首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
The potential for ecological niche models (ENMs) to accurately predict species' abundance and demographic performance throughout their geographic distributions remains a topic of substantial debate in ecology and biogeography. Few studies simultaneously examine the relationship between ENM predictions of environmental suitability and both a species' abundance and its demographic performance, particularly across its entire geographic distribution. Yet, studies of this type are essential for understanding the extent to which ENMs are a viable tool for identifying areas that may promote high abundance or performance of a species or how species might respond to future climate conditions. In this study, we used an ensemble ecological niche model to predict climatic suitability for the perennial forb Astragalus utahensis across its geographic distribution. We then examined relationships between projected climatic suitability and field‐based measures of abundance, demographic performance, and forecasted stochastic population growth (λs). Predicted climatic suitability showed a J‐shaped relationship with A. utahensis abundance, where low‐abundance populations were associated with low‐to‐intermediate suitability scores and abundance increased sharply in areas of high predicted climatic suitability. A similar relationship existed between climatic suitability and λs from the center to the northern edge of the latitudinal distribution. Patterns such as these, where density or demographic performance only increases appreciably beyond some threshold of climatic suitability, support the contention that ENM‐predicted climatic suitability does not necessarily represent a reliable predictor of abundance or performance across large geographic regions.  相似文献   

2.
It is thought that species abundance is correlated with environmental suitability and that environmental variables, scale, and type of model fitting can confound this relationship. We performed a meta‐analysis to 1) test whether species abundance is positively correlated with environmental suitability derived from correlative ecological niche models (ENM), 2) test whether studies encompassing large areas within a species range (> 50%) exhibited higher AS correlations than studies encompassing small areas within a species range (< 50%), 3) assess which modelling method provided higher AS correlation, and 4) compare strength of the AS relationship between studies using only climatic variables and those that used both climatic and other environmental variables to derive suitability. We used correlation coefficients to measure the relationship between abundance and environmental suitability derived from ENM. Each correlation coefficient was considered an effect size in a random‐effects multivariate meta‐analysis. In all cases we found a significantly positive relationship between abundance and suitability. This relationship was consistent regardless of scale of study, ENM method, or set of variables used to derive suitability. There was no difference in strength of correlation between studies focusing on large or small areas within a species’ range or among ENM methods. Studies using other variables in combination with climate exhibited higher AS correlations than studies using only climatic variables. We conclude that occurrence data can be a reasonable proxy for abundance, especially for vertebrates, and the use of local variables increases the strength of the AS relationship. Use of ENMs can significantly decrease survey costs and allow the study of large‐scale abundance patterns using less information. Including only climatic variables in ENM may confound the relationship between abundance and suitability when compared to studies including variables taken locally. However, modelers and conservationists must be aware that high environmental suitability does not always indicate high abundance.  相似文献   

3.
Aim Data on geographical ranges are essential when defining the conservation status of a species, and in evaluating levels of human disturbance. Where locality data are deficient, presence‐only ecological niche modelling (ENM) can provide insights into a species’ potential distribution, and can aid in conservation planning. Presence‐only ENM is especially important for rare, cryptic and nocturnal species, where absence is difficult to define. Here we applied ENM to carry out an anthropogenic risk assessment and set conservation priorities for three threatened species of Asian slow loris (Primates: Nycticebus). Location Borneo, Java and Sumatra, Southeast Asia. Methods Distribution models were built using maximum entropy (MaxEnt) ENM. We input 20 environmental variables comprising temperature, precipitation and altitude, along with species locality data. We clipped predicted distributions to forest cover and altitudinal data to generate remnant distributions. These were then applied to protected area (PA) and human land‐use data, using specific criteria to define low‐, medium‐ or high‐risk areas. These data were analysed to pinpoint priority study sites, suitable reintroduction zones and protected area extensions. Results A jackknife validation method indicated highly significant models for all three species with small sample sizes (n = 10 to 23 occurrences). The distribution models represented high habitat suitability within each species’ geographical range. High‐risk areas were most prevalent for the Javan slow loris (Nycticebus javanicus) on Java, with the highest proportion of low‐risk areas for the Bornean slow loris (N. menagensis) on Borneo. Eighteen PA extensions and 23 priority survey sites were identified across the study region. Main conclusions Discriminating areas of high habitat suitability lays the foundations for planning field studies and conservation initiatives. This study highlights potential reintroduction zones that will minimize anthropogenic threats to animals that are released. These data reiterate the conclusion of previous research, showing MaxEnt is a viable technique for modelling species distributions with small sample sizes.  相似文献   

