共查询到20条相似文献,搜索用时 0 毫秒
1.
Martin DL Weatherly DB Laucella SA Cabinian MA Crim MT Sullivan S Heiges M Craven SH Rosenberg CS Collins MH Sette A Postan M Tarleton RL 《PLoS pathogens》2006,2(8):e77
CD8+ T cells are crucial for control of a number of medically important protozoan parasites, including Trypanosoma cruzi, the agent of human Chagas disease. Yet, in contrast to the wealth of information from viral and bacterial infections, little is known about the antigen specificity or the general development of effector and memory T-cell responses in hosts infected with protozoans. In this study we report on a wide-scale screen for the dominant parasite peptides recognized by CD8+ T cells in T. cruzi-infected mice and humans. This analysis demonstrates that in both hosts the CD8+ T-cell response is highly focused on epitopes encoded by members of the large trans-sialidase family of genes. Responses to a restricted set of immunodominant peptides were especially pronounced in T. cruzi-infected mice, with more than 30% of the CD8+ T-cell response at the peak of infection specific for two major groups of trans-sialidase peptides. Experimental models also demonstrated that the dominance patterns vary depending on the infective strain of T. cruzi, suggesting that immune evasion may be occurring at a population rather than single-parasite level. 相似文献
2.
We have constructed a set of nonsense mutants in the EBNA 1 gene of Epstein-Barr virus by inserting a synthetic oligonucleotide, which has translational termination codons in all three reading frames, at various positions in a cloned copy of the EBNA 1 gene. The EBNA 1 proteins encoded by these mutants and three deletion mutants were analyzed using several functional assays. It was determined that there are two separable phosphorylation domains in the carboxy half of the molecule. The carboxy half of the molecule was also found to contain a region between the unique Sac I and Sac II sites that is required for transactivation of the EBNA 1-specific enhancer element found within ori P. The mutants also served to identify a 248 bp region that affects the pattern of intranuclear localization of the protein. Correlations between the functional domains established by these studies and other properties of EBNA 1 are discussed. 相似文献
3.
Avian influenza virus (AIV) infection is a continuing threat to both humans and poultry. Influenza virus specific CD8+ T cells are associated with protection against homologous and heterologous influenza strains. In contrast to what has been described for humans and mice, knowledge on epitope-specific CD8+ T cells in chickens is limited. Therefore, we set out to identify AIV-specific CD8+ T-cell epitopes. Epitope predictions based on anchor residues resulted in 33 candidate epitopes. MHC I inbred chickens were infected with a low pathogenic AIV strain and sacrificed at 5, 7, 10 and 14 days post infection (dpi). Lymphocytes isolated from lung, spleen and blood were stimulated ex vivo with AIV-specific pooled or individual peptides and the production of IFNγ was determined by ELIspot. This resulted in the identification of 12 MHC B12-restricted, 3 B4-restricted and 1 B19-restricted AIV- specific CD8+ T-cell epitopes. In conclusion, we have identified novel AIV-derived CD8+ T-cell epitopes for several inbred chicken strains. This knowledge can be used to study the role of CD8+ T cells against AIV infection in a natural host for influenza, and may be important for vaccine development. 相似文献
4.
Identification of two T-cell epitopes on the candidate Epstein-Barr virus vaccine glycoprotein gp340 recognized by CD4+ T-cell clones.
