首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
L-selectin-mediated leukocyte rolling has been proposed to require a high rate of bond formation compared to that of P-selectin to compensate for its much higher off-rate. To test this hypothesis, a microbead system was utilized to measure relative L-selectin and P-selectin bond formation rates on their common ligand P-selectin glycoprotein ligand-1 (PSGL-1) under shear flow. Using video microscopy, we tracked selectin-coated microbeads to detect the formation frequency of adhesive tether bonds. From velocity distributions of noninteracting and interacting microbeads, we observed that tether bond formation rates for P-selectin on PSGL-1 decreased with increasing wall shear stress, from 0.14 ± 0.04 bonds/μm at 0.2 dyn/cm2 to 0.014 ± 0.003 bonds/μm at 1.0 dyn/cm2. In contrast, L-selectin tether bond formation increased from 0.017 ± 0.005 bonds/μm at 0.2 dyn/cm2 to 0.031 ± 0.005 bonds/μm at 1.0 dyn/cm2. L-selectin tether bond formation rates appeared to be enhanced by convective transport, whereas P-selectin rates were inhibited. The transition force for the L-selectin catch-slip transition of 44 pN/bond agreed well with theoretical models (Pereverzev et al. 2005. Biophys. J. 89:1446-1454). Despite catch bond behavior, hydrodymanic shear thresholding was not detected with L-selectin beads rolling on PSGL-1. We speculate that shear flow generated compressive forces may enhance L-selectin bond formation relative to that of P-selectin and that L-selectin bonds with PSGL-1 may be tuned for the compressive forces characteristic of leukocyte-leukocyte collisions during secondary capture on the blood vessel wall. This is the first report, to our knowledge, comparing L-selectin and P-selectin bond formation frequencies in shear flow.  相似文献   

2.
Selectins play a critical role in initiating leukocyte binding to vascular endothelium. In addition, in vitro experiments have shown that neutrophils use L-selectin to roll on adherent neutrophils, suggesting that they express a nonvascular L-selectin ligand. Using a L- selectin/IgM heavy chain (mu) chimeric protein as an immunocytological probe, we show here that L-selectin can bind to neutrophils, monocytes, CD34+ hematopoietic progenitors, and HL-60 and KG-1 myeloid cells. The interaction between L-selectin and leukocytes was protease sensitive and calcium dependent, and abolished by cell treatment with neuraminidase, chlorate, or O-sialoglycoprotein endopeptidase. These results revealed common features between leukocyte L-selectin ligand and the mucin-like P-selectin glycoprotein ligand 1 (PSGL-1), which mediates neutrophil rolling on P- and E-selectin. The possibility that PSGL-1 could be a ligand for L-selectin was further supported by the ability of P-selectin/mu chimera to inhibit L-selectin/mu binding to leukocytes and by the complete inhibition of both selectin interactions with myeloid cells treated with mocarhagin, a cobra venom metalloproteinase that cleaves the amino terminus of PSGL-1 at Tyr-51. Finally, the abrogation of L- and P-selectin binding to myeloid cells treated with a polyclonal antibody, raised against a peptide corresponding to the amino acid residues 42-56 of PSGL-1, indicated that L- and P-selectin interact with a domain located at the amino- terminal end of PSGL-1. The ability of the anti-PSGL-1 mAb PL-1 to inhibit L- and P-selectin binding to KG-1 cells further supported that possibility. Thus, apart from being involved in neutrophil rolling on P- and E-selectin, PSGL-1 also plays a critical role in mediating neutrophil attachment to adherent neutrophils. Interaction between L- selectin and PSGL-1 may be of major importance for increasing leukocyte recruitment at inflammatory sites.  相似文献   

