共查询到20条相似文献,搜索用时 15 毫秒
1.
Sara Marin Anaïs Gibert Juliette Archambeau Vincent Bonhomme Mylne Lascoste Benoit Pujol 《Molecular ecology》2020,29(16):3010-3021
Phenotypic divergence among natural populations can be explained by natural selection or by neutral processes such as drift. Many examples in the literature compare putatively neutral (FST) and quantitative genetic (QST) differentiation in multiple populations to assess their evolutionary signature and identify candidate traits involved with local adaptation. Investigating these signatures in closely related or recently diversified species has the potential to shed light on the divergence processes acting at the interspecific level. Here, we conducted this comparison in two subspecies of snapdragon plants (eight populations of Antirrhinum majus pseudomajus and five populations of A. m. striatum) in a common garden experiment. We also tested whether altitude was involved with population phenotypic divergence. Our results identified candidate phenological and morphological traits involved with local adaptation. Most of these traits were identified in one subspecies but not the other. Phenotypic divergence increased with altitude for a few biomass‐related traits, but only in A. m. striatum. These traits therefore potentially reflect A. m. striatum adaptation to altitude. Our findings imply that adaptive processes potentially differ at the scale of A. majus subspecies. 相似文献
2.
Larry J. Leamy Cheng‐Ruei Lee Antonio J. Manzaneda Kasavajhala Prasad Thomas Mitchell‐Olds Bao‐Hua Song 《Ecology and evolution》2014,4(16):3175-3186
Many biological species are threatened with extinction because of a number of factors such as climate change and habitat loss, and their preservation depends on an accurate understanding of the extent of their genetic variability within and among populations. In this study, we assessed the genetic divergence of five quantitative traits in 10 populations of an endangered cruciferous species, Boechera fecunda, found in only several populations in each of two geographic regions (WEST and EAST) in southwestern Montana. We analyzed variation in quantitative traits, neutral molecular markers, and environmental factors and provided evidence that despite the restricted geographical distribution of this species, it exhibits a high level of genetic variation and regional adaptation. Conservation efforts therefore should be directed to the preservation of populations in each of these two regions without attempting transplantation between regions. Heritabilities and genetic coefficients of variation estimated from nested ANOVAs were generally high for leaf and rosette traits, although lower (and not significantly different from 0) for water‐use efficiency. Measures of quantitative genetic differentiation, QST, were calculated for each trait from each pair of populations. For three of the five traits, these values were significantly higher between regions compared with those within regions (after adjustment for neutral genetic variation, FST). This suggested that natural selection has played an important role in producing regional divergence in this species. Our analysis also revealed that the B. fecunda populations appear to be locally adapted due, at least in part, to differences in environmental conditions in the EAST and WEST regions. 相似文献
3.
Evolutionary dynamics of the leaf phenological cycle in an oak metapopulation along an elevation gradient 下载免费PDF全文
C. Firmat S. Delzon J.‐M. Louvet J. Parmentier A. Kremer 《Journal of evolutionary biology》2017,30(12):2116-2131
It has been predicted that environmental changes will radically alter the selective pressures on phenological traits. Long‐lived species, such as trees, will be particularly affected, as they may need to undergo major adaptive change over only one or a few generations. The traits describing the annual life cycle of trees are generally highly evolvable, but nothing is known about the strength of their genetic correlations. Tight correlations can impose strong evolutionary constraints, potentially hampering the adaptation of multivariate phenological phenotypes. In this study, we investigated the evolutionary, genetic and environmental components of the timing of leaf unfolding and senescence within an oak metapopulation along an elevation gradient. Population divergence, estimated from in situ and common‐garden data, was compared to expectations under neutral evolution, based on microsatellite markers. This approach made it possible (1) to evaluate the influence of genetic correlation on multivariate local adaptation to elevation and (2) to identify traits probably exposed to past selective pressures due to the colder climate at high elevation. The genetic correlation was positive but very weak, indicating that genetic constraints did not shape the local adaptation pattern for leaf phenology. Both spring and fall (leaf unfolding and senescence, respectively) phenology timings were involved in local adaptation, but leaf unfolding was probably the trait most exposed to climate change‐induced selection. Our data indicated that genetic variation makes a much smaller contribution to adaptation than the considerable plastic variation displayed by a tree during its lifetime. The evolutionary potential of leaf phenology is, therefore, probably not the most critical aspect for short‐term population survival in a changing climate. 相似文献
4.
