共查询到20条相似文献,搜索用时 15 毫秒
1.
Stacy A. Krueger‐Hadfield Ben A. Flanagan Olivier Godfroy Kristina M. Hill‐Spanik Chris C. Nice Courtney J. Murren Allan E. Strand Erik E. Sotka 《Journal of phycology》2021,57(1):279-294
For many taxa, including isomorphic haplodiplontic macroalgae, determining sex and ploidy is challenging, thereby limiting the scope of some population demographic and genetic studies. Here, we used double‐digest restriction site‐associated DNA sequencing (ddRAD‐seq) to identify sex‐linked molecular markers in the widespread red alga Agarophyton vermiculophyllum. In the ddRAD‐seq library, we included 10 female gametophytes, 10 male gametophytes, and 16 tetrasporophytes from one native and one non‐native site (N = 40 gametophytes and N = 32 tetrasporophytes total). We identified seven putatively female‐linked and 19 putatively male‐linked sequences. Four female‐ and eight male‐linked markers amplified in all three life cycle stages. Using one female‐ and one male‐linked marker that were sex‐specific, we developed a duplex PCR and tested the efficacy of this assay on a subset of thalli sampled at two sites in the non‐native range. We confirmed ploidy based on the visual observation of reproductive structures and previous microsatellite genotyping at 10 polymorphic loci. For 32 vegetative thalli, we were able to assign sex and confirm ploidy in these previously genotyped thalli. These markers will be integral to ongoing studies of A. vermiculophyllum invasion. We discuss the utility of RAD‐seq over other approaches previously used, such as RAPDs (random amplified polymorphic DNA), for future work designing sex‐linked markers in other haplodiplontic macroalgae for which genomes are lacking. 相似文献
2.
The evolutionary importance of hybridization as a source of new adaptive genetic variation is rapidly gaining recognition. Hybridization between coyotes and wolves may have introduced adaptive alleles into the coyote gene pool that facilitated an expansion in their geographic range and dietary niche. Furthermore, hybridization between coyotes and domestic dogs may facilitate adaptation to human‐dominated environments. We genotyped 63 ancestry‐informative single‐nucleotide polymorphisms in 427 canids to examine the prevalence, spatial distribution and the ecology of admixture in eastern coyotes. Using multivariate methods and Bayesian clustering analyses, we estimated the relative contributions of western coyotes, western and eastern wolves, and domestic dogs to the admixed ancestry of Ohio and eastern coyotes. We found that eastern coyotes form an extensive hybrid swarm, with all our samples having varying levels of admixture. Ohio coyotes, previously thought to be free of admixture, are also highly admixed with wolves and dogs. Coyotes in areas of high deer density are genetically more wolf‐like, suggesting that natural selection for wolf‐like traits may result in local adaptation at a fine geographic scale. Our results, in light of other previously published studies of admixture in Canis, revealed a pattern of sex‐biased hybridization, presumably generated by male wolves and dogs mating with female coyotes. This study is the most comprehensive genetic survey of admixture in eastern coyotes and demonstrates that the frequency and scope of hybridization can be quantified with relatively few ancestry‐informative markers. 相似文献
3.
Victoria L. Pritchard Nathan R. Campbell Shawn R. Narum Mary M. Peacock John CARLOS Garza 《Molecular ecology resources》2013,13(2):276-288
The Lahontan cutthroat trout (Oncorhynchus clarkii henshawi) is threatened by habitat destruction, over‐harvest and hybridization with nonnative trout. Currently, three Geographic Management Units (GMUs) are recognized within the taxon. Here, we describe a suite of 68 single‐nucleotide polymorphism (SNP) genetic markers for use in the study and management of Lahontan cutthroat trout and a closely related subspecies, the Paiute cutthroat trout (O. c. seleneris). These include markers variable within the two subspecies (n = 35), diagnostic for the two subspecies (n = 23) and diagnostic for Yellowstone cutthroat trout (O. c. bouvieri) and other closely related subspecies (n = 10). Sixty‐three markers were discovered by Sanger sequencing of 171 EST loci in an ascertainment panel including Lahontan cutthroat trout from four populations representing all GMUs. Five markers were identified in a secondary sequencing effort with a single population of Lahontan cutthroat trout. TaqMan assays were validated on six Lahontan cutthroat trout populations and a diverse panel of other trout. Over 90% of the markers variable in Lahontan cutthroat trout were polymorphic in at least two populations, and 66% were variable within all three GMUs. All Lahontan diagnostic markers were also fixed for the Lahontan allele in Paiute cutthroat trout. Most of the Yellowstone diagnostic markers can also be used for this purpose in other cutthroat trout subspecies. This is the first set of SNP markers to be developed for Lahontan cutthroat trout, and will be an important tool for conservation and management. 相似文献
4.