3.
Many experiments have measured the effect of force on the dissociation of single selectin bonds, but it is not yet clear how the force dependence of molecular dissociation can influence the rolling of cells expressing selectin molecules. Recent experiments using constant-force atomic force microscopy or high-resolution microscopic observations of pause-time distributions of cells in a flow chamber show that for some bonds, the dissociation rate is high at low force and initially decreases with force, indicating a catch bond. As the force continues to increase, the dissociation rate increases again, like a slip bond. It has been proposed that this catch-slip bond leads to the shear threshold effect, in which a certain level of shear rate is required to achieve rolling. We have incorporated a catch-slip dissociation rate into adhesive dynamics simulations of cell rolling. Using a relatively simple model for the shear-controlled association rate for selectin bonds, we were able to recreate characteristics of the shear threshold effect seen most prominently for rolling through L-selectin. The rolling velocity as a function of shear rate showed a minimum near 100 s-1. Furthermore, cells were observed to roll at a shear rate near the threshold, but detach and move more quickly when the shear rate was dropped below the threshold. Finally, using adhesive dynamics, we were able to determine ranges of parameters necessary to see the shear threshold effect in the rolling velocity. In summary, we found through simulation that the catch-slip behavior of selectin bonds can be responsible for the shear threshold effect.  相似文献   

4.
Leukocyte adhesion through L-selectin to peripheral node addressin (PNAd, also known as MECA-79 antigen), an L-selectin ligand expressed on high endothelial venules, has been shown to require a minimum level of fluid shear stress to sustain rolling interactions (Finger, E.B., K.D. Puri, R. Alon, M.B. Lawrence, V.H. von Andrian, and T.A. Springer. 1996. Nature (Lond.). 379:266–269). Here, we show that fluid shear above a threshold of 0.5 dyn/cm2 wall shear stress significantly enhances HL-60 myelocyte rolling on P- and E-selectin at site densities of 200/μm2 and below. In addition, gravitational force is sufficient to detach HL60 cells from P- and E-selectin substrates in the absence, but not in the presence, of flow. It appears that fluid shear–induced torque is critical for the maintenance of leukocyte rolling. K562 cells transfected with P-selectin glycoprotein ligand-1, a ligand for P-selectin, showed a similar reduction in rolling on P-selectin as the wall shear stress was lowered below 0.5 dyn/cm2. Similarly, 300.19 cells transfected with L-selectin failed to roll on PNAd below this level of wall shear stress, indicating that the requirement for minimum levels of shear force is not cell type specific. Rolling of leukocytes mediated by the selectins could be reinitiated within seconds by increasing the level of wall shear stress, suggesting that fluid shear did not modulate receptor avidity. Intravital microscopy of cremaster muscle venules indicated that the leukocyte rolling flux fraction was reduced at blood centerline velocities less than 1 mm/s in a model in which rolling is mediated by L- and P-selectin. Similar observations were made in L-selectin–deficient mice in which leukocyte rolling is entirely P-selectin dependent. Leukocyte adhesion through all three selectins appears to be significantly enhanced by a threshold level of fluid shear stress.  相似文献   

5.
L-selectin is a leukocyte lectin that mediates leukocyte capture and rolling in the vasculature. The cytoplasmic domain of L-selectin has been shown to regulate leukocyte rolling. In this study, the regulatory mechanisms by which this domain controls L-selectin adhesiveness were investigated. We report that an L-selectin mutant generated by truncation of the COOH-terminal 11 residues of L-selectin tail, which impairs association with the cytoskeletal protein alpha-actinin, could capture leukocytes to glycoprotein L-selectin ligands under physiological shear flow. However, the conversion of initial tethers into rolling was impaired by this partial tail truncation, and was completely abolished by a further four-residue truncation of the L-selectin tail. Physical anchorage of both cell-free tail-truncated mutants within a substrate fully rescued their adhesive deficiencies. Microkinetic analysis of full-length and truncated L-selectin-mediated rolling at millisecond temporal resolution suggests that the lifetime of unstressed L-selectin tethers is unaffected by cytoplasmic tail truncation. However, cytoskeletal anchorage of L-selectin stabilizes the selectin tether by reducing the sensitivity of its dissociation rate to increasing shear forces. Low force sensitivity (reactive compliance) of tether lifetime is crucial for selectins to mediate leukocyte rolling under physiological shear stresses. This is the first demonstration that reduced reactive compliance of L-selectin tethers is regulated by cytoskeletal anchorage, in addition to intrinsic mechanical properties of the selectin-carbohydrate bond.  相似文献   