下载免费PDF全文

Current efforts to develop an Epstein-Barr virus subunit vaccine are based on the major envelope glycoprotein gp340. Given the central role of CD4+ T cells in regulating immune responses to subunit vaccine antigens, the present study has begun the work of identifying linear epitopes which are recognized by human CD4+ T cells within the 907-amino-acid sequence of gp340. A panel of gp340-specific CD4+ T-cell clones from an Epstein-Barr virus-immune donor were first assayed for their proliferative responses to a series of truncated gp340 molecules expressed from recombinant DNA vectors in rat GH3 cells, by using an autologous B lymphoblastoid cell line as a source of antigen-presenting cells. The first four T-cell clones analyzed all responded to a truncated form of gp340 which contained only the first 260 N-terminal amino acids. These clones were subsequently screened for responses to each of a panel of overlapping synthetic peptides (15-mers) corresponding to the primary amino acid sequence of the first 260 N-terminal amino acids of gp340. One clone (CG2.7) responded specifically to peptides from the region spanning amino acids 61 to 81, while three other clones (CG5.15, CG5.24, and CG5.36) responded specifically to peptides from the region spanning amino acids 163 to 183. Work with individual peptides from these regions allowed finer mapping of the T-cell epitopes and also revealed the highly dose-dependent nature of peptide-induced responses, with inhibitory effects apparent when the most antigenic peptides were present at supraoptimal concentrations. Experiments using homozygous typing B lymphoblastoid cell lines as antigen-presenting cells showed that the T-cell clones with different epitope specificities were restricted through different HLA class II antigens; clone CG2.7 recognized epitope 61-81 in the context of HLA DRw15, whereas clones CG5.15, CG5.24, and CG5.36 recognized epitope 163-183 in the context of HLA DRw11. The present protocol therefore makes a systematic analysis of CD4+ T-cell epitopes within gp340 possible; it will be necessary to screen gp340-specific T-cell clones from a variety of donors to assess the wider influence of HLA class II polymorphism upon epitope choice. 相似文献
5.
Epstein-Barr virus (EBV) is a ubiquitous human herpesvirus that persistently infects 85% of the adult population worldwide. In this report, we examine the proliferative response and cytokine secretion profile of CD4(+) T lymphocytes from a panel of unrelated EBV-positive donors against two EBV latent antigens, EBNA1 and EBNA3C. Substantial proliferative responses by CD4(+) lymphocytes were demonstrated to both antigens in multiple, randomly selected donors. Surprisingly, we observed a striking and consistent difference in cytokine response to EBNA1 and EBNA3C. EBNA1-specific CD4(+) T lymphocytes from multiple unrelated donors preferentially produced type 2-like cytokines in response to antigenic stimulation, while the response to EBNA3C was a characteristic type 1 response. The implications of these findings for EBV persistence and the development of EBV-associated malignancies are discussed. 相似文献
6.
T-cell responses to highly conserved CD4 and CD8 epitopes on the outer membrane protein of bovine leukemia virus: relevance to vaccine development.
下载免费PDF全文

Bovine leukemia virus (BLV) is a retrovirus that infects cattle and sheep and may provide a model for studying human leukemia. Cell-mediated immune mechanisms may play a major role in protection against BLV infection. We describe here for the first time the identification of proliferative (CD4) and cytotoxic T-lymphocyte (CD8) epitopes of the gp51 envelope (env) protein of BLV. This protein and a recombinant form expressed by a vaccinia virus construct have been shown to be potential vaccine candidates. A complete series of overlapping peptides, 20 amino acids in length, was prepared to identify epitopes from gp51. These peptides were tested for the ability to elicit peripheral blood lymphocyte proliferation and cytotoxic T-lymphocyte responses in infected and uninfected cattle and sheep. Peptides 51-70 and 61-80 produced a proliferative response in lymphocytes from only uninfected animals (both sheep and cattle), and this was shown by T-cell subset deletion to be a CD4-mediated response. Seven BLV-infected sheep did not show a response to either peptide. Cytotoxic T-lymphocyte activity, however, was associated only with peptides 121-140 and 131-150. In this case, the response was demonstrated to be CD8 dependent and was found only in BLV-infected animals (sheep). Knowledge of the location of these T-cell recognition domains will complement data available on B-cell epitopes in gp51 and may be useful in the design of a subunit vaccine. 相似文献
7.