Ingerid J. Hagen Anna M. Billing Bernt Rønning Sindre A. Pedersen Henrik Pärn Jon Slate Henrik Jensen 《Molecular ecology resources》2013,13(3):429-439
With the advent of next generation sequencing, new avenues have opened to study genomics in wild populations of non‐model species. Here, we describe a successful approach to a genome‐wide medium density Single Nucleotide Polymorphism (SNP) panel in a non‐model species, the house sparrow (Passer domesticus), through the development of a 10 K Illumina iSelect HD BeadChip. Genomic DNA and cDNA derived from six individuals were sequenced on a 454 GS FLX system and generated a total of 1.2 million sequences, in which SNPs were detected. As no reference genome exists for the house sparrow, we used the zebra finch (Taeniopygia guttata) reference genome to determine the most likely position of each SNP. The 10 000 SNPs on the SNP‐chip were selected to be distributed evenly across 31 chromosomes, giving on average one SNP per 100 000 bp. The SNP‐chip was screened across 1968 individual house sparrows from four island populations. Of the original 10 000 SNPs, 7413 were found to be variable, and 99% of these SNPs were successfully called in at least 93% of all individuals. We used the SNP‐chip to demonstrate the ability of such genome‐wide marker data to detect population sub‐division, and compared these results to similar analyses using microsatellites. The SNP‐chip will be used to map Quantitative Trait Loci (QTL) for fitness‐related phenotypic traits in natural populations. 相似文献
5.
Influence of niche similarity on hybridization between Myriophyllum sibiricum and M. spicatum 下载免费PDF全文
The impact of ecological factors on natural hybridization is of widespread interest. Here, we asked whether climate niche influences hybridization between the two closely related plant species Myriophyllum sibiricum and M. spicatum. Eight microsatellite loci and two chloroplast fragments were used to investigate the occurrence of hybridization between these two species in two co‐occurring regions: north‐east China (NEC) and the Qinghai‐Tibetan Plateau (QTP). The climate niches of the species were quantified by principal component analysis with bioclimatic data, and niche comparisons were performed between the two species in each region. Reciprocal hybridization was observed, and M. sibiricum was favoured as the maternal species. Furthermore, hybrids were rare in NEC but common in the QTP. Accordingly, in NEC, the two species were climatically distinct, and hybrids only occurred in the narrow geographical or ecological transition zone, whereas in the QTP, obvious niche overlaps were found for the two species, and hybrids occurred in multiple contact zones. This association between hybridization pattern and climate niche similarity suggests that the level of hybridization was promoted by niche overlap. Compared with the parental species, similar climate niches were found for the hybrid populations in the QTP, indicating that other environmental factors rather than climate were important for hybrid persistence. Our findings highlight the significance of climate niche with respect to hybridization patterns in plants. 相似文献
6.
7.