6.
The strength of anchoring of transmembrane receptors to cytoskeleton and membrane is important in cell adhesion and cell migration. With micropipette suction, we applied pulling forces to human neutrophils adhering to latex beads that were coated with antibodies to CD62L (L-selectin), CD18 (beta2 integrins), or CD45. In each case, the adhesion frequency between the neutrophil and bead was low, and our Monte Carlo simulation indicates that only a single bond was probably involved in every adhesion event. When the adhesion between the neutrophil and bead was ruptured, it was very likely that receptors were extracted from neutrophil surfaces. We found that it took 1-2 s to extract an L-selectin at a force range of 25-45 pN, 1-4 s to extract a beta2 integrin at a force range of 60-130 pN, and 1-11 s to extract a CD45 at a force range of 35-85 pN. Our results strongly support the conclusion that, during neutrophil rolling, L-selectin is unbound from its ligand when the adhesion between neutrophils and endothelium is ruptured.  相似文献   

7.
L-selectin requires a threshold shear to enable leukocytes to tether to and roll on vascular surfaces. Transport mechanisms govern flow-enhanced tethering, whereas force governs flow-enhanced rolling by prolonging the lifetimes of L-selectin-ligand complexes (catch bonds). Using selectin crystal structures, molecular dynamics simulations, site-directed mutagenesis, single-molecule force and kinetics experiments, Monte Carlo modeling, and flow chamber adhesion studies, we show that eliminating a hydrogen bond to increase the flexibility of an interdomain hinge in L-selectin reduced the shear threshold for adhesion via two mechanisms. One affects the on-rate by increasing tethering through greater rotational diffusion. The other affects the off-rate by strengthening rolling through augmented catch bonds with longer lifetimes at smaller forces. By forcing open the hinge angle, ligand may slide across its interface with L-selectin to promote rebinding, thereby providing a mechanism for catch bonds. Thus, allosteric changes remote from the ligand-binding interface regulate both bond formation and dissociation.  相似文献   

8.
A cell-scaled microbead system was used to analyze the force-dependent kinetics of P-selectin adhesive bonds independent of micromechanical properties of the neutrophil's surface microvilli, an elastic structure on which P-selectin ligand glycoprotein-1 (PSGL-1) is localized. Microvillus extension has been hypothesized in contributing to the dynamic range of leukocyte rolling observed in vivo during inflammatory processes. To evaluate PSGL-1/P-selectin bond kinetics of microbeads and neutrophils, rolling and tethering on P-selectin-coated substrates were compared in a parallel-plate flow chamber. The dissociation rates for PSGL-1 microbeads on P-selectin were briefer than those of neutrophils for any wall shear stress, and increased more rapidly with increasing flow. The microvillus length necessary to reconcile dissociation constants of PSGL-1 microbeads and neutrophils on P-selectin was 0.21 microm at 0.4 dyn/cm2, and increased to 1.58 microm at 2 dyn/cm2. The apparent elastic spring constant of the microvillus ranged from 1340 to 152 pN/microm at 0.4 and 2.0 dyn/cm2 wall shear stress. Scanning electron micrographs of neutrophils rolling on P-selectin confirmed the existence of micrometer-scaled tethers. Fixation of neutrophils to abrogate microvillus elasticity resulted in rolling behavior similar to PSGL-1 microbeads. Our results suggest that microvillus extension during transient PSGL-1/P-selectin bonding may enhance the robustness of neutrophil rolling interactions.  相似文献   