CD4+ T-cell responses to Epstein-Barr virus (EBV) latent-cycle antigens and the recognition of EBV-transformed lymphoblastoid cell lines 总被引:2,自引:0,他引:2
Long HM Haigh TA Gudgeon NH Leen AM Tsang CW Brooks J Landais E Houssaint E Lee SP Rickinson AB Taylor GS 《Journal of virology》2005,79(8):4896-4907
There is considerable interest in the potential of Epstein-Barr virus (EBV) latent antigen-specific CD4+ T cells to act as direct effectors controlling EBV-induced B lymphoproliferations. Such activity would require direct CD4+ T-cell recognition of latently infected cells through epitopes derived from endogenously expressed viral proteins and presented on the target cell surface in association with HLA class II molecules. It is therefore important to know how often these conditions are met. Here we provide CD4+ epitope maps for four EBV nuclear antigens, EBNA1, -2, -3A, and -3C, and establish CD4+ T-cell clones against 12 representative epitopes. For each epitope we identify the relevant HLA class II restricting allele and determine the efficiency with which epitope-specific effectors recognize the autologous EBV-transformed B-lymphoblastoid cell line (LCL). The level of recognition measured by gamma interferon release was consistent among clones to the same epitope but varied between epitopes, with values ranging from 0 to 35% of the maximum seen against the epitope peptide-loaded LCL. These epitope-specific differences, also apparent in short-term cytotoxicity and longer-term outgrowth assays on LCL targets, did not relate to the identity of the source antigen and could not be explained by the different functional avidities of the CD4+ clones; rather, they appeared to reflect different levels of epitope display at the LCL surface. Thus, while CD4+ T-cell responses are detectable against many epitopes in EBV latent proteins, only a minority of these responses are likely to have therapeutic potential as effectors directly recognizing latently infected target cells. 相似文献
8.
Chentoufi AA Binder NR Berka N Durand G Nguyen A Bettahi I Maillère B BenMohamed L 《Journal of virology》2008,82(23):11792-11802
The identification of “asymptomatic” (i.e., protective) epitopes recognized by T cells from herpes simplex virus (HSV)-seropositive healthy individuals is a prerequisite for an effective vaccine. Using the PepScan epitope mapping strategy, a library of 179 potential peptide epitopes (15-mers overlapping by 10 amino acids) was identified from HSV type 1 (HSV-1) glycoprotein B (gB), an antigen that induces protective immunity in both animal models and humans. Eighteen groups (G1 to G18) of 10 adjacent peptides each were first screened for T-cell antigenicity in 38 HSV-1-seropositive but HSV-2-seronegative individuals. Individual peptides within the two immunodominant groups (i.e., G4 and G14) were further screened with T cells from HLA-DR-genotyped and clinically defined symptomatic (n = 10) and asymptomatic (n = 10) HSV-1-seropositive healthy individuals. Peptides gB161-175 and gB166-180 within G4 and gB661-675 within G14 recalled the strongest HLA-DR-dependent CD4+ T-cell proliferation and gamma interferon production. gB166-180, gB661-675, and gB666-680 elicited ex vivo CD4+ cytotoxic T cells (CTLs) that lysed autologous HSV-1- and vaccinia virus (expressing gB)-infected lymphoblastoid cell lines. Interestingly, gB166-180 and gB666-680 peptide epitopes were strongly recognized by CD4+ T cells from 10 of 10 asymptomatic patients but not by CD4+ T cells from 10 of 10 symptomatic patients (P < 0.0001; analysis of variance posttest). Inversely, CD4+ T cells from symptomatic patients preferentially recognized gB661-675 (P < 0.0001). Thus, we identified three previously unrecognized CD4+ CTL peptide epitopes in HSV-1 gB. Among these, gB166-180 and gB666-680 appear to be “asymptomatic” peptide epitopes and therefore should be considered in the design of future herpes vaccines. 相似文献
9.