Andrey Tatarenkov Ryan L. Earley D. Scott Taylor William P. Davis John C. Avise 《Journal of evolutionary biology》2021,34(1):49-59
Extreme inbreeding is expected to reduce the incidence of hybridization, serving as a prezygotic barrier. Mangrove rivulus is a small killifish that reproduces predominantly by self‐fertilization, producing highly homozygous lines throughout its geographic range. The Bahamas and Caribbean are inhabited by two highly diverged phylogeographic lineages of mangrove rivulus, Kryptolebias marmoratus and a ‘Central clade’ closely related to K. hermaphroditus from Brazil. The two lineages are largely allopatric, but recently were found in syntopy on San Salvador, Bahamas, where a single hybrid was reported. To better characterize the degree of hybridization and the possibility of secondary introgression, here we conducted a detailed genetic analysis of the contact zone on San Salvador. Two mixed populations were identified, one of which contained sexually mature hybrids. The distribution of heterozygosity at diagnostic microsatellite loci in hybrids showed that one of these hybrids was an immediate offspring from the K. marmoratus x Central clade cross, whereas the remaining five hybrids were products of reproduction by self‐fertilization for 1–3 generations following the initial cross. Two hybrids had mitochondrial haplotypes of K. marmoratus and the remaining four hybrids had a haplotype of the Central clade, indicating that crosses go in both directions. In hybrids, alleles of parental lineages were represented in equal proportions suggesting lack of recent backcrossing to either of the parental lineages. However, sympatric populations of two lineages were less diverged than allopatric populations, consistent with introgression. Results are discussed in terms of applicability of the biological species concept for isogenic, effectively clonal, organisms. 相似文献
8.
Lily C. Hughes Yamila P. Cardoso Julie A. Sommer Roberto Cifuentes Mariela Cuello Gustavo M. Somoza Mariano Gonzlez‐Castro Luiz R. Malabarba Victor Cussac Evelyn M. Habit Ricardo Betancur‐R. Guillermo Ortí 《Molecular ecology》2020,29(4):738-751
Rivers and lake systems in the southern cone of South America have been widely influenced by historical glaciations, carrying important implications for the evolution of aquatic organisms, including prompting transitions between marine and freshwater habitats and by triggering hybridization among incipient species via waterway connectivity and stream capture events. Silverside fishes (Odontesthes) in the region comprise a radiation of 19 marine and freshwater species that have been hypothesized on the basis of morphological or mitochondrial DNA data to have either transitioned repeatedly into continental waters from the sea or colonized marine habitats following freshwater diversification. New double digest restriction‐site associated DNA data presented here provide a robust framework to investigate the biogeographical history of and habitat transitions in Odontesthes. We show that Odontesthes silversides originally diversified in the Pacific but independently colonized the Atlantic three times, producing three independent marine‐to‐freshwater transitions. Our results also indicate recent introgression of marine mitochondrial haplotypes into two freshwater clades, with more recurring instances of hybridization among Atlantic‐ versus Pacific‐slope species. In Pacific freshwater drainages, hybridization with a marine species appears to be geographically isolated and may be related to glaciation events. Substantial structural differences of estuarine gradients between these two geographical areas may have influenced the frequency, intensity and evolutionary effects of hybridization events. 相似文献
9.
The prion‐related protein (testis‐specific) gene (PRNT) is highly polymorphic in Portuguese sheep 下载免费PDF全文
P. Mesquita V. Garcia M. R. Marques F. Santos Silva M. C. Oliveira Sousa I. Carolino J. Pimenta C. M. G. A. Fontes A. E. M. Horta J. A. M. Prates R. M. Pereira 《Animal genetics》2016,47(1):128-132
The objective of this study was to search for polymorphisms in the ovine prion‐related protein (testis‐specific) gene (PRNT). Sampling included 567 sheep from eight Portuguese breeds. The PRNT gene‐coding region was analyzed by single‐strand conformation polymorphism and sequencing, allowing the identification of the first ovine PRNT polymorphisms, in codons 6, 38, 43 and 48: c.17C>T (p.Ser6Phe, which disrupts a consensus arginine‐X‐X‐serine/threonine motif); c.112G>C (p.Gly38>Arg); c.129T>C and c.144A>G (synonymous) respectively. Polymorphisms in codons 6, 38 and 48 occur simultaneously in 50.6% of the animals, 38.8% presenting as heterozygous. To study the distribution of the polymorphism in codon 43, a restriction fragment length polymorphism analysis was performed. Polymorphic variant c.129C, identified in 89.8% of the animals with 32.8% presented as heterozygous, was considered the wild genotype in Portuguese sheep. Eight different haplotypes which have comparable distribution in all breeds were identified for the PRNT gene. In conclusion, the PRNT coding region is highly polymorphic in sheep, unlike the prion protein 2 dublet gene (PRND), in which we previously found only one synonymous substitution (c.78G>A), in codon 26. The absence or reduced number of PRND heterozygotes (c.78G>A) was significantly associated with three PRNT haplotypes (17C‐112G‐129T‐144A,17CT‐112GC‐129CT‐144AG and 17T‐112C‐129C‐144G), and the only three animals found homozygous at c.78A had the 17C‐112G‐129C‐144A PRNT haplotype. These results constitute evidence of an association between polymorphic variation in PRND and PRNT genes, as has already been observed for PRND and prion protein gene (PRNP). 相似文献
10.