9.
Peripheral node addressin (PNAd) is a complex mixture of glycoproteins with L-selectin ligand activity that functions in lymphocyte homing. We have investigated the contribution of the sialomucin CD34 relative to other components of PNAd in lymphocyte tethering and rolling in in vitro laminar flow assays. PNAd was isolated with MECA-79 mAb-Sepharose from tonsillar stroma, and the CD34 component (PNAd,CD34+) and CD34- negative component (PNAd,CD34-) separated on CD34 mAb-Sepharose. Lymphocytes on the PNAd,CD34- fraction tether less efficiently, roll faster and are less resistant to shear detachment than on PNAd. The PNAd,CD34+ fraction constitutes about half the total functional activity. These studies show that CD34 is a major functional component of PNAd. Ligand activity in both the PNAd,CD34+ and PNAd,CD34- fractions is expressed on mucin-like domains, as shown with O- sialoglycoprotease. The CD34 component of PNAd has about four times higher tethering efficiency than total tonsillar CD34. CD34 from spleen shows no lymphocyte tethering. Although less efficient than the PNAd,CD34+ fraction from tonsil, CD34 from the KG1a hematopoietic cell line is functionally active as an L-selectin ligand despite lack of reactivity with MECA-79 mAb, which binds to a sulfation-dependent epitope. All four forms of CD34 are active in binding to E-selectin. KG1a CD34 but not spleen CD34 are active as L-selectin ligands, yet both lack MECA-79 reactivity and possess E-selectin ligand activity. This suggests that L-selectin ligands and E-selectin ligands differ in more respects than presence of the MECA-79 epitope.  相似文献   

10.
Two adhesive events critical to efficient recruitment of neutrophils at vascular sites of inflammation are up-regulation of endothelial selectins that bind sialyl Lewis(x) ligands and activation of beta(2)-integrins that support neutrophil arrest by binding ICAM-1. We have previously reported that neutrophils rolling on E-selectin are sufficient for signaling cell arrest through beta(2)-integrin binding of ICAM-1 in a process dependent upon ligation of L-selectin and P-selectin glycoprotein ligand 1 (PSGL-1). Unresolved are the spatial and temporal events that occur as E-selectin binds to human neutrophils and dynamically signals the transition from neutrophil rolling to arrest. Here we show that binding of E-selectin to sialyl Lewis(x) on L-selectin and PSGL-1 drives their colocalization into membrane caps at the trailing edge of neutrophils rolling on HUVECs and on an L-cell monolayer coexpressing E-selectin and ICAM-1. Likewise, binding of recombinant E-selectin to PMNs in suspension also elicited coclustering of L-selectin and PSGL-1 that was signaled via mitogen-activated protein kinase. Binding of recombinant E-selectin signaled activation of beta(2)-integrin to high-avidity clusters and elicited efficient neutrophil capture of beta(2)-integrin ligands in shear flow. Inhibition of p38 and p42/44 mitogen-activated protein kinase blocked the cocapping of L-selectin and PSGL-1 and the subsequent clustering of high-affinity beta(2)-integrin. Taken together, the data suggest that E-selectin is unique among selectins in its capacity for clustering sialylated ligands and transducing signals leading to neutrophil arrest in shear flow.  相似文献   

11.
A microcantilever technique was used to apply force to receptor-ligand molecules involved in leukocyte rolling on blood vessel walls. E-selectin was adsorbed onto 3-microm-diameter, 4-mm-long glass fibers, and the selectin ligand, sialyl Lewis(x), was coupled to latex microspheres. After binding, the microsphere and bound fiber were retracted using a computerized loading protocol that combines hydrodynamic and Hookean forces on the fiber to produce a range of force loading rates (force/time), r(f). From the distribution of forces at failure, the average force was determined and plotted as a function of ln r(f). The slope and intercept of the plot yield the unstressed reverse reaction rate, k(r)(o), and a parameter that describes the force dependence of reverse reaction rates, r(o). The ligand was titrated so adhesion occurred in approximately 30% of tests, implying that >80% of adhesive events involve single bonds. Monte Carlo simulations show that this level of multiple bonding has little effect on parameter estimation. The estimates are r(o) = 0.048 and 0.016 nm and k(r)(o) = 0.72 and 2.2 s(-1) for loading rates in the ranges 200-1000 and 1000-5000 pN s(-1), respectively. Levenberg-Marquardt fitting across all values of r(f) gives r(o) = 0.034 nm and k(r)(o) = 0.82 s(-1). The values of these parameters are in the range required for rolling, as suggested by adhesive dynamics simulations.  相似文献   