4.
We evaluated the mtDNA divergence and relationships within Geomys pinetis to assess the status of formerly recognized Geomys taxa. Additionally, we integrated new hypothesis‐based tests in ecological niche models (ENM) to provide greater insight into causes for divergence and potential barriers to gene flow in Southeastern United States (Alabama, Florida, and Georgia). Our DNA sequence dataset confirmed and strongly supported two distinct lineages within G. pinetis occurring east and west of the ARD. Divergence date estimates showed that eastern and western lineages diverged about 1.37 Ma (1.9 Ma–830 ka). Predicted distributions from ENMs were consistent with molecular data and defined each population east and west of the ARD with little overlap. Niche identity and background similarity tests were statistically significant suggesting that ENMs from eastern and western lineages are not identical or more similar than expected based on random localities drawn from the environmental background. ENMs also support the hypothesis that the ARD represents a ribbon of unsuitable climate between more suitable areas where these populations are distributed. The estimated age of divergence between eastern and western lineages of G. pinetis suggests that the divergence was driven by climatic conditions during Pleistocene glacial–interglacial cycles. The ARD at the contact zone of eastern and western lineages of G. pinetis forms a significant barrier promoting microgeographic isolation that helps maintain ecological and genetic divergence.  相似文献   

5.
The effects of Pleistocene glaciations and geographical barriers on the phylogeographic patterns of lowland plant species in Mediterranean-climate areas of Central Chile are poorly understood. We used Dioscorea humilis (Dioscoreaceae), a dioecious geophyte extending 530 km from the Valparaíso to the Bío-Bío Regions, as a case study to disentangle the spatio-temporal evolution of populations in conjunction with latitudinal environmental changes since the Last Inter-Glacial (LIG) to the present. We used nuclear microsatellite loci, chloroplast (cpDNA) sequences and environmental niche modelling (ENM) to construct current and past scenarios from bioclimatic and geographical variables and to infer the evolutionary history of the taxa. We found strong genetic differentiation at nuclear microsatellite loci between the two subspecies of D. humilis, probably predating the LIG. Bayesian analyses of population structure revealed strong genetic differentiation of the widespread D. humilis subsp. humilis into northern and southern population groups, separated by the Maipo river. ENM revealed that the ecological niche differentiation of both groups have been maintained up to present times although their respective geographical distributions apparently fluctuated in concert with the climatic oscillations of the Last Glacial Maximum (LGM) and the Holocene. Genetic data revealed signatures of eastern and western postglacial expansion of the northern populations from the central Chilean depression, whereas the southern ones experienced a rapid southward expansion after the LGM. This study describes the complex evolutionary histories of lowland Mediterranean Chilean plants mediated by the summed effects of spatial isolation caused by riverine geographical barriers and the climatic changes of the Quaternary.  相似文献   

6.
Evidence is accumulating that species' responses to climate changes are best predicted by modelling the interaction of physiological limits, biotic processes and the effects of dispersal‐limitation. Using commercially harvested blacklip (Haliotis rubra) and greenlip abalone (Haliotis laevigata) as case studies, we determine the relative importance of accounting for interactions among physiology, metapopulation dynamics and exploitation in predictions of range (geographical occupancy) and abundance (spatially explicit density) under various climate change scenarios. Traditional correlative ecological niche models (ENM) predict that climate change will benefit the commercial exploitation of abalone by promoting increased abundances without any reduction in range size. However, models that account simultaneously for demographic processes and physiological responses to climate‐related factors result in future (and present) estimates of area of occupancy (AOO) and abundance that differ from those generated by ENMs alone. Range expansion and population growth are unlikely for blacklip abalone because of important interactions between climate‐dependent mortality and metapopulation processes; in contrast, greenlip abalone should increase in abundance despite a contraction in AOO. The strongly non‐linear relationship between abalone population size and AOO has important ramifications for the use of ENM predictions that rely on metrics describing change in habitat area as proxies for extinction risk. These results show that predicting species' responses to climate change often require physiological information to understand climatic range determinants, and a metapopulation model that can make full use of this data to more realistically account for processes such as local extirpation, demographic rescue, source‐sink dynamics and dispersal‐limitation.  相似文献   

