首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
1. Long‐term control of insects by parasites is possible only if the parasite populations persist. Because parasite transmission rate depends on host density, parasite populations may go extinct during periods of low host density. Vertical transmission of parasites, however, is independent of host density and may therefore provide a demographic bridge through times when their insect hosts are rare. 2. The nematode Howardula aoronymphium, which parasitises mycophagous species of Drosophila, can experience both horizontal and effectively vertical transmission, relative rates of which depend, in theory at least, on the density of hosts at breeding sites. 3. A nine‐generation experiment was carried out in which nematodes were transmitted either exclusively vertically or primarily horizontally. This experiment revealed that these parasites can persist and exhibit positive population growth even when there is only vertical transmission. 4. Assays at the end of the experiment revealed that the vertically transmitted nematodes had suffered no inbreeding depression and that they were similar to the horizontally transmitted nematodes in terms of virulence, infectivity, within‐host growth rate, and fecundity. Thus, vertical transmission of H. aoronymphium did not appear to compromise the ability of these parasites to control Drosophila populations.  相似文献   

2.
3.
4.
Mycophagous drosophilids and their nematode parasites were studied in an intensive census conducted throughout the active season over four years (2000–2003) in Hokkaido, northern Japan. Using census data, I assessed the prevalence of nematode parasitism through seasons, determined its effects on drosophilid female fertility and tested the “disproportionate parasitism hypothesis” to evaluate its effects on drosophilid community structure. Over the four‐year census, a total of 43 fungal species were found on the census route and 18 177 adult drosophilid flies were collected. The yearly parasitism rate on the total drosophilid community varied from 6.2% in 2000 to 5.1% in 2001 and 3.0% in 2002 and 2003. There was strong seasonal variation in the prevalence of parasitism. In addition, parasitism rates varied among drosophilid species. All parasitized females carried only small numbers of eggs. Thus, nematode parasitism had a strong deleterious effect on the fitness of infected flies. The relative abundance of drosophilid species and parasitism rate were not significantly correlated. Thus, the disproportionate parasitism hypothesis likely does not apply to the mycophagous drosophilid community in Japan.  相似文献   

5.
Identifying the genetic architecture underlying complex phenotypes is a notoriously difficult problem that often impedes progress in understanding adaptive eco‐evolutionary processes in natural populations. Host–parasite interactions are fundamentally important drivers of evolutionary processes, but a lack of understanding of the genes involved in the host's response to chronic parasite insult makes it particularly difficult to understand the mechanisms of host life history trade‐offs and the adaptive dynamics involved. Here, we examine the genetic basis of gastrointestinal nematode (Trichostrongylus tenuis) burden in 695 red grouse (Lagopus lagopus scotica) individuals genotyped at 384 genome‐wide SNPs. We first use genome‐wide association to identify individual SNPs associated with nematode burden. We then partition genome‐wide heritability to identify chromosomes with greater heritability than expected from gene content, due to harbouring a multitude of additive SNPs with individually undetectable effects. We identified five SNPs on five chromosomes that accounted for differences of up to 556 worms per bird, but together explained at best 4.9% of the phenotypic variance. These SNPs were closely linked to genes representing a range of physiological processes including the immune system, protein degradation and energy metabolism. Genome partitioning indicated genome‐wide heritability of up to 29% and three chromosomes with excess heritability of up to 4.3% (total 8.9%). These results implicate SNPs and novel genomic regions underlying nematode burden in this system and suggest that this phenotype is somewhere between being based on few large‐effect genes (oligogenic) and based on a large number of genes with small individual but large combined effects (polygenic).  相似文献   

6.
The evolutionary equilibrium hypothesis was proposed to explain variation in egg rejection rates among individual hosts (intra‐ and interspecific) of avian brood parasites. Hosts may sometimes mistakenly reject own eggs when they are not parasitized (i.e. make recognition errors). Such errors would incur fitness costs and could counter the evolution of host defences driven by costs of parasitism (i.e. creating equilibrium between acceptors and rejecters within particular host populations). In the present study, we report the disappearance of host eggs from nonparasitized nests in populations of seven actual and potential hosts of the common cuckoo Cuculus canorus. Based on these data, we calculate the magnitude of the balancing parasitism rate provided that all eggs lost are a result of recognition errors. Importantly, because eggs are known to disappear from nests for reasons other than erroneous host rejection, our data represent the maximum estimates of such costs. Nonetheless, the disappearance of eggs was a rare event and therefore incurred low costs compared to the high costs of parasitism. Hence, costs as a result of recognition errors are probably of minor importance with respect to opposing selective pressure for the evolution of egg rejection in these hosts. We cannot exclude the possibility that low or intermediate egg rejection rates in some host populations may be caused by spatiotemporal variation in the occurrence of parasitism and gene flow, creating a variable influence of opposing costs as a result of recognition errors and the costs of parasitism.  相似文献   