12.
The current paradigm for receptor-ligand dissociation kinetics assumes off-rates as functions of instantaneous force without impact from its prior history. This a priori assumption is the foundation for predicting dissociation from a given initial state using kinetic equations. Here we have invalidated this assumption by demonstrating the impact of force history with single-bond kinetic experiments involving selectins and their ligands that mediate leukocyte tethering and rolling on vascular surfaces during inflammation. Dissociation of bonds between L-selectin and P-selectin glycoprotein ligand-1 (PSGL-1) loaded at a constant ramp rate to a constant hold force behaved as catch-slip bonds at low ramp rates that transformed to slip-only bonds at high ramp rates. Strikingly, bonds between L-selectin and 6-sulfo-sialyl Lewis X were impervious to ramp rate changes. This ligand-specific force history effect resembled the effect of a point mutation at the L-selectin surface (L-selectinA108H) predicted to contact the former but not the latter ligand, suggesting that the high ramp rate induced similar structural changes as the mutation. Although the A108H substitution in L-selectin eliminated the ramp rate responsiveness of its dissociation from PSGL-1, the inverse mutation H108A in P-selectin acquired the ramp rate responsiveness. Our data are well explained by the sliding-rebinding model for catch-slip bonds extended to incorporate the additional force history dependence, with Ala-108 playing a pivotal role in this structural mechanism. These results call for a paradigm shift in modeling the mechanical regulation of receptor-ligand bond dissociation, which includes conformational coupling between binding pocket and remote regions of the interacting molecules.  相似文献   

13.
In this study we describe ELISA-type P- and L-selectin binding assays for the analysis of selectin antagonists. A biotinylated polyacrylamide-type glycoconjugate containing sialyl Lewis A (sLe(a)-polymer) is utilized as a synthetic ligand for both selectins analogous to the E-selectin assay we have developed recently. Following precomplexation of sLe(a)-polymer with streptavidin-peroxidase, the complex is added to microtiter plates coated with the recombinant selectins. Binding of sLe(a)-polymer to the immobilized selectins is measured by the peroxidase reaction. SLe(a)-polymer was found to bind to P- and L-selectin in a cation-dependent manner. The interaction of the polymer was blocked by neutralizing anti-P- and anti-L-selectin antibody, respectively. The reference compounds heparin and fucoidan inhibited in both assays. Sialyl Lewis X (sLe(x)) blocked binding to L-selectin by 46% at 3 mM, whereas no inhibition was observed in the P-selectin assay up to 3 mM. Control polymers containing sialic acid or beta-d-glucose instead of sLe(a) weakly bound or failed to bind to the selectins. Both assays are rapid to perform and of low variability. The P-selectin assay was successfully employed to identify and optimize novel carbohydrate-based P-selectin antagonists. The P-, L-, and E-selectin assays were used to determine the fine selectivity of several sLe(x)-related selectin antagonists. These studies together suggest that sLe(a)-polymer-based selectin assays are well suited for primary screening and the characterization of selectin antagonists.  相似文献   