CD4+ T cells are required to sustain CD8+ cytotoxic T-cell responses during chronic viral infection. 总被引:21,自引:5,他引:21
下载免费PDF全文

In this study, we have examined the relative contributions of CD4+ and CD8+ T cells in controlling an acute or chronic lymphocytic choriomeningitis virus (LCMV) infection. To study acute infection, we used the LCMV Armstrong strain, which is cleared by adult mice in 8 to 10 days, and to analyze chronic infection, we used a panel of lymphocyte-tropic and macrophage-tropic variants of LCMV that persist in adult mice for several months. We show that CD4+ T cells are not necessary for resolving an acute LCMV infection. CD4+ T-cell-depleted mice were capable of generating an LCMV-specific CD8+ cytotoxic T-lymphocyte (CTL) response and eliminated virus with kinetics similar to those for control mice. The CD8+ CTL response was critical for resolving this infection, since beta 2-microglobulin knockout (CD8-deficient) mice were unable to control the LCMV Armstrong infection and became persistently infected. In striking contrast to the acute infection, even a transient depletion of CD4+ T cells profoundly affected the outcome of infection with the macrophage- and lymphocyte-tropic LCMV variants. Adult mice given a single injection of anti-CD4 monoclonal antibody (GK1.5) at the time of virus challenge became lifelong carriers with high levels of virus in most tissues. Unmanipulated adult mice infected with the different LCMV variants contained virus for prolonged periods (> 3 months) but eventually eliminated infection from most tissues, and all of these mice had LCMV-specific CD8+ CTL responses. Although the level of CTL activity was quite low, it was consistently present in all of the chronically infected mice that eventually resolved the infection. These results clearly show that even in the presence of an overwhelming viral infection of the immune system, CD8+ CTL can remain active for long periods and eventually resolve and/or keep the virus infection in check. In contrast, LCMV-specific CTL responses were completely lost in chronically infected CD4-depleted mice. Taken together, these results show that CD4+ T cells are dispensable for short-term acute infection in which CD8+ CTL activity does not need to be sustained for more than 2 weeks. However, under conditions of chronic infection, in which CD8+ CTLs take several months or longer to clear the infection, CD4+ T-cell function is critical. Thus, CD4+ T cells play an important role in sustaining virus-specific CD8+ CTL during chronic LCMV infection. These findings have implications for chronic viral infections in general and may provide a possible explanation for the loss of human immunodeficiency virus-specific CD8+ CTL activity that is seen during the late stages of AIDS, when CD4+ T cells become limiting. 相似文献
10.
CD4+ CD25+ T cells regulate vaccine-generated primary and memory CD8+ T-cell responses against herpes simplex virus type 1 总被引:1,自引:0,他引:1
下载免费PDF全文

It has become evident that naturally occurring CD25(+) regulatory T cells (T(reg) cells) not only influence self-antigen specific immune response but also dampen foreign antigen specific immunity. This report extends our previous findings by demonstrating that immunity to certain herpes simplex virus (HSV) vaccines is significantly elevated and more effective if T(reg) cell response is curtailed during either primary or recall immunization. The data presented here show that removal of CD25(+) T(reg) cells prior to SSIEFARL-CpG or gB-DNA immunization significantly enhanced the resultant CD8(+) T-cell response to the immunodominant SSIEFARL peptide. The enhanced CD8(+) T-cell reactivity in T(reg) cell-depleted animals was between two- and threefold and evident in both acute and memory stages. Interestingly, removal of CD25(+) T(reg) cells during the memory recall response to plasmid immunization resulted in a twofold increase in CD8(+) T-cell memory pool. Moreover, in the challenge experiments, memory CD8(+) T cells generated with plasmid DNA in the absence of T(reg) cells cleared the virus more effectively compared with control groups. We conclude that CD25(+) T(reg) cells quantitatively as well as qualitatively affect the memory CD8(+) T-cell response generated by gB-DNA vaccination against HSV. However, it remains to be seen if all types of vaccines against HSV are similarly affected by CD25(+) T(reg) cells and if it is possible to devise means of limiting T(reg) cell activity to enhance vaccine efficacy. 相似文献
11.