7.
8.
The identification of pollen plays an important role in ecology, palaeo‐climatology, honey quality control and other areas. Currently, expert knowledge and reference collections are essential to identify pollen origin through light microscopy. Pollen identification through molecular sequencing and DNA barcoding has been proposed as an alternative approach, but the assessment of mixed pollen samples originating from multiple plant species is still a tedious and error‐prone task. Next‐generation sequencing has been proposed to avoid this hindrance. In this study we assessed mixed pollen probes through next‐generation sequencing of amplicons from the highly variable, species‐specific internal transcribed spacer 2 region of nuclear ribosomal DNA. Further, we developed a bioinformatic workflow to analyse these high‐throughput data with a newly created reference database. To evaluate the feasibility, we compared results from classical identification based on light microscopy from the same samples with our sequencing results. We assessed in total 16 mixed pollen samples, 14 originated from honeybee colonies and two from solitary bee nests. The sequencing technique resulted in higher taxon richness (deeper assignments and more identified taxa) compared to light microscopy. Abundance estimations from sequencing data were significantly correlated with counted abundances through light microscopy. Simulation analyses of taxon specificity and sensitivity indicate that 96% of taxa present in the database are correctly identifiable at the genus level and 70% at the species level. Next‐generation sequencing thus presents a useful and efficient workflow to identify pollen at the genus and species level without requiring specialised palynological expert knowledge.  相似文献   

9.
Decreasing similarity between ecological communities with increasing geographic distance (i.e. distance‐decay) is a common biogeographical observation in free‐living communities, and a slightly less common observation for parasite communities. Ecological networks of interacting species may adhere to a similar pattern of decreasing interaction similarity with increasing geographic distance, especially if species interactions are maintained across space. We extend this further, examining if host–parasite networks – independent of host and parasite species identities – become more structurally dissimilar with increasing geographic distance. Utilizing a global database of helminth parasite occurrence records, we find evidence for distance‐decay relationships in host and parasite communities at both regional and global scales, but fail to detect similar relationships in network structural similarity. Host and parasite community similarity were strongly related, and both decayed rapidly with increasing geographic distance, typically resulting in complete dissimilarity after approximately 2500 km. Our failure to detect a decay in network structural similarity suggests the possibility that different host and parasite species are filling the same functional roles in interaction networks, or that variation in network similarity may be better explained by other geographic variables or aspects of host and parasite ecology.  相似文献   

10.
11.
The ectoparasitic mite, Varroa destructor, shifted host from the eastern honeybee, Apis cerana, to the western honeybee, Apis mellifera. Whereas the original host survives infestations by this parasite, they are lethal to colonies of its new host. Here, we investigated a population of A. cerana naturally infested by the V. destructor Korea haplotype that gave rise to the globally invasive mite lineage. Our aim was to better characterize traits that allow for the survival of the original host to infestations by this particular mite haplotype. A known major trait of resistance is the lack of mite reproduction on worker brood in A. cerana. We show that this trait is neither due to a lack of host attractiveness nor of reproduction initiation by the parasite. However, successful mite reproduction was prevented by abnormal host development. Adult A. cerana workers recognized this state and removed hosts and parasites, which greatly affected the fitness of the parasite. These results confirm and complete previous observations of brood susceptibility to infestation in other honeybee host populations, provide new insights into the coevolution between hosts and parasites in this system, and may contribute to mitigating the large‐scale colony losses of A. mellifera due to V. destructor.  相似文献   