14.
Selectin-ligand interactions (bonds) mediate leukocyte rolling on vascular surfaces. The molecular basis for differential ligand recognition by selectins is poorly understood. Here, we show that substituting one residue (A108H) in the lectin domain of L-selectin increased its force-free affinity for a glycosulfopeptide binding site (2-GSP-6) on P-selectin glycoprotein ligand-1 (PSGL-1) but not for a sulfated-glycan binding site (6-sulfo-sialyl Lewis x) on peripheral node addressin. The increased affinity of L-selectinA108H for 2-GSP-6 was due to a faster on-rate and to a slower off-rate that increased bond lifetimes in the absence of force. Rather than first prolonging (catching) and then shortening (slipping) bond lifetimes, increasing force monotonically shortened lifetimes of L-selectinA108H bonds with 2-GSP-6. When compared with microspheres bearing L-selectin, L-selectinA108H microspheres rolled more slowly and regularly on 2-GSP-6 at low flow rates. A reciprocal substitution in P-selectin (H108A) caused faster microsphere rolling on 2-GSP-6. These results distinguish molecular mechanisms for L-selectin to bind to PSGL-1 and peripheral node addressin and explain in part the shorter lifetimes of PSGL-1 bonds with L-selectin than P-selectin.  相似文献   

15.
Selectin-mediated binding of tumor cells to platelets, leukocytes, and vascular endothelium may regulate their hematogenous spread in the microvasculature. We recently reported that CD44 variant isoforms (CD44v) on LS174T colon carcinoma cells possess selectin binding activity. Here we extended those findings by showing that T84 and Colo205 colon carcinoma cells bind selectins via sialidase-sensitive O-linked glycans presented on CD44v, independent of heparan and chondroitin sulfate. To assess the functional role of CD44v in selectin-mediated binding, we quantified the adhesion to selectins of T84 cell subpopulations sorted based on their CD44 expression levels and stable LS174T cell lines generated using CD44 short hairpin RNA. High versus low CD44-expressing T84 cells tethered more efficiently to P- and L-selectin, but not E-selectin, and rolled more slowly on P- and E-selectin. Knocking down CD44 expression on LS174T cells inhibited binding to P-selectin and increased rolling velocities over P- and L-selectin relative to control-transfected cells, without affecting tethering and rolling on E-selectin, however. Blot rolling analysis revealed the presence of alternative sialylated glycoproteins with molecular masses of approximately 170 and approximately 130 kDa, which can mediate selectin binding in CD44-knockdown cells. Heparin diminishes the avidity of colon carcinoma cells for P- and L-selectin, which may compromise integrin-mediated firm adhesion to host cells and mitigate metastasis. Our finding that CD44v is a functional P-selectin ligand on colon carcinoma provides a novel perspective on the enhanced metastatic potential associated with tumor CD44v overexpression and the role of selectins in metastasis.  相似文献   

16.
We demonstrate an additional step and a positive feedback loop in leukocyte accumulation on inflamed endothelium. Leukocytes in shear flow bind to adherent leukocytes through L-selectin/ligand interactions and subsequently bind downstream and roll on inflamed endothelium, purified E-selectin, P-selectin, L-selectin, VCAM-1, or peripheral node addressin. Thus adherent leukocytes nucleate formation of strings of rolling cells and synergistically enhance leukocyte accumulation. Neutrophils, monocytes, and activated T cell lines, but not peripheral blood T lymphocytes, tether to each other through L-selectin. L- selectin is not involved in direct binding to either E- or P-selectin and is not a major counterreceptor of endothelial selectins. Leukocyte- leukocyte tethers are more tolerant to high shear than direct tethers to endothelial selectins and, like other L-selectin-mediated interactions, require a shear threshold. Synergism between leukocyte- leukocyte and leukocyte-endothelial interactions introduces novel regulatory mechanisms in recruitment of leukocytes in inflammation.  相似文献   