7.
Ecological Niche Models (ENMs) are increasingly used by ecologists to project species potential future distribution. However, the application of such models may be challenging, and some caveats have already been identified. While studies have generally shown that projections may be sensitive to the ENM applied or the emission scenario, to name just a few, the sensitivity of ENM‐based scenarios to General Circulation Models (GCMs) has been often underappreciated. Here, using a multi‐GCM and multi‐emission scenario approach, we evaluated the variability in projected distributions under future climate conditions. We modeled the ecological realized niche (sensu Hutchinson) and predicted the baseline distribution of species with contrasting spatial patterns and representative of two major functional groups of European trees: the dwarf birch and the sweet chestnut. Their future distributions were then projected onto future climatic conditions derived from seven GCMs and four emissions scenarios using the new Representative Concentration Pathways (RCPs) developed for the Intergovernmental Panel on Climate Change (IPCC) AR5 report. Uncertainties arising from GCMs and those resulting from emissions scenarios were quantified and compared. Our study reveals that scenarios of future species distribution exhibit broad differences, depending not only on emissions scenarios but also on GCMs. We found that the between‐GCM variability was greater than the between‐RCP variability for the next decades and both types of variability reached a similar level at the end of this century. Our result highlights that a combined multi‐GCM and multi‐RCP approach is needed to better consider potential trajectories and uncertainties in future species distributions. In all cases, between‐GCM variability increases with the level of warming, and if nothing is done to alleviate global warming, future species spatial distribution may become more and more difficult to anticipate. When future species spatial distributions are examined, we propose to use a large number of GCMs and RCPs to better anticipate potential trajectories and quantify uncertainties.  相似文献   

8.
Despite a broad distribution, general habitat requirements, and a large dispersal potential, bobcats (Lynx rufus) exhibit a genetic division that longitudinally transects central North America. We investigated (1) whether the climate of the Last Glacial Maximum (LGM; 21 kya) isolated bobcats into refugia and also whether the current climate influences gene flow between the segregate populations and (2) whether the geographical patterns in cranial morphology reflect population identity. We created ecological niche models (ENMs) to evaluate climatic suitability and to estimate distributions of the disparate populations under both historical (LGM) and contemporary conditions. We used two‐dimensional geometric morphometric methods to evaluate variations in the cranium and mandible. These variations were then regressed across geographical variables to assess morphological differences throughout the range of the bobcat. ENMs projected onto LGM climate provided evidence of refugia during the LGM via increased suitability in the north‐west and south‐east portions of this species' range. Contemporarily, our models suggest that the Great Plains may be restricting bobcat migration and gene flow, effectively maintaining disparate populations. Morphological analyses identified a significant linear trend in shape variation across latitudinal and longitudinal gradients rather than distinct morphological divergence between lineages. Similar shape variations, however, did converge in approximate locations of assumed refugia. The findings of the present study provide a robust assessment of the biogeographical considerations for the population genetic structure of bobcats.  相似文献   

9.
10.
Novel engineered nanomaterials (ENMs) are increasingly being manufactured and integrated into renewable energy generation and storage technologies. Past research estimated the potential impact of this increased demand on environmental systems, due to both the life cycle impact of ENM production and the potential for their direct release into ecosystems. However, many models treat ENM production and use as spatially implicit, without considering the specific geographic location of potential emissions. By not considering geographical context, ENM accumulation or impact may be underestimated. Here, we introduce an integrated predictive model that forecasts likely ENM manufacturing locations and potential emissions to the environment, with a focus on critical environmental areas and freshwater ecosystems. Spatially explicit ENM concentrations are estimated for four case study ENMs that have promising application in lithium‐ion battery production. Results demonstrate that potential ENM exposure from manufacturing locations within buffer zones of sensitive ecosystems would accumulate to levels associated with measured ecotoxicity risk under high release scenarios, underscoring the importance of adding a spatial and temporal perspective to life cycle toxicity impact assessment. This predictive integrated modeling approach is novel to the nanomaterial literature and can be adapted to other regions and material case studies to proactively inform life cycle tradeoffs and decision‐making.  相似文献   

11.