Local adaptation through genetic differentiation in highly fragmented Tilia cordata populations 下载免费PDF全文
Albin Lobo Ole Kim Hansen Jon Kehlet Hansen Eva Ortvald Erichsen Birgitte Jacobsen Erik Dahl Kjær 《Ecology and evolution》2018,8(12):5968-5976
We assessed the level of geographic differentiation of Tilia cordata in Denmark based on tests of 91 trees selected from 12 isolated populations. We used quantitative analysis of spring phenology and population genetic analysis based on SSR markers to infer the likely historical genetic processes within and among populations. High genetic variation within and among populations was observed in spring phenology, which correlated with spring temperatures at the origin of the tested T. cordata trees. The population genetic analysis revealed significant differentiation among the populations, but with no clear sign of isolation by distance. We infer the findings as indications of ongoing fine scale selection in favor of local growth conditions made possible by limited gene flow among the small and fragmented populations. This hypothesis fits well with reports of limited fruiting in the investigated Danish T. cordata populations, while the species is known for its ability to propagate vegetatively by root suckers. Our results suggest that both divergent selection and genetic drift may have played important roles in forming the genetic patterns of T. cordata at its northern distribution limit. However, we also speculate that epigenetic mechanism arising from the original population environment could have created similar patterns in regulating the spring phenology. 相似文献
5.
Bud phenology and growth are subject to divergent selection across a latitudinal gradient in Populus angustifolia and impact adaptation across the distributional range and associated arthropods 下载免费PDF全文
Luke M. Evans Sobadini Kaluthota David W. Pearce Gerard J. Allan Kevin Floate Stewart B. Rood Thomas G. Whitham 《Ecology and evolution》2016,6(13):4565-4581
Temperate forest tree species that span large geographical areas and climatic gradients often have high levels of genetic variation. Such species are ideal for testing how neutral demographic factors and climate‐driven selection structure genetic variation within species, and how this genetic variation can affect ecological communities. Here, we quantified genetic variation in vegetative phenology and growth traits in narrowleaf cottonwood, Populus angustifolia, using three common gardens planted with genotypes originating from source populations spanning the species' range along the Rocky Mountains of North America (ca. 1700 km). We present three main findings. First, we found strong evidence of divergent selection (QST > FST) on fall phenology (bud set) with adaptive consequences for frost avoidance. We also found evidence for selection on bud flush duration, tree height, and basal diameter, resulting in population differentiation. Second, we found strong associations with climate variables that were strongly correlated with latitude of origin. More strongly differentiated traits also showed stronger climate correlations, which emphasizes the role that climate has played in divergent selection throughout the range. We found population × garden interaction effects; for some traits, this accounted for more of the variance than either factor alone. Tree height was influenced by the difference in climate of the source and garden locations and declined with increasing transfer distance. Third, growth traits were correlated with dependent arthropod community diversity metrics. Synthesis. Overall, we conclude that climate has influenced genetic variation and structure in phenology and growth traits and leads to local adaptation in P. angustifolia, which can then impact dependent arthropod species. Importantly, relocation of genotypes far northward or southward often resulted in poor growth, likely due to a phenological mismatch with photoperiod, the proximate cue for fall growth cessation. Genotypes moved too far southward suffer from early growth cessation, whereas those moved too far northward are prone to fall frost and winter dieback. In the face of current and forecasted climate change, habitat restoration, forestry, and tree breeding efforts should utilize these findings to better match latitudinal and climatic source environments with management locations for optimal future outcomes. 相似文献
6.