Members of the Bcl-2 family have critical roles in regulating tissue homeostasis by modulating apoptosis. Anti-apoptotic molecules physically interact and restrain pro-apoptotic family members preventing the induction of cell death. However, the specificity of the functional interactions between pro- and anti-apoptotic Bcl-2 family members remains unclear. The pro-apoptotic Bcl-2 family member Bcl-2 interacting mediator of death (Bim) has a critical role in promoting the death of activated, effector T cells following viral infections. Although Bcl-2 is an important Bim antagonist in effector T cells, and Bcl-xL is not required for effector T-cell survival, the roles of other anti-apoptotic Bcl-2 family members remain unclear. Here, we investigated the role of myeloid cell leukemia sequence 1 (Mcl-1) in regulating effector T-cell responses in vivo. We found, at the peak of the response to lymphocytic choriomeningitis virus (LCMV) infection, that Mcl-1 expression was increased in activated CD4+ and CD8+ T cells. Retroviral overexpression of Mcl-1-protected activated T cells from death, whereas deletion of Mcl-1 during the course of infection led to a massive loss of LCMV-specific CD4+ and CD8+ T cells. Interestingly, the co-deletion of Bim failed to prevent the loss of Mcl-1-deficient T cells. Furthermore, lck-driven overexpression of a Bcl-xL transgene only partially rescued Mcl-1-deficient effector T cells suggesting a lack of redundancy between the family members. In contrast, additional loss of Bax and Bak completely rescued Mcl-1-deficient effector T-cell number and function, without enhancing T-cell proliferation. These data suggest that Mcl-1 is critical for promoting effector T-cell responses, but does so by combating pro-apoptotic molecules beyond Bim. 相似文献
12.
13.
Vaccines based on novel adeno-associated virus vectors elicit aberrant CD8+ T-cell responses in mice
下载免费PDF全文

We recently discovered an expanded family of adeno-associated viruses (AAVs) that show promise as improved gene therapy vectors. In this study we evaluated the potential of vectors based on several of these novel AAVs as vaccine carriers for human immunodeficiency virus type 1 Gag. Studies with mice indicated that vectors based on AAV type 7 (AAV7), AAV8, and AAV9 demonstrate improved immunogenicity in terms of Gag CD8(+) T-cell and Gag antibody responses. The quality of these antigen-specific responses was evaluated in detail for AAV2/8 vectors and compared to results with an adenovirus vector expressing Gag (AdC7). AAV2/8 produced a vibrant CD8(+) T-cell effector response characterized by coexpression of gamma interferon and tumor necrosis factor alpha as well as in vivo cytolytic activity. No CD8(+) T-cell response generated by any of the AAVs was effectively boosted with AdC7, a result consistent with the finding of a relative lack of cells expressing interleukin-2 (IL-2) or a central memory phenotype at 3 months after the prime. The primary response to an AdC7 vaccine differed from that generated by AAVs in that the peak effector response evolved into populations of Gag-specific T cells expressing high levels of cytokines, including IL-2, and with effector memory and central memory phenotypes. A number of mechanisms could be considered to explain the aberrant activation of CD8(+) T cells by AAV, including insufficient inflammatory responses, CD4 help, and/or chronic antigen expression and T-cell exhaustion. Interestingly, the B-cell response to AAV-encoded Gag was quite vibrant and easily boosted with AdC7. 相似文献
14.
Identification of novel immunodominant CD4+ Th1-type T-cell peptide epitopes from herpes simplex virus glycoprotein D that confer protective immunity 总被引:1,自引:0,他引:1
下载免费PDF全文

BenMohamed L Bertrand G McNamara CD Gras-Masse H Hammer J Wechsler SL Nesburn AB 《Journal of virology》2003,77(17):9463-9473
The molecular characterization of the epitope repertoire on herpes simplex virus (HSV) antigens would greatly expand our knowledge of HSV immunity and improve immune interventions against herpesvirus infections. HSV glycoprotein D (gD) is an immunodominant viral coat protein and is considered an excellent vaccine candidate antigen. By using the TEPITOPE prediction algorithm, we have identified and characterized a total of 12 regions within the HSV type 1 (HSV-1) gD bearing potential CD4(+) T-cell epitopes, each 27 to 34 amino acids in length. Immunogenicity studies of the corresponding medium-sized peptides confirmed all previously known gD epitopes and additionally revealed four new immunodominant regions (gD(49-82), gD(146-179), gD(228-257), and gD(332-358)), each containing naturally processed epitopes. These epitopes elicited potent T-cell responses in mice of diverse major histocompatibility complex backgrounds. Each of the four new immunodominant peptide epitopes generated strong CD4(+) Th1 T cells that were biologically active against HSV-1-infected bone marrow-derived dendritic cells. Importantly, immunization of H-2(d) mice with the four newly identified CD4(+) Th1 peptide epitopes but not with four CD4(+) Th2 peptide epitopes induced a robust protective immunity against lethal ocular HSV-1 challenge. These peptide epitopes may prove to be important components of an effective immunoprophylactic strategy against herpes. 相似文献
15.