17.
Selectins mediate circulatory leukocyte trafficking to sites of inflammation and trauma, and the extracellular microenvironments at these sites often become acidic. In this study, we investigated the influence of slightly acidic pH on the binding dynamics of selectins (P-, L-, and E-selectin) to P-selectin glycoprotein ligand-1 (PSGL-1) via computational modeling (molecular dynamics) and experimental rolling assays under shear in vitro. The P-selectin/PSGL-1 binding is strengthened at acidic pH, as evidenced by the formation of a new hydrogen bond (seen computationally) and the observed decrease in the rolling velocities of model cells. In the case of L-selectin/PSGL-1 binding dynamics, the binding strength and frequency increase at acidic pH, as indicated by the greater cell-rolling flux of neutrophils and slower rolling velocities of L-selectin-coated microspheres, respectively. The cell flux is most likely due to an increased population of L-selectin in the high-affinity conformation as pH decreases, whereas the velocities are due to increased L-selectin/PSGL-1 contacts. In contrast to P- and L-selectin, the E-selectin/PSGL-1 binding does not exhibit significant changes at acidic pH levels, as shown both experimentally and computationally.  相似文献   

18.
在炎症反应中,白细胞在内皮细胞上滚动由选择素分子与其配体分子相互作用所导致,选择素分子有3种,P选择素分子(P—selectin)、E选择素分子(E—selectin)、L选择素分子(L—selectin),选择素分子与其对应的P-选择素糖蛋白配体-1(PSGL-1)的相互作用起着重要的作用。用等离子共振、流动腔、原子力显微镜等技术能定量分析选择素分子与其配体分子相互作用的动力学反应。  相似文献   

19.
Two mechanisms have been proposed for regulating rolling velocities on selectins. These are (a) the intrinsic kinetics of bond dissociation, and (b) the reactive compliance, i.e., the susceptibility of the bond dissociation reaction to applied force. To determine which of these mechanisms explains the 7.5–11.5-fold faster rolling of leukocytes on L-selectin than on E- and P-selectins, we have compared the three selectins by examining the dissociation of transient tethers. We find that the intrinsic kinetics for tether bond dissociation are 7–10-fold more rapid for L-selectin than for E- and P-selectins, and are proportional to the rolling velocities through these selectins. The durations of pauses during rolling correspond to the duration of transient tethers on low density substrates. Moreover, applied force increases dissociation kinetics less for L-selectin than for E- and P-selectins, demonstrating that reactive compliance is not responsible for the faster rolling through L-selectin. Further measurements provide a biochemical and biophysical framework for understanding the molecular basis of rolling. Displacements of tethered cells during flow reversal, and measurements of the distance between successive pauses during rolling provide estimates of the length of a tether and the length of the adhesive contact zone, and suggest that rolling occurs with as few as two tethers per contact zone. Tether bond lifetime is an exponential function of the force on the bond, and the upper limit for the tether bond spring constant is of the same order of magnitude as the estimated elastic spring constant of the lectin–EGF unit. Shear uniquely enhances the rate of L-selectin transient tether formation, and conversion of tethers to rolling adhesions, providing further understanding of the shear threshold requirement for rolling through L-selectin.  相似文献   

20.
A laser trap was used to compare the load-dependent binding kinetics between truncated P- and L-selectin to their natural ligand, P-selectin glycoprotein ligand-1 (PSGL-1) over the predicted physiological range of loading rates. Human PSGL-1 was covalently coupled to polystyrene beads. Chimeric selectins were adsorbed to nitrocellulose-coated glass beads on a coverslip. A PSGL-1 bead was held in a laser trap and touched to a vertical surface of the glass bead, allowing a bond to form between selectin and ligand. The surface was moved away from the microsphere, applying load at a constant rate until bond rupture. Rupture force for both selectins increased with loading rate, but significant differences in rupture force between P- and L-selectin were observed only above 460 pN/s. These data are best represented as two energy barriers to unbinding, with the transition from the low to high loading rate regime at 260–290 pN/s. The data also allow the first estimate of a two-dimensional specific on-rate for binding of these two selectins to their natural ligand (1.7 μm2/s). These data suggest that P- and L-selectin lectin domains have very similar kinetics under physiological conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号