Breaking RAD: an evaluation of the utility of restriction site‐associated DNA sequencing for genome scans of adaptation 下载免费PDF全文
David B. Lowry Sean Hoban Joanna L. Kelley Katie E. Lotterhos Laura K. Reed Michael F. Antolin Andrew Storfer 《Molecular ecology resources》2017,17(2):142-152
Understanding how and why populations evolve is of fundamental importance to molecular ecology. Restriction site‐associated DNA sequencing (RADseq), a popular reduced representation method, has ushered in a new era of genome‐scale research for assessing population structure, hybridization, demographic history, phylogeography and migration. RADseq has also been widely used to conduct genome scans to detect loci involved in adaptive divergence among natural populations. Here, we examine the capacity of those RADseq‐based genome scan studies to detect loci involved in local adaptation. To understand what proportion of the genome is missed by RADseq studies, we developed a simple model using different numbers of RAD‐tags, genome sizes and extents of linkage disequilibrium (length of haplotype blocks). Under the best‐case modelling scenario, we found that RADseq using six‐ or eight‐base pair cutting restriction enzymes would fail to sample many regions of the genome, especially for species with short linkage disequilibrium. We then surveyed recent studies that have used RADseq for genome scans and found that the median density of markers across these studies was 4.08 RAD‐tag markers per megabase (one marker per 245 kb). The length of linkage disequilibrium for many species is one to three orders of magnitude less than density of the typical recent RADseq study. Thus, we conclude that genome scans based on RADseq data alone, while useful for studies of neutral genetic variation and genetic population structure, will likely miss many loci under selection in studies of local adaptation. 相似文献
7.
Althea A. ArchMiller Eric F. Bauer Rebecca E. Koch Bhagya K. Wijayawardena Ammu Anil Jack J. Kottwitz Amelia S. Munsterman Alan E. Wilson 《Molecular ecology》2015,24(16):4042-4051
Meta‐analysis, the statistical synthesis of pertinent literature to develop evidence‐based conclusions, is relatively new to the field of molecular ecology, with the first meta‐analysis published in the journal Molecular Ecology in 2003 (Slate & Phua 2003). The goal of this article is to formalize the definition of meta‐analysis for the authors, editors, reviewers and readers of Molecular Ecology by completing a review of the meta‐analyses previously published in this journal. We also provide a brief overview of the many components required for meta‐analysis with a more specific discussion of the issues related to the field of molecular ecology, including the use and statistical considerations of Wright's FST and its related analogues as effect sizes in meta‐analysis. We performed a literature review to identify articles published as ‘meta‐analyses’ in Molecular Ecology, which were then evaluated by at least two reviewers. We specifically targeted Molecular Ecology publications because as a flagship journal in this field, meta‐analyses published in Molecular Ecology have the potential to set the standard for meta‐analyses in other journals. We found that while many of these reviewed articles were strong meta‐analyses, others failed to follow standard meta‐analytical techniques. One of these unsatisfactory meta‐analyses was in fact a secondary analysis. Other studies attempted meta‐analyses but lacked the fundamental statistics that are considered necessary for an effective and powerful meta‐analysis. By drawing attention to the inconsistency of studies labelled as meta‐analyses, we emphasize the importance of understanding the components of traditional meta‐analyses to fully embrace the strengths of quantitative data synthesis in the field of molecular ecology. 相似文献
8.
Statistical Analysis of Mixed‐Ploidy Populations (StAMPP) is a freely available R package for calculation of population structure and differentiation based on single nucleotide polymorphism (SNP) genotype data from populations of any ploidy level, and/or mixed‐ploidy levels. StAMPP provides an advance on previous similar software packages, due to an ability to calculate pairwise FST values along with confidence intervals, Nei's genetic distance and genomic relationship matrixes from data sets of mixed‐ploidy level. The software code is designed to efficiently handle analysis of large genotypic data sets that are typically generated by high‐throughput genotyping platforms. Population differentiation studies using StAMPP are broadly applicable to studies of molecular ecology and conservation genetics, as well as animal and plant breeding. 相似文献
9.