12.
By infecting multiple host species and acting as a food resource, parasites can affect food web topography and contribute to ecosystem energy transfer. Owing to the remarkable secondary production of some taxa, parasite biomass – although cryptic – can be comparable to other invertebrate and vertebrate groups. More resolved estimates of parasite biomass are therefore needed to understand parasite interactions, their consequences for host fitness, and potential influences on ecosystem energetics. We developed an approach to quantify the masses of helminth parasites and compared our results with those of biovolume‐based approaches. Specifically, we massed larval and adult parasites representing 13 species and five life stages of trematodes and cestodes from snail and amphibian hosts. We used a replicated regression approach to quantify dry mass and compared these values with indirect biovolume estimates to test the validity of density assumptions. Our technique provided precise estimates (R2 from 0.69 to 0.98) of biomass across a wide range of parasite morphotypes and sizes. Individual parasites ranged in mass from 0.368 ± 0.041 to 320 ± 98.1 μg. Among trematodes, adult parasites tended to be the largest followed by rediae, with nonclonal larval stages (metacercariae and cercariae) as the smallest. Among similar morphotypes, direct estimates of dry mass and the traditional biovolume technique provided generally comparable estimates (although important exceptions also emerged). Finally, we present generalized length‐mass regression equations to calculate trematode mass from length measurements, and discuss the most efficient use of limited numbers of parasites. By providing a novel method of directly estimating parasite biomass while also helping to validate more traditional methods involving length‐mass conversion, our findings aim to facilitate future investigations into the ecological significance of parasites, particularly with respect to ecosystem energetics. In addition, this novel technique can be applied to a wide range of difficult‐to‐mass organisms.  相似文献   

13.
For the past 17 years, scientists have been compiling a list of amphibian species susceptible to infection by the amphibian‐killing chytrid fungus, Batrachochytrium dendrobatidis (Bd), all over the world, with >500 species infected on every continent except Antarctica (Olson et al. 2013 ). Where Bd has been found, the impacts on amphibians has been one of two types: either Bd arrives into a naïve amphibian population followed by a mass die‐off and population declines (e.g. Lips et al. 2006 ), or Bd is present at some moderate prevalence, usually infecting many species but at apparently nonlethal intensities for a long time. In this issue of Molecular Ecology, Rodriguez et al. ( 2014 ) discover that the Atlantic Coastal Forest of Brazil is home to two Bd lineages: the Global Pandemic Lineage (Bd‐GPL) – the strain responsible for mass die‐offs and population declines – and a lineage endemic to Brazil (Bd‐Bz). Even more surprising was that both lineages have been present in this area for the past 100 years, making these the oldest records of Bd infecting amphibians. The team also described a moderate but steady prevalence of ~20% across all sampled anuran families for over 100 years, indicating that Brazil has been in an enzootic disease state for over a century. Most amphibians were infected with Bd‐GPL, suggesting this lineage may be a better competitor than Bd‐Bz or may be replacing the Bd‐Bz lineage. Rodriguez et al. ( 2014 ) also detected likely hybridization of the two Bd lineages, as originally described by Schloegel et al. ( 2012 ).  相似文献   

14.
Strongyles are commonly reported parasites in studies of primate parasite biodiversity. Among them, nodule worm species are often overlooked as a serious concern despite having been observed to cause serious disease in nonhuman primates and humans. In this study, we investigated whether strongyles found in Bornean primates are the nodule worm Oesophagostomum spp., and to what extent these parasites are shared among members of the community. To test this, we propose two hypotheses that use the parasite genetic structure to infer transmission processes within the community. In the first scenario, the absence of parasite genetic substructuring would reflect high levels of parasite transmission among primate hosts, as primates’ home ranges overlap in the study area. In the second scenario, the presence of parasite substructuring would suggest cryptic diversity within the parasite genus and the existence of phylogenetic barriers to cross‐species transmission. By using molecular markers, we identify strongyles infecting this primate community as O. aculeatum, the only species of nodule worm currently known to infect Asian nonhuman primates. Furthermore, the little to no genetic substructuring supports a scenario with no phylogenetic barriers to transmission and where host movements across the landscape would enable gene flow between host populations. This work shows that the parasite's high adaptability could act as a buffer against local parasite extinctions. Surveys targeting human populations living in close proximity to nonhuman primates could help clarify whether this species of nodule worm presents the zoonotic potential found in the other two species infecting African nonhuman primates.  相似文献   