Ecological niche modelling (ENM) has been used to quantify the potential occurrence of species, by identifying the main environmental factors that determine the presence of species across geographical space. We provide a large-scale survey of the distribution of ostracod species in South America, by using the domains of 25 river basins. From 221 known ostracod species, we estimate the potential distribution of 61 species, using ENM. Ten clusters of potential distribution patterns were found. Clusters 8 and 9 grouped most of the species, which presented high similarity of niche between them. Heterocypris paningi Brehm, 1934 (group 1) obtained higher niche variability. The minimum temperatures of the coldest month and the mean elevation of the river basin were most important to predict the potential distribution of ostracods of most groups. South America has a complex pattern of elevation, which affects species distributions indirectly through changes in local factors. For instance, the Andes mountains might impose a barrier for ostracod distribution in the southern part of South America because of the low temperatures and precipitation. The ENM indicated that some regions and/or basins of South America might be susceptible to the entry of several ostracod species, presently absent, including non-native species.

  相似文献   

12.
This study investigated the Pleistocene history of a semi‐aquatic bug, Microvelia douglasi douglasi Scott, 1874 (Hemiptera: Veliidae) in East Asia. We used M. douglasi douglasi as a model species to explore the effects of historical climatic fluctuations on montane semi‐aquatic invertebrate species. Two hypotheses were developed using ecological niche models (ENMs). First, we hypothesized that M. douglasi douglasi persisted in suitable habitats in southern Guizhou, southern Yunnan, Hainan, Taiwan and southeast China during the LIG. After that, the populations expanded (Hypothesis 1). As the spatial prediction in the LGM was significantly larger than in the LIG, we then hypothesized that the population expanded during the LIG to LGM transition (Hypothesis 2). We tested these hypotheses using mitochondrial data (COI+COII) and nuclear data (ITS1 + 5.8S+ITS2). Young lineages, relatively deep splits, lineage differentiation among mountain ranges in central, south and southwest China and high genetic diversities were observed in these suitable habitats. Evidence of mismatch distributions and neutrality tests indicate that a population expansion occurred in the late Pleistocene. The Bayesian skyline plot (BSP) revealed an unusual population expansion that likely happened during the cooling transition between LIG and LGM. The results of genetic data were mostly consistent with the spatial predictions from ENM, a finding that can profoundly improve phylogeographic research. The ecological requirements of M. douglasi douglasi, together with the geographical heterogeneity and climatic fluctuations of Pleistocene in East Asia, could have shaped this unusual demographic history. Our study contributes to our knowledge of semi‐aquatic bug/invertebrate responses to Pleistocene climatic fluctuations in East Asia.  相似文献   

13.
In this study, we evaluate phylogeographic patterns and predictions of ecological niche modelling (ENM) for Eugenia uniflora (Myrtaceae), a widely distributed taxon in the Atlantic forest domain, to understand the effect of past climatic oscillations on the demographic history of this species. An analysis of phylogeographic population structure and demography was conducted on E. uniflora from 46 localities in natural environments across the distribution range of the species based on three plastid markers. ENM was also performed to predict suitable environments and areas of dramatic decrease in future suitability for the species under distinct representative concentration pathways (RCPs). Eugenia uniflora exhibited higher haplotype and nucleotide diversity in the southern part of its distribution than in the northern part. Two divergent lineages were revealed in the phylogenetic analysis of haplotypes, with an estimated divergence at c. 4.9 Mya. The populations in the northern and central regions of the range probably experienced population growth, whereas populations in the southern region are marked by historical demographic stability. ENM results indicate that the distribution of E. uniflora was fragmented in cool periods and was broader and more connected during warm periods during Pleistocene. The results suggest distinct evolutionary histories in southern to northern populations, indicating region‐specific responses to changes.  相似文献   

14.
Many previous studies have attempted to assess ecological niche modeling performance using receiver operating characteristic (ROC) approaches, even though diverse problems with this metric have been pointed out in the literature. We explored different evaluation metrics based on independent testing data using the Darwin's Fox (Lycalopex fulvipes) as a detailed case in point. Six ecological niche models (ENMs; generalized linear models, boosted regression trees, Maxent, GARP, multivariable kernel density estimation, and NicheA) were explored and tested using six evaluation metrics (partial ROC, Akaike information criterion, omission rate, cumulative binomial probability), including two novel metrics to quantify model extrapolation versus interpolation (E‐space index I) and extent of extrapolation versus Jaccard similarity (E‐space index II). Different ENMs showed diverse and mixed performance, depending on the evaluation metric used. Because ENMs performed differently according to the evaluation metric employed, model selection should be based on the data available, assumptions necessary, and the particular research question. The typical ROC AUC evaluation approach should be discontinued when only presence data are available, and evaluations in environmental dimensions should be adopted as part of the toolkit of ENM researchers. Our results suggest that selecting Maxent ENM based solely on previous reports of its performance is a questionable practice. Instead, model comparisons, including diverse algorithms and parameterizations, should be the sine qua non for every study using ecological niche modeling. ENM evaluations should be developed using metrics that assess desired model characteristics instead of single measurement of fit between model and data. The metrics proposed herein that assess model performance in environmental space (i.e., E‐space indices I and II) may complement current methods for ENM evaluation.  相似文献   