Extant variation in temperate and boreal plant species has been influenced by both demographic histories associated with Pleistocene glacial cycles and adaptation to local climate. We used sequence capture to investigate the role of these neutral and adaptive processes in shaping diversity in black cottonwood (Populus trichocarpa). Nucleotide diversity and Tajima's D were lowest at replacement sites and highest at intergenic sites, while LD showed the opposite pattern. With samples grouped into three populations arrayed latitudinally, effective population size was highest in the north, followed by south and centre, and LD was highest in the south followed by the north and centre, suggesting a possible northern glacial refuge. FST outlier analysis revealed that promoter, 5′‐UTR and intronic sites were enriched for outliers compared with coding regions, while no outliers were found among intergenic sites. Codon usage bias was evident, and genes with synonymous outliers had 30% higher average expression compared with genes containing replacement outliers. These results suggest divergent selection related to regulation of gene expression is important to local adaptation in P. trichocarpa. Finally, within‐population selective sweeps were much more pronounced in the central population than in putative northern and southern refugia, which may reflect the different demographic histories of the populations and concomitant effects on signatures of genetic hitchhiking from standing variation. 相似文献
10.
Jacquelin DeFaveri Takahito Shikano Yukinori Shimada Juha Merilä 《Molecular ecology》2013,22(18):4811-4828
Populations of widespread marine organisms are typically characterized by a low degree of genetic differentiation in neutral genetic markers, but much less is known about differentiation in genes whose functional roles are associated with specific selection regimes. To uncover possible adaptive population divergence and heterogeneous genomic differentiation in marine three‐spined sticklebacks (Gasterosteus aculeatus), we used a candidate gene‐based genome‐scan approach to analyse variability in 138 microsatellite loci located within/close to (<6 kb) functionally important genes in samples collected from ten geographic locations. The degree of genetic differentiation in markers classified as neutral or under balancing selection—as determined with several outlier detection methods—was low (FST = 0.033 or 0.011, respectively), whereas average FST for directionally selected markers was significantly higher (FST = 0.097). Clustering analyses provided support for genomic and geographic heterogeneity in selection: six genetic clusters were identified based on allele frequency differences in the directionally selected loci, whereas four were identified with the neutral loci. Allelic variation in several loci exhibited significant associations with environmental variables, supporting the conjecture that temperature and salinity, but not optic conditions, are important drivers of adaptive divergence among populations. In general, these results suggest that in spite of the high degree of physical connectivity and gene flow as inferred from neutral marker genes, marine stickleback populations are strongly genetically structured in loci associated with functionally relevant genes. 相似文献
11.
Understanding population genetic structure is key to developing predictions about species susceptibility to environmental change, such as habitat fragmentation and climate change. It has been theorized that life‐history traits may constrain some species in their dispersal and lead to greater signatures of population genetic structure. In this study, we use a quantitative comparative approach to assess if patterns of population genetic structure in bees are driven by three key species‐level life‐history traits: body size, sociality, and diet breadth. Specifically, we reviewed the current literature on bee population genetic structure, as measured by the differentiation indices Nei's GST, Hedrick's G′ST, and Jost's D. We then used phylogenetic generalised linear models to estimate the correlation between the evolution of these traits and patterns of genetic differentiation. Our analyses revealed a negative and significant effect of body size on genetic structure, regardless of differentiation index utilized. For Hedrick's G′ST and Jost's D, we also found a significant impact of sociality, where social species exhibited lower levels of differentiation than solitary species. We did not find an effect of diet specialization on population genetic structure. Overall, our results suggest that physical dispersal or other functions related to body size are among the most critical for mediating population structure for bees. We further highlight the importance of standardizing population genetic measures to more easily compare studies and to identify the most susceptible species to landscape and climatic changes. 相似文献
12.