15.
The way that some parasites and pathogens persist in the hostile environment of their host for long periods remains to be resolved. Here, longitudinal field surveys were combined with laboratory experiments to investigate the routes of transmission and infection dynamics of such a pathogen—a wild rodent haemotropic bacterium, specifically a Mycoplasma haemomuris‐like bacterium. Fleaborne transmission, direct rodent‐to‐rodent transmission and vertical transmission from fleas or rodents to their offspring were experimentally quantified, and indications were found that the main route of bacterial transmission is direct, although its rate of successful transmission is low (~20%). The bacterium's temporal dynamics was then compared in the field to that observed under a controlled infection experiment in field‐infected and laboratory‐infected rodents, and indications were found, under all conditions, that the bacterium reached its peak infection level after 25–45 days and then decreased to low bacterial loads, which persist for the rodent's lifetime. These findings suggest that the bacterium relies on persistency with low bacterial loads for long‐term coexistence with its rodent host, having both conceptual and applied implications.  相似文献   

16.
Recent advances in high‐throughput sequencing technologies provide opportunities to gain novel insights into the genetic basis of phenotypic trait variation. Yet to date, progress in our understanding of genotype–phenotype associations in nonmodel organisms in general and natural vertebrate populations in particular has been hampered by small sample sizes typically available for wildlife populations and a resulting lack of statistical power, as well as a limited ability to control for false‐positive signals. Here we propose to combine a genome‐wide association study (GWAS) and FST‐based approach with population‐level replication to partly overcome these limitations. We present a case study in which we used this approach in combination with genotyping‐by‐sequencing (GBS) single nucleotide polymorphism (SNP) data to identify genomic regions associated with Borrelia afzelii resistance or susceptibility in the natural rodent host of this Lyme disease‐causing spirochete, the bank vole (Myodes glareolus). Using this combined approach we identified four consensus SNPs located in exonic regions of the genes Slc26a4, Tns3, Wscd1 and Espnl, which were significantly associated with the voles’ Borrelia infectious status within and across populations. Functional links between host responses to bacterial infections and most of these genes have previously been demonstrated in other rodent systems, making them promising new candidates for the study of evolutionary host responses to Borrelia emergence. Our approach is applicable to other systems and may facilitate the identification of genetic variants underlying disease resistance or susceptibility, as well as other ecologically relevant traits, in wildlife populations.  相似文献   

17.
Current understanding of the immune system comes primarily from laboratory‐based studies. There has been substantial interest in examining how it functions in the wild, but studies have been limited by a lack of appropriate assays and study species. The three‐spined stickleback (Gasterosteus aculeatus L.) provides an ideal system in which to advance the study of wild immunology, but requires the development of suitable immune assays. We demonstrate that meaningful variation in the immune response of stickleback can be measured using real‐time PCR to quantify the expression of eight genes, representing the innate response and Th1‐, Th2‐ and Treg‐type adaptive responses. Assays are validated by comparing the immune expression profiles of wild and laboratory‐raised stickleback, and by examining variation across populations on North Uist, Scotland. We also compare the immune response potential of laboratory‐raised individuals from two Icelandic populations by stimulating cells in culture. Immune profiles of wild fish differed from laboratory‐raised fish from the same parental population, with immune expression patterns in the wild converging relative to those in the laboratory. Innate measures differed between wild populations, whilst the adaptive response was associated with variation in age, relative size of fish, reproductive status and S. solidus infection levels. Laboratory‐raised individuals from different populations showed markedly different innate immune response potential. The ability to combine studies in the laboratory and in the wild underlines the potential of this toolkit to advance our understanding of the ecological and evolutionary relevance of immune system variation in a natural setting.  相似文献   