15.
Aim Species distribution models (SDMs) or, more specifically, ecological niche models (ENMs) are a useful and rapidly proliferating tool in ecology and global change biology. ENMs attempt to capture associations between a species and its environment and are often used to draw biological inferences, to predict potential occurrences in unoccupied regions and to forecast future distributions under environmental change. The accuracy of ENMs, however, hinges critically on the quality of occurrence data. ENMs often use haphazardly collected data rather than data collected across the full spectrum of existing environmental conditions. Moreover, it remains unclear how processes affecting ENM predictions operate at different spatial scales. The scale (i.e. grain size) of analysis may be dictated more by the sampling regime than by biologically meaningful processes. The aim of our study is to jointly quantify how issues relating to region and scale affect ENM predictions using an economically important and ecologically damaging invasive species, the Argentine ant (Linepithema humile). Location California, USA. Methods We analysed the relationship between sampling sufficiency, regional differences in environmental parameter space and cell size of analysis and resampling environmental layers using two independently collected sets of presence/absence data. Differences in variable importance were determined using model averaging and logistic regression. Model accuracy was measured with area under the curve (AUC) and Cohen's kappa. Results We first demonstrate that insufficient sampling of environmental parameter space can cause large errors in predicted distributions and biological interpretation. Models performed best when they were parametrized with data that sufficiently sampled environmental parameter space. Second, we show that altering the spatial grain of analysis changes the relative importance of different environmental variables. These changes apparently result from how environmental constraints and the sampling distributions of environmental variables change with spatial grain. Conclusions These findings have clear relevance for biological inference. Taken together, our results illustrate potentially general limitations for ENMs, especially when such models are used to predict species occurrences in novel environments. We offer basic methodological and conceptual guidelines for appropriate sampling and scale matching.  相似文献   

16.
Past climate change has caused shifts in species distributions and undoubtedly impacted patterns of genetic variation, but the biological processes mediating responses to climate change, and their genetic signatures, are often poorly understood. We test six species‐specific biologically informed hypotheses about such processes in canyon live oak (Quercus chrysolepis) from the California Floristic Province. These hypotheses encompass the potential roles of climatic niche, niche multidimensionality, physiological trade‐offs in functional traits, and local‐scale factors (microsites and local adaptation within ecoregions) in structuring genetic variation. Specifically, we use ecological niche models (ENMs) to construct temporally dynamic landscapes where the processes invoked by each hypothesis are reflected by differences in local habitat suitabilities. These landscapes are used to simulate expected patterns of genetic variation under each model and evaluate the fit of empirical data from 13 microsatellite loci genotyped in 226 individuals from across the species range. Using approximate Bayesian computation (ABC), we obtain very strong support for two statistically indistinguishable models: a trade‐off model in which growth rate and drought tolerance drive habitat suitability and genetic structure, and a model based on the climatic niche estimated from a generic ENM, in which the variables found to make the most important contribution to the ENM have strong conceptual links to drought stress. The two most probable models for explaining the patterns of genetic variation thus share a common component, highlighting the potential importance of seasonal drought in driving historical range shifts in a temperate tree from a Mediterranean climate where summer drought is common.  相似文献   