Comparative genetics of Na+/K+‐ATPase in monarch butterfly populations with varying host plant toxicity 下载免费PDF全文
Amanda A. Pierce Jacobus C. de Roode Leiling Tao 《Biological journal of the Linnean Society. Linnean Society of London》2016,119(1):194-200
Herbivores have evolved numerous behavioural and physiological adaptations to host plants; however, molecular adaptations are still poorly understood. One well‐studied case comprises the specialist insects that feed on cardenolide‐containing plants. Here, convergent molecular evolution in the Na+/K+‐ATPase results in a reduced sensitivity to cardenolides across four insect orders. Because different plant species and genotypes differ in toxicity, Na+/K+‐ATPase may be under differential selection from geographically varying host plants. We examined the α subunit of Na+/K+‐ATPase in monarch butterflies (Danaus plexippus) from six worldwide populations to test whether differences in their host plant chemistry result in local adaptation at the molecular level. Although our study revealed multiple synonymous changes, we did not find these to be population‐specific, nor did we identify nonsynonymous changes. Additionally, we compared the amino acid sequence of this subunit across 19 species. We identified two novel changes at sites 836 (K836N) and 840 (E840R) in the αM7‐αM8 regions in the genus Danaus. Although previous studies focused on the first two trans‐membrane domains, C‐terminal domains may also interact with cardenolides. These results reveal a lack of molecular evolution of Na+/K+‐ATPase at the population level, and call for additional attention regarding the C‐terminal regions of this important enzyme. 相似文献
13.
Postglacial expansion to former range limits varies substantially among species of temperate deciduous forests in eastern Asia. Isolation hypotheses (with or without gene flow) have been proposed to explain this variance, but they ignore detailed population dynamics spanning geological time and neglect the role of life history traits. Using population genetics to uncover these dynamics across their Asian range, we infer processes that formed the disjunct distributions of Ginkgo biloba and the co‐occurring Cercidiphyllum japonicum (published data). Phylogenetic, coalescent, and comparative data suggest that Ginkgo population structure is regional, dichotomous (to west–east refugia), and formed ˜51 kya, resulting from random genetic drift during the last glaciation. This split is far younger than the north–south population structure of Cercidiphyllum (~1.89 Mya). Significant (recent) unidirectional gene flow has not homogenized the two Ginkgo refugia, despite 2Nm > 1. Prior to this split, gene flow was potentially higher, resulting in conflicting support for a priori hypotheses that view isolation as an explanation for the variation in postglacial range limits. Isolation hypotheses (with or without gene flow) are thus not necessarily mutually exclusive due to temporal variation of gene flow and genetic drift. In comparison with Cercidiphyllum, the restricted range of Ginkgo has been facilitated by uncompetitive life history traits associated with seed ecology, highlighting the importance of both demography and lifetime reproductive success when interpreting range shifts. 相似文献
14.
Stéphane De Mita Anne‐Céline Thuillet Laurène Gay Nourollah Ahmadi Stéphanie Manel Joëlle Ronfort Yves Vigouroux 《Molecular ecology》2013,22(5):1383-1399
Thanks to genome‐scale diversity data, present‐day studies can provide a detailed view of how natural and cultivated species adapt to their environment and particularly to environmental gradients. However, due to their sensitivity, up‐to‐date studies might be more sensitive to undocumented demographic effects such as the pattern of migration and the reproduction regime. In this study, we provide guidelines for the use of popular or recently developed statistical methods to detect footprints of selection. We simulated 100 populations along a selective gradient and explored different migration models, sampling schemes and rates of self‐fertilization. We investigated the power and robustness of eight methods to detect loci potentially under selection: three designed to detect genotype–environment correlations and five designed to detect adaptive differentiation (based on FST or similar measures). We show that genotype–environment correlation methods have substantially more power to detect selection than differentiation‐based methods but that they generally suffer from high rates of false positives. This effect is exacerbated whenever allele frequencies are correlated, either between populations or within populations. Our results suggest that, when the underlying genetic structure of the data is unknown, a number of robust methods are preferable. Moreover, in the simulated scenario we used, sampling many populations led to better results than sampling many individuals per population. Finally, care should be taken when using methods to identify genotype–environment correlations without correcting for allele frequency autocorrelation because of the risk of spurious signals due to allele frequency correlations between populations. 相似文献
15.