Development of diagnostic microsatellite markers from whole‐genome sequences of Ammodramus sparrows for assessing admixture in a hybrid zone 下载免费PDF全文
Adrienne I. Kovach Jennifer Walsh Jordan Ramsdell W. Kelley Thomas 《Ecology and evolution》2015,5(11):2267-2283
Studies of hybridization and introgression and, in particular, the identification of admixed individuals in natural populations benefit from the use of diagnostic genetic markers that reliably differentiate pure species from each other and their hybrid forms. Such diagnostic markers are often infrequent in the genomes of closely related species, and genomewide data facilitate their discovery. We used whole‐genome data from Illumina HiSeqS2000 sequencing of two recently diverged (600,000 years) and hybridizing, avian, sister species, the Saltmarsh (Ammodramus caudacutus) and Nelson's (A. nelsoni) Sparrow, to develop a suite of diagnostic markers for high‐resolution identification of pure and admixed individuals. We compared the microsatellite repeat regions identified in the genomes of the two species and selected a subset of 37 loci that differed between the species in repeat number. We screened these loci on 12 pure individuals of each species and report on the 34 that successfully amplified. From these, we developed a panel of the 12 most diagnostic loci, which we evaluated on 96 individuals, including individuals from both allopatric populations and sympatric individuals from the hybrid zone. Using simulations, we evaluated the power of the marker panel for accurate assignments of individuals to their appropriate pure species and hybrid genotypic classes (F1, F2, and backcrosses). The markers proved highly informative for species discrimination and had high accuracy for classifying admixed individuals into their genotypic classes. These markers will aid future investigations of introgressive hybridization in this system and aid conservation efforts aimed at monitoring and preserving pure species. Our approach is transferable to other study systems consisting of closely related and incipient species. 相似文献
11.
Ten primer pairs were screened to develop single nucleotide polymorphism (SNP) TaqMan assays that will distinguish California golden trout and some rainbow trouts (Oncorhynchus mykiss sspp., O. m. aguabonita) from the Paiute and Lahontan cutthroat trouts (Oncorhynchus clarkii seleniris, O. c. henshawi). From these 10 primer pairs, one mitochondrial and five nuclear fixed SNP differences were discovered and developed into TaqMan assays. These six assays will be useful for characterizing and monitoring hybridization between these groups. Additional Oncorhynchus clarkii sspp. and Oncorhynchus mykiss sspp. were assayed to determine if these assays are useful in closely related species. 相似文献
12.
Mitochondrial genome (mito‐genome) introgression among metazoans is commonplace, and several biological processes may promote such introgression. We examined two proposed processes for the mito‐genome introgression between Rana chensinensis and R. kukunoris: natural hybridization and sex‐biased dispersal. We sampled 477 individuals from 28 sites in the potential hybrid zone in the western Tsinling Mountains. Mitochondrial gene (cyt‐b) trees were used to examine the introgression events. Microsatellite DNA loci, cyt‐b and morphological data were used to identify hybrids and to examine the extent of natural hybridization. We detected rampant bidirectional introgressions, both ancient and recent, between the two species. Furthermore, we found a wide hybrid zone, and frequent and asymmetric hybridization. The hybrid zone cline analysis revealed a clear mitochondrial–nuclear discordance; while most nuclear markers displayed similar and steep clines, cyt‐b had a displaced cline centre and a more gradual and wider cline. We also detected strong and asymmetric historical maternal gene flow across the hybrid zone. This widespread hybridization and detected low mito‐nuclear conflicts may, at least partially, explain the high frequency of introgression. Lastly, microsatellite data and population genetic methods were used to assess sex‐biased dispersal. A weak pattern of female‐biased dispersal was detected in both species, suggesting it may not play an important role in the observed introgression. Our data are consistent with the hybridization hypothesis, but support for the sex‐biased dispersal hypothesis is weak. We further suggest that selective advantages of the R. kukunoris‐type mito‐genome in thermal adaptation may also contribute to the introgression between the two species. 相似文献
13.