17.
Most species data display spatial autocorrelation that can affect ecological niche models (ENMs) accuracy‐statistics, affecting its ability to infer geographic distributions. Here we evaluate whether the spatial autocorrelation underlying species data affects accuracy‐statistics and map the uncertainties due to spatial autocorrelation effects on species range predictions under past and future climate models. As an example, ENMs were fitted to Qualea grandiflora (Vochysiaceae), a widely distributed plant from Brazilian Cerrado. We corrected for spatial autocorrelation in ENMs by selecting sampling sites equidistant in geographical (GEO) and environmental (ENV) spaces. Distributions were modelled using 13 ENMs evaluated by two accuracy‐statistics (TSS and AUC), which were compared with uncorrected ENMs. Null models and the similarity statistics I were used to evaluate the effects of spatial autocorrelation. Moreover, we applied a hierarchical ANOVA to partition and map the uncertainties from the time (across last glacial maximum, pre‐insustrial, and 2080 time periods) and methodological components (ENMs and autocorrelation corrections). The GEO and ENV models had the highest accuracy‐statistics values, although only the ENV model had values higher than expected by chance alone for most of the 13 ENMs. Uncertainties from time component were higher in the core region of the Brazilian Cerrado where Q. grandiflora occurs, whereas methodological components presented higher uncertainties in the extreme northern and southern regions of South America (i.e. outside of Brazilian Cerrado). Our findings show that accounting for autocorrelation in environmental space is more efficient than doing so in geographical space. Methodological uncertainties were concentrated in outside the core region of Q. grandiflora's habitat. Conversely, uncertainty due to time component in the Brazilian Cerrado reveals that ENMs were able to capture climate change effects on Q. grandiflora distributions.  相似文献   

18.
Aim We explore the impact of calibrating ecological niche models (ENMs) using (1) native range (NR) data versus (2) entire range (ER) data (native and invasive) on projections of current and future distributions of three Hieracium species. Location H. aurantiacum, H. murorum and H. pilosella are native to Europe and invasive in Australia, New Zealand and North America. Methods Differences among the native and invasive realized climatic niches of each species were quantified. Eight ENMs in BIOMOD were calibrated with (1) NR and (2) ER data. Current European, North American and Australian distributions were projected. Future Australian distributions were modelled using four climate change scenarios for 2030. Results The invasive climatic niche of H. murorum is primarily a subset of that expressed in its native range. Invasive populations of H. aurantiacum and H. pilosella occupy different climatic niches to those realized in their native ranges. Furthermore, geographically separate invasive populations of these two species have distinct climatic niches. ENMs calibrated on the realized niche of native regions projected smaller distributions than models incorporating data from species’ entire ranges, and failed to correctly predict many known invasive populations. Under future climate scenarios, projected distributions decreased by similar percentages, regardless of the data used to calibrate ENMs; however, the overall sizes of projected distributions varied substantially. Main conclusions This study provides quantitative evidence that invasive populations of Hieracium species can occur in areas with different climatic conditions than experienced in their native ranges. For these, and similar species, calibration of ENMs based on NR data only will misrepresent their potential invasive distribution. These errors will propagate when estimating climate change impacts. Thus, incorporating data from species’ entire distributions may result in a more thorough assessment of current and future ranges, and provides a closer approximation of the elusive fundamental niche.  相似文献   

19.
Pleistocene climatic oscillations are known to influence the patterns of genetic diversity and the distribution of traits that are the target of selection. Here, we combine phylogeographical and ecological niche modelling (ENM) approaches to explore the influence of historical factors (Pleistocene climatic shifts) and natural selection on the evolution of distyly (two floral morphs) from tristyly (three floral morphs) of Oxalis alpina in the Sky Islands of the Sonoran Desert. Molecular data and ENM indicate that historical factors have had a strong influence on the genetic structure and the geographical distribution of reproductive systems of O. alpina. Moreover, genetic results suggest the possibility that distylous populations do not represent a monophyletic group. We propose that the combined effects of natural selection and genetic drift have influenced the tristyly–distyly transition.  相似文献   

20.
Sites with high environmental suitability for species’ occurrence, in terms of abiotic conditions, may hold populations with higher local abundances by increasing reproductive and survival rates and decreasing extinction rate. Interspecific competition, however, may affect this relationship. Here we tested the hypothesis that local abundance of the gray slender opossum Marmosops incanus is affected by the local richness of potential competitors and environmental suitability derived from ecological niche models (ENMs). We also discuss the ability of distinct modelling methods to predict species’ abundance. We compiled occurrence records and information about M. incanus’ relative abundance from museums and published articles. Environmental suitability was derived from five algorithms using seven environmental predictors. To assess our hypothesis, we chose the best statistical models among generalised linear models and quantile regressions, and then tested whether the effects of richness of competitors on local abundance are stronger under highly suitable conditions. We found that environmental suitability given by presence-only methods are positively related to the maximum abundance of M. incanus. That is, species’ local abundance is low when suitability is low but can be either low or high when suitability is high. The richness of competitors, in turn, explains the abundance variation within sites with high environmental suitability. We strongly recommend that the relationship between abundance and suitability must be carefully interpreted when using ENMs to predict species’ distribution because biotic interactions can be the main driver of local abundance within highly suitable environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号