A population genomic scan in Chorthippus grasshoppers unveils previously unknown phenotypic divergence 下载免费PDF全文
Emma L. Berdan Camila J. Mazzoni Isabelle Waurick Johannes T. Roehr Frieder Mayer 《Molecular ecology》2015,24(15):3918-3930
Understanding the genetics of speciation and the processes that drive it is a central goal of evolutionary biology. Grasshoppers of the Chorthippus species group differ strongly in calling song (and corresponding female preferences) but are exceedingly similar in other characteristics such as morphology. Here, we performed a population genomic scan on three Chorthippus species (Chorthippus biguttulus, C. mollis and C. brunneus) to gain insight into the genes and processes involved in divergence and speciation in this group. Using an RNA‐seq approach, we examined functional variation between the species by calling SNPs for each of the three species pairs and using FST‐based approaches to identify outliers. We found approximately 1% of SNPs in each comparison to be outliers. Between 37% and 40% of these outliers were nonsynonymous SNPs (as opposed to a global level of 17%) indicating that we recovered loci under selection. Among the outliers were several genes that may be involved in song production and hearing as well as genes involved in other traits such as food preferences and metabolism. Differences in food preferences between species were confirmed with a behavioural experiment. This indicates that multiple phenotypic differences implicating multiple evolutionary processes (sexual selection and natural selection) are present between the species. 相似文献
16.
Laura K. Herzog va Kevei Ricardo Marchante Claudia Bttcher Christian Bindesbll Alf Hkon Lystad Annika Pfeiffer Maria E. Gierisch Florian A. Salomons Anne Simonsen Thorsten Hoppe Nico P. Dantuma 《Aging cell》2020,19(1)
The pathology of spinocerebellar ataxia type 3, also known as Machado‐Joseph disease, is triggered by aggregation of toxic ataxin‐3 (ATXN3) variants containing expanded polyglutamine repeats. The physiological role of this deubiquitylase, however, remains largely unclear. Our recent work showed that ATX‐3, the nematode orthologue of ATXN3, together with the ubiquitin‐directed segregase CDC‐48, regulates longevity in Caenorhabditis elegans. Here, we demonstrate that the long‐lived cdc‐48.1; atx‐3 double mutant displays reduced viability under prolonged starvation conditions that can be attributed to the loss of catalytically active ATX‐3. Reducing the levels of the autophagy protein BEC‐1 sensitized worms to the effect of ATX‐3 deficiency, suggesting a role of ATX‐3 in autophagy. In support of this conclusion, the depletion of ATXN3 in human cells caused a reduction in autophagosomal degradation of proteins. Surprisingly, reduced degradation in ATXN3‐depleted cells coincided with an increase in the number of autophagosomes while levels of lipidated LC3 remained unaffected. We identified two conserved LIR domains in the catalytic Josephin domain of ATXN3 that directly interacted with the autophagy adaptors LC3C and GABARAP in vitro. While ATXN3 localized to early autophagosomes, it was not subject to lysosomal degradation, suggesting a transient regulatory interaction early in the autophagic pathway. We propose that the deubiquitylase ATX‐3/ATXN3 stimulates autophagic degradation by preventing superfluous initiation of autophagosomes, thereby promoting an efficient autophagic flux important to survive starvation. 相似文献
17.
Z. Manzari H. Mehrabani‐Yeganeh A. Nejati‐Javaremi M. H. Moradi M. Gholizadeh 《Animal genetics》2019,50(3):298-302
The objective of genome mapping is to achieve valuable insight into the connection between gene variants (genotype) and observed traits (phenotype). Part of that objective is to understand the selective forces that have operated on a population. Finding links between genotype–phenotype changes makes it possible to identify selective sweeps by patterns of genetic variation and linkage disequilibrium. Based on Illumina 50KSNP chip data, two approaches, XP‐EHH (cross‐population extend haplotype homozygosity) and FST (fixation index), were carried out in this research to identify selective sweeps in the genome of three Iranian local sheep breeds: Baluchi (n = 86), Lori‐Bakhtiari (n = 45) and Zel (n = 45). Using both methods, 93 candidate genomic regions were identified as harboring putative selective sweeps. Bioinformatics analysis of the genomic regions showed that signatures of selection related to multiple candidate genes, such as HOXB9, HOXB13, ACAN, NPR2, TRIL, AOX1, CSF2, GHR, TNS2, SPAG8, HINT2, ALS2, AAAS, RARG, SYCP2, CAV1, PPP1R3D, PLA2G7, TTLL7 and C20orf10, that play a role in skeletal system and tail, sugar and energy metabolisms, growth, reproduction, immune and nervous system traits. Our findings indicated diverse genomic selection during the domestication of Iranian sheep breeds. 相似文献
18.