Virginie Merot‐L'anthoene Rmi Tournebize Olivier Darracq Vimel Rattina Maud Lepelley Laurence Bellanger Christine Tranchant‐Dubreuil Manon Coule Marie Pgard Sylviane Metairon Coralie Fournier Piet Stoffelen Steven B. Janssens Catherine Kiwuka Pascal Musoli Ucu Sumirat Hyacinthe Legnat Jean‐Lon Kambale Joo Ferreira da Costa Neto Clara Revel Alexandre de Kochko Patrick Descombes Dominique Crouzillat Valrie Poncet 《Plant biotechnology journal》2019,17(7):1418-1430
Coffee species such as Coffea canephora P. (Robusta) and C. arabica L. (Arabica) are important cash crops in tropical regions around the world. C. arabica is an allotetraploid (2n = 4x = 44) originating from a hybridization event of the two diploid species C. canephora and C. eugenioides (2n = 2x = 22). Interestingly, these progenitor species harbour a greater level of genetic variability and are an important source of genes to broaden the narrow Arabica genetic base. Here, we describe the development, evaluation and use of a single‐nucleotide polymorphism (SNP) array for coffee trees. A total of 8580 unique and informative SNPs were selected from C. canephora and C. arabica sequencing data, with 40% of the SNP located in annotated genes. In particular, this array contains 227 markers associated to 149 genes and traits of agronomic importance. Among these, 7065 SNPs (~82.3%) were scorable and evenly distributed over the genome with a mean distance of 54.4 Kb between markers. With this array, we improved the Robusta high‐density genetic map by adding 1307 SNP markers, whereas 945 SNPs were found segregating in the Arabica mapping progeny. A panel of C. canephora accessions was successfully discriminated and over 70% of the SNP markers were transferable across the three species. Furthermore, the canephora‐derived subgenome of C. arabica was shown to be more closely related to C. canephora accessions from northern Uganda than to other current populations. These validated SNP markers and high‐density genetic maps will be useful to molecular genetics and for innovative approaches in coffee breeding. 相似文献
14.
A single‐nucleotide polymorphism‐based approach for rapid and cost‐effective genetic wolf monitoring in Europe based on noninvasively collected samples 下载免费PDF全文
Robert H. S. Kraus Bridgett vonHoldt Berardino Cocchiararo Verena Harms Helmut Bayerl Ralph Kühn Daniel W. Förster Jörns Fickel Christian Roos Carsten Nowak 《Molecular ecology resources》2015,15(2):295-305
Noninvasive genetics based on microsatellite markers has become an indispensable tool for wildlife monitoring and conservation research over the past decades. However, microsatellites have several drawbacks, such as the lack of standardisation between laboratories and high error rates. Here, we propose an alternative single‐nucleotide polymorphism (SNP)‐based marker system for noninvasively collected samples, which promises to solve these problems. Using nanofluidic SNP genotyping technology (Fluidigm), we genotyped 158 wolf samples (tissue, scats, hairs, urine) for 192 SNP loci selected from the Affymetrix v2 Canine SNP Array. We carefully selected an optimised final set of 96 SNPs (and discarded the worse half), based on assay performance and reliability. We found rates of missing data in this SNP set of <10% and genotyping error of ~1%, which improves genotyping accuracy by nearly an order of magnitude when compared to published data for other marker types. Our approach provides a tool for rapid and cost‐effective genotyping of noninvasively collected wildlife samples. The ability to standardise genotype scoring combined with low error rates promises to constitute a major technological advancement and could establish SNPs as a standard marker for future wildlife monitoring. 相似文献
15.