18.
Parasites can impact the behavior of animals and alter the interplay with ecological factors in their environment. Studying the effects that parasites have on animals thus requires accurate estimates of infections in individuals. However, quantifying parasites can be challenging due to several factors. Laboratory techniques, physiological fluctuations, methodological constraints, and environmental influences can introduce measurement errors, in particular when screening individuals in the wild. These issues are pervasive in ecological studies where it is common to sample study subjects only once. Such factors should be carefully considered when choosing a sampling strategy, yet presently there is little guidance covering the major sources of error. In this study, we estimate the reliability and sensitivity of different sampling practices at detecting two internal parasites—Serratospiculoides amaculata and Isospora sp.—in a model organism, the great tit Parus major. We combine field and captive sampling to assess whether individual parasite infection status and load can be estimated from single field samples, using different laboratory techniques—McMaster and mini‐FLOTAC. We test whether they vary in their performance, and quantify how sample processing affects parasite detection rates. We found that single field samples had elevated rates of false negatives. By contrast, samples collected from captivity over 24 h were highly reliable (few false negatives) and accurate (repeatable in the intensity of infection). In terms of methods, we found that the McMaster technique provided more repeatable estimates than the mini‐FLOTAC for S. amaculata eggs, and both techniques were largely equally suitable for Isospora oocysts. Our study shows that field samples are likely to be unreliable in accurately detecting the presence of parasites and, in particular, for estimating parasite loads in songbirds. We highlight important considerations for those designing host–parasite studies in captive or wild systems giving guidance that can help select suitable methods, minimize biases, and acknowledge possible limitations.  相似文献   

19.
The relationships between parasites and their hosts are intimate, dynamic and complex; the evolution of one is inevitably linked to the other. Despite multiple origins of parasitism in the Cnidaria, only parasites belonging to the Myxozoa are characterized by a complex life cycle, alternating between fish and invertebrate hosts, as well as by high species diversity. This inspired us to examine the history of adaptive radiations in myxozoans and their hosts by determining the degree of congruence between their phylogenies and by timing the emergence of myxozoan lineages in relation to their hosts. Recent genomic analyses suggested a common origin of Polypodium hydriforme, a cnidarian parasite of acipenseriform fishes, and the Myxozoa, and proposed fish as original hosts for both sister lineages. We demonstrate that the Myxozoa emerged long before fish populated Earth and that phylogenetic congruence with their invertebrate hosts is evident down to the most basal branches of the tree, indicating bryozoans and annelids as original hosts and challenging previous evolutionary hypotheses. We provide evidence that, following invertebrate invasion, fish hosts were acquired multiple times, leading to parallel cospeciation patterns in all major phylogenetic lineages. We identify the acquisition of vertebrate hosts that facilitate alternative transmission and dispersion strategies as reason for the distinct success of the Myxozoa, and identify massive host specification‐linked parasite diversification events. The results of this study transform our understanding of the origins and evolution of parasitism in the most basal metazoan parasites known.  相似文献   

20.
Effective gastrointestinal nematode management in livestock industries is becoming increasingly difficult due to the rise of anthelmintic resistance and changes in the temporal and geographical distribution of major gastrointestinal nematodes. Underpinning the response to these challenges is the need for a fast-tracked diagnostic identification technique, making it easier for livestock producers to make informed gastrointestinal nematode management decisions. The traditional ‘gold-standard’ approach, larval culture followed by morphological differentiation, is laborious and potentially inaccurate. We developed a new diagnostic approach to identify gastrointestinal nematodes that integrates a remote-location digital faecal egg count platform, FECPAKG2, with internal transcribed spacer 2 (ITS2) nemabiome metabarcoding. The technique involves a quick and simple protocol to harvest concentrated strongyle eggs from the FECPAKG2 cassette utilising a repurposed pipette tip, followed by DNA isolation and Illumina next generation amplicon sequencing. The gastrointestinal nematode compositions and alpha diversity generated by our FECPAKG2 egg nemabiome metabarcoding approach was not significantly different to traditional morphological larval differentiation and nemabiome metabarcoding of larval and faecal samples. We demonstrated that storing FECPAKG2 harvested eggs in either DNA isolation lysis buffer or 80% ethanol (v/v) had no impact on gastrointestinal nematode identification outcomes for at least 60 days; enabling the transport of biological samples from their remote origins to a molecular diagnostic facility for nemabiome metabarcoding, in the absence of a cold chain. We discovered that sustained gastrointestinal nematode egg embryonation in the lysis buffer storage solution lead to higher yields of DNA compared with ethanol-stored gastrointestinal nematode eggs or faeces with gastrointestinal nematode eggs. Taking advantage of an already well-established platform such as FECPAKG2, and providing the livestock producers that use it with the option to identify gastrointestinal nematodesin their samples and contribute to large-scale gastrointestinal nematode distribution and/or anthelmintic resistance surveys, is an important future direction for the FECPAKG2 egg nemabiome metabarcoding approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号