Tetsuyuki Entani Ken‐ichi Kubo Shin Isogai Yoichiro Fukao Masahiro Shirakawa Akira Isogai Seiji Takayama 《The Plant journal : for cell and molecular biology》2014,78(6):1014-1021
Many plants have a self‐incompatibility (SI) system in which the rejection of self‐pollen is determined by multiple haplotypes at a single locus, termed S. In the Solanaceae, each haplotype encodes a single ribonuclease (S‐RNase) and multiple S‐locus F‐box proteins (SLFs), which function as the pistil and pollen SI determinants, respectively. S‐RNase is cytotoxic to self‐pollen, whereas SLFs are thought to collaboratively recognize non‐self S‐RNases in cross‐pollen and detoxify them via the ubiquitination pathway. However, the actual mechanism of detoxification remains unknown. Here we isolate the components of a SCFSLF (SCF = SKP1‐CUL1‐F‐box‐RBX1) from Petunia pollen. The SCFSLF polyubiquitinates a subset of non‐self S‐RNases in vitro. The polyubiquitinated S‐RNases are degraded in the pollen extract, which is attenuated by a proteasome inhibitor. Our findings suggest that multiple SCFSLF complexes in cross‐pollen polyubiquitinate non‐self S‐RNases, resulting in their degradation by the proteasome. 相似文献
19.
Kyungjin Min Kate Buckeridge Susan E. Ziegler Kate A. Edwards Samik Bagchi Sharon A. Billings 《Global Change Biology》2019,25(5):1793-1807
Accurate representation of temperature sensitivity (Q10) of soil microbial activity across time is critical for projecting soil CO2 efflux. As microorganisms mediate soil carbon (C) loss via exo‐enzyme activity and respiration, we explore temperature sensitivities of microbial exo‐enzyme activity and respiratory CO2 loss across time and assess mechanisms associated with these potential changes in microbial temperature responses. We collected soils along a latitudinal boreal forest transect with different temperature regimes (long‐term timescale) and exposed these soils to laboratory temperature manipulations at 5, 15, and 25°C for 84 days (short‐term timescale). We quantified temperature sensitivity of microbial activity per g soil and per g microbial biomass at days 9, 34, 55, and 84, and determined bacterial and fungal community structure before the incubation and at days 9 and 84. All biomass‐specific rates exhibited temperature sensitivities resistant to change across short‐ and long‐term timescales (mean Q10 = 2.77 ± 0.25, 2.63 ± 0.26, 1.78 ± 0.26, 2.27 ± 0.25, 3.28 ± 0.44, 2.89 ± 0.55 for β‐glucosidase, N‐acetyl‐β‐d ‐glucosaminidase, leucine amino peptidase, acid phosphatase, cellobiohydrolase, and CO2 efflux, respectively). In contrast, temperature sensitivity of soil mass‐specific rates exhibited either resilience (the Q10 value changed and returned to the original value over time) or resistance to change. Regardless of the microbial flux responses, bacterial and fungal community structure was susceptible to change with temperature, significantly differing with short‐ and long‐term exposure to different temperature regimes. Our results highlight that temperature responses of microbial resource allocation to exo‐enzyme production and associated respiratory CO2 loss per unit biomass can remain invariant across time, and thus, that vulnerability of soil organic C stocks to rising temperatures may persist in the long term. Furthermore, resistant temperature sensitivities of biomass‐specific rates in spite of different community structures imply decoupling of community constituents and the temperature responses of soil microbial activities. 相似文献