Comparative analyses of plastid and AFLP data suggest different colonization history and asymmetric hybridization between Betula pubescens and B. nana 下载免费PDF全文
Pernille Bronken Eidesen Inger Greve Alsos Christian Brochmann 《Molecular ecology》2015,24(15):3993-4009
Birches (Betula spp.) hybridize readily, confounding genetic signatures of refugial isolation and postglacial migration. We aimed to distinguish hybridization from range‐shift processes in the two widespread and cold‐adapted species B. nana and B. pubescens, previously shown to share a similarly east–west‐structured variation in plastid DNA (pDNA). We sampled the two species throughout their ranges and included reference samples of five other Betula species and putative hybrids. We analysed 901 individual plants using mainly nuclear high‐resolution markers (amplified fragment length polymorphisms; AFLPs); a subset of 64 plants was also sequenced for two pDNA regions. Whereas the pDNA variation as expected was largely shared between B. nana and B. pubescens, the two species were distinctly differentiated at AFLP loci. In B. nana, both the AFLP and pDNA results corroborated the former pDNA‐based hypothesis that it expanded from at least two major refugia in Eurasia, one south of and one east of the North European ice sheets. In contrast, B. pubescens showed a striking lack of geographic structuring of its AFLP variation. We identified a weak but significant increase in nuclear (AFLP) gene flow from B. nana into B. pubescens with increasing latitude, suggesting hybridization has been most frequent at the postglacial expansion front of B. pubescens and that hybrids mainly backcrossed to B. pubescens. Incongruence between pDNA and AFLP variation in B. pubescens can be explained by efficient expansion from a single large refugium combined with leading‐edge hybridization and plastid capture from B. nana during colonization of new territory already occupied by this more cold‐tolerant species. 相似文献
16.
ÜLO VÄLI VALERY DOMBROVSKI RIMGAUDAS TREINYS UGIS BERGMANIS SZILÁRD J. DARÓCZI MIROSLAV DRAVECKY VLADIMIR IVANOVSKI JAN LONTKOWSKI GRZEGORZ MACIOROWSKI BERND‐ULRICH MEYBURG TADEUSZ MIZERA RÓBERT ZEITZ HANS ELLEGREN 《Biological journal of the Linnean Society. Linnean Society of London》2010,100(3):725-736
Hybridization is a significant threat for endangered species and could potentially even lead to their extinction. This concern applies to the globally vulnerable Greater Spotted Eagle Aquila clanga, a species that co‐occurs, and potentially interbreeds, with the more common Lesser Spotted Eagle Aquila pomarina in a vast area of Eastern Europe. We applied single nucleotide polymorphism (SNP) and microsatellite markers in order to study hybridization and introgression in 14 European spotted eagle populations. We detected hybridization and/or introgression in all studied sympatric populations. In most regions, hybridization took place prevalently between A. pomarina males and A. clanga females, with introgression to the more common A. pomarina. However, such a pattern was not as obvious in regions where A. clanga is still numerous. In the course of 16 years of genetic monitoring of a mixed population in Estonia, we observed the abandonment of A. clanga breeding territories and the replacement of A. clanga pairs by A. pomarina, whereby on several occasions hybridization was an intermediate step before the disappearance of A. clanga. Although the total number of Estonian A. clanga × A. pomarina pairs was twice as high as that of A. clanga pairs, the number of pairs recorded yearly were approximately equal, which suggests a higher turnover rate in interbreeding pairs. This study shows that interspecific introgressive hybridization occurs rather frequently in a hybrid zone at least 1700‐km wide: it poses an additional threat for the vulnerable A. clanga, and may contribute to the extinction of its populations. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 100 , 725–736. 相似文献
17.
