing of live young, has evolved well over 100 times among squamate reptiles. This reproductive strategy is hypothesized to allow maternal control of the foetus' thermal environment and thereby to increase the fitness of the parents and offspring. Two hypotheses have been posited to explain this phenomenon: (i) the cold‐climate hypothesis (CCH), which advocates low temperatures as the primary selective force; and (ii) the maternal manipulation hypothesis (MMH), which advocates temperature variability as the primary selective force. Here, we investigate whether climatic and geographic variables associated with the CCH vs. the MMH best explain the current geographical distributions of viviparity in lizards while incorporating recent advances in comparative methods, squamate phylogenetics and geospatial analysis. To do this, we compared nonphylogenetic and phylogenetic models predicting viviparity based on point‐of‐capture data from 20 994 museum specimens representing 215 lizard species in conjunction with spatially explicit bioclimatic and geographic (elevation and latitude) data layers. The database we analysed emphasized Nearctic lizards from three species‐rich genera (Phrynosoma, Plestiodon and Sceloporus); however, we additionally analysed a less substantial, but worldwide sample of species to verify the universality of our Nearctic results. We found that maximum temperature of the warmest month (and, less commonly, elevation and maximum temperature of the driest quarter) was frequently the best predictor of viviparity and showed an association consistent with the CCH. Our results strongly favour the CCH over the MMH in explaining lizard reproductive mode evolution.  相似文献   

16.
Museum collections are essential for reconstructing and understanding past biodiversity. Many museum specimens are, however, challenging to identify. Museum samples may be incomplete, have an unusual morphology, or represent juvenile individuals, all of which complicate accurate identification. In some cases, inaccurate identification can lead to false biogeographic reconstructions with cascading impacts on paleontological and paleoecological research. Here, we analyzed an unusual Equid mandible found in the Far North of the Taymyr peninsula that was identified morphologically as Equus hemionus, an ancestor of present‐day Asiatic wild asses. If correct, this identification represents the only finding of a putative Late Pleistocene hemione in the Arctic region, and is therefore critical to understanding wild ass evolution and paleoecology. To confirm the accuracy of this specimen's taxonomic assignment, we used ancient DNA and mitochondrial hybridization capture to identify and place this specimen in the larger equid phylogeny. We find that the specimen is actually a member of E. caballus, the ancestor of domestic horses. Our study demonstrates the utility of ancient DNA to validate morphological identification, in particular of incomplete, otherwise problematic, or taxonomically unusual museum specimens.  相似文献   

17.
Natural history museums are vastly underutilized as a source of material for DNA analysis because of perceptions about the limitations of DNA degradation in older specimens. Despite very few exceptions, most DNA barcoding projects, which aim to obtain sequence data from all species, generally use specimens collected specifically for that purpose, instead of the wealth of identified material in museums, constrained by the lack of suitable PCR methods. Any techniques that extend the utility of museum specimens for DNA analysis therefore are highly valuable. This study first tested the effects of specimen age and PCR amplicon size on PCR success rates in pinned insect specimens, then developed a PCR primer set and amplification strategy allowing greatly increased utilization of older museum specimens for DNA barcoding. PCR success rates compare favourably with the few published studies utilizing similar aged specimens, and this new strategy has the advantage of being easily automated for high‐throughput laboratory workflows. The strategy uses hemi‐nested, degenerate, M13‐tailed PCR primers to amplify two overlapping amplicons, using two PCRs per amplicon (i.e. four PCRs per DNA sample). Initial PCR products are reamplified using an internal primer and a M13 primer. Together the two PCR amplicons yield 559 bp of the COI gene from Coleoptera, Lepidoptera, Diptera, Hemiptera, Odonata and presumably also other insects. BARCODE standard‐compliant data were recovered from 67% (56 of 84) of specimens up to 25 years old, and 51% (102 of 197) of specimens up to 55 years old. Given the time, cost and specialist expertise required for fieldwork and identification, ‘collecting in collections’ is a viable alternative allowing researchers to capitalize on the knowledge captured by curation work in decades past.  相似文献   

18.
19.
Members of the Nanorana genus (family Dicroglossidae) are often referred to as excellent model species with which to study amphibian adaptations to extreme environments and also as excellent keystone taxa for providing insights into the evolution of the Dicroglossidae. However, a complete mitochondrial genome is currently only available for Nanorana pleskei. Thus, we analyzed the complete mitochondrial genomes of Nanorana parkeri and Nanorana ventripunctata to investigate their evolutionary relationships within Nanorana and their phylogenetic position in the family Dicroglossidae. Our results showed that the genomes of N. parkeri (17,837 bp) and N. ventripunctata (18,373 bp) encode 13 protein‐coding genes (PCGs), two ribosomal RNA genes, 23 transfer RNA (tRNA) genes, and a noncoding control region. Overall sequences and genome structure of the two species showed high degree of similarity with N. pleskei, although the motif structures and repeat sequences of the putative control region showed clear differences among these three Nanorana species. In addition, a tandem repeat of the tRNA‐Met gene was found located between the tRNA‐Gln and ND2 genes. On both the 5′ and 3′‐sides, the control region possessed distinct repeat regions; however, the CSB‐2 motif was not found in N. pleskei. Based on the nucleotide sequences of 13 PCGs, our phylogenetic analyses, using Bayesian inference and maximum‐likelihood methods, illustrate the taxonomic status of Nanorana with robust support showing that N. ventripunctata and N. pleskei are more closely related than they are to N. parkeri. In conclusion, our analyses provide a more robust and reliable perspective on the evolutionary history of Dicroglossidae than earlier analyses, which used only a single species (N. pleskei).  相似文献   

20.
The diversity of phenotypically different and often reproductively isolated lacustrine forms of charrs of the genus Salvelinus represents a substantial problem for taxonomists and evolutionary biologists. Based on the analysis of variability of ten microsatellite loci and two fragments of mitochondrial DNA (control region and cyt‐b gene), the evolutionary history of three charr species from Lake El'gygytgyn was reconstructed, and phylogenetic relationships between the main representatives of the genus were revealed. Three species from Lake El'gygytgyn were strongly reproductively isolated. Long‐finned charr described previously as Salvethymus svetovidovi, an ancient endemic form in the lake, originated 3.5 Mya (95% Bayesian credible intervals: 1.7, 6.1). Placement of this species in the phylogenetic tree of Salvelinus was not determined strictly, but it should be located in the basal part of the clade Salvelinus alpinus – S. malma species complex. The origin of small‐mouth charr S. elgyticus and Boganida charr S. boganidae in Lake El'gygytgyn was related to allopatric speciation. Their ancestors were represented by two glacial lineages of Taranets charr S. alpinus taranetzi from Asia. In Lake El'gygytgyn, these lineages entered into secondary contact postglacially. A revision of the main phylogenetic groups within the Salvelinus alpinus – S. malma complex is conducted. The Boganida charrs from Lakes El'gygytgyn and Lama (Taimyr) belong to different phylogenetic groups of Arctic charr and should not be regarded as a single species S. boganidae. Using the charrs from Lakes El'gygytgyn and Lama as a case study, we show that a model of sympatric speciation, which seemed more probable based on previous empirical evidence, was rejected by other data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号