Nadine Bernhardt Jonathan Brassac Xue Dong Eva‐Maria Willing C. Hart Poskar Benjamin Kilian Frank R. Blattner 《The Plant journal : for cell and molecular biology》2020,102(3):493-506
Many conflicting hypotheses regarding the relationships among crops and wild species closely related to wheat (the genera Aegilops, Amblyopyrum, and Triticum) have been postulated. The contribution of hybridization to the evolution of these taxa is intensely discussed. To determine possible causes for this, and provide a phylogeny of the diploid taxa based on genome‐wide sequence information, independent data were obtained from genotyping‐by‐sequencing and a target‐enrichment experiment that returned 244 low‐copy nuclear loci. The data were analyzed using Bayesian, likelihood and coalescent‐based methods. D statistics were used to test if incomplete lineage sorting alone or together with hybridization is the source for incongruent gene trees. Here we present the phylogeny of all diploid species of the wheat wild relatives. We hypothesize that most of the wheat‐group species were shaped by a primordial homoploid hybrid speciation event involving the ancestral Triticum and Am. muticum lineages to form all other species except Ae. speltoides. This hybridization event was followed by multiple introgressions affecting all taxa except Triticum. Mostly progenitors of the extant species were involved in these processes, while recent interspecific gene flow seems insignificant. The composite nature of many genomes of wheat‐group taxa results in complicated patterns of diploid contributions when these lineages are involved in polyploid formation, which is, for example, the case for tetraploid and hexaploid wheats. Our analysis provides phylogenetic relationships and a testable hypothesis for the genome compositions in the basic evolutionary units within the wheat group of Triticeae. 相似文献
18.
Bruce E. Deagle Felicity C. Jones Devin M. Absher David M. Kingsley Thomas E. Reimchen 《Molecular ecology》2013,22(7):1917-1932
Threespine stickleback populations are model systems for studying adaptive evolution and the underlying genetics. In lakes on the Haida Gwaii archipelago (off western Canada), stickleback have undergone a remarkable local radiation and show phenotypic diversity matching that seen throughout the species distribution. To provide a historical context for this radiation, we surveyed genetic variation at >1000 single nucleotide polymorphism (SNP) loci in stickleback from over 100 populations. SNPs included markers evenly distributed throughout genome and candidate SNPs tagging adaptive genomic regions. Based on evenly distributed SNPs, the phylogeographic pattern differs substantially from the disjunct pattern previously observed between two highly divergent mtDNA lineages. The SNP tree instead shows extensive within watershed population clustering and different watersheds separated by short branches deep in the tree. These data are consistent with separate colonizations of most watersheds, despite underlying genetic connections between some independent drainages. This supports previous suppositions that morphological diversity observed between watersheds has been shaped independently, with populations exhibiting complete loss of lateral plates and giant size each occurring in several distinct clades. Throughout the archipelago, we see repeated selection of SNPs tagging candidate freshwater adaptive variants at several genomic regions differentiated between marine–freshwater populations on a global scale (e.g. EDA, Na/K ATPase). In estuarine sites, both marine and freshwater allelic variants were commonly detected. We also found typically marine alleles present in a few freshwater lakes, especially those with completely plated morphology. These results provide a general model for postglacial colonization of freshwater habitat by sticklebacks and illustrate the tremendous potential of genome‐wide SNP data sets hold for resolving patterns and processes underlying recent adaptive divergences. 相似文献
19.
Plastid phylogenetics of Oceania yams (Dioscorea spp., Dioscoreaceae) reveals natural interspecific hybridization of the greater yam (D. alata) 下载免费PDF全文
Hana Chaïr Julie Sardos Anthea Supply Pierre Mournet Roger Malapa Vincent Lebot 《Botanical journal of the Linnean Society. Linnean Society of London》2016,180(3):319-333
Phylogenetic relationships of Oceanian staple yams (species of Dioscorea section Enantiophyllum) were investigated using plastid trnL‐F and rpl32‐trnL(UAG) sequences and nine nuclear co‐dominant microsatellites. Analysis of herbarium specimens, used as taxonomic references, allowed the comparison with samples collected in the field. It appears that D. alata, D. transversa and D. hastifolia are closely related species. This study does not support a direct ancestry from D. nummularia to D. alata as previously hypothesized. The dichotomy in D. nummularia previously described by farmers in semi‐perennial and annual types was reflected by molecular markers, but the genetic structure of D. nummularia appears more complex. Dioscorea nummularia displayed two haplotypes, each corresponding to a different genetic group. One, including a D. nummularia voucher from New Guinea, is closer to D. tranversa, D. alata and D. hastifolia and encompasses only semi‐perennial types. The second group is composed of semi‐perennial and annual yams. However, some of these annual yams also displayed D. alata haplotypes. Nuclear markers revealed that some annual yams shared alleles with D. alata and semi‐perennial D. nummularia, suggesting a hybrid origin, which may explain their intermediate morphotypes and the difficulty met in classifying them. 相似文献