Subdominant CD8+ T-cell responses are involved in durable control of AIDS virus replication
下载免费PDF全文

Friedrich TC Valentine LE Yant LJ Rakasz EG Piaskowski SM Furlott JR Weisgrau KL Burwitz B May GE León EJ Soma T Napoe G Capuano SV Wilson NA Watkins DI 《Journal of virology》2007,81(7):3465-3476
"Elite controllers" are individuals that durably control human immunodeficiency virus or simian immunodeficiency virus replication without therapeutic intervention. The study of these rare individuals may facilitate the definition of a successful immune response to immunodeficiency viruses. Here we describe six Indian-origin rhesus macaques that have controlled replication of the pathogenic virus SIVmac239 for 1 to 5 years. To determine which lymphocyte populations were responsible for this control, we transiently depleted the animals' CD8+ cells in vivo. This treatment resulted in 100- to 10,000-fold increases in viremia. When the CD8+ cells returned, control was reestablished and the levels of small subsets of previously subdominant CD8+ T cells expanded up to 2,500-fold above pre-depletion levels. This wave of CD8+ T cells was accompanied by robust Gag-specific CD4 responses. In contrast, CD8+ NK cell frequencies changed no more than threefold. Together, our data suggest that CD8+ T cells targeting a small number of epitopes, along with broad CD4+ T-cell responses, can successfully control the replication of the AIDS virus. It is likely that subdominant CD8+ T-cell populations play a key role in maintaining this control. 相似文献
16.
CD4+ T-cell responses are required for clearance of West Nile virus from the central nervous system
下载免费PDF全文

Although studies have established that innate and adaptive immune responses are important in controlling West Nile virus (WNV) infection, the function of CD4(+) T lymphocytes in modulating viral pathogenesis is less well characterized. Using a mouse model, we examined the role of CD4(+) T cells in coordinating protection against WNV infection. A genetic or acquired deficiency of CD4(+) T cells resulted in a protracted WNV infection in the central nervous system (CNS) that culminated in uniform lethality by 50 days after infection. Mice surviving past day 10 had high-level persistent WNV infection in the CNS compared to wild-type mice, even 45 days following infection. The absence of CD4(+) T-cell help did not affect the kinetics of WNV infection in the spleen and serum, suggesting a role for CD4-independent clearance mechanisms in peripheral tissues. WNV-specific immunoglobulin M (IgM) levels were similar to those of wild-type mice in CD4-deficient mice early during infection but dropped approximately 20-fold at day 15 postinfection, whereas IgG levels in CD4-deficient mice were approximately 100- to 1,000-fold lower than in wild-type mice throughout the course of infection. WNV-specific CD8(+) T-cell activation and trafficking to the CNS were unaffected by the absence of CD4(+) T cells at day 9 postinfection but were markedly compromised at day 15. Our experiments suggest that the dominant protective role of CD4(+) T cells during primary WNV infection is to provide help for antibody responses and sustain WNV-specific CD8(+) T-cell responses in the CNS that enable viral clearance. 相似文献
17.
Human CD4+ CD25+ regulatory T cells control T-cell responses to human immunodeficiency virus and cytomegalovirus antigens 总被引:20,自引:0,他引:20
下载免费PDF全文

Regulatory T (T(R)) cells maintain tolerance to self-antigens and control immune responses to alloantigens after organ transplantation. Here, we show that CD4(+) CD25(+) human T(R) cells suppress virus-specific T-cell responses. Depletion of T(R) cells from peripheral blood mononuclear cells enhances T-cell responses to cytomegalovirus and human immunodeficiency virus antigens. We propose that chronic viral infections lead to induction of suppressive T(R) cells that inhibit the antiviral immune response. 相似文献
18.
Kaposi's sarcoma-associated herpesvirus (KSHV/human herpesvirus 8 [HHV8]) and Epstein-Barr virus (EBV/HHV4) are distantly related gammaherpesviruses causing tumors in humans. KSHV latency-associated nuclear antigen 1 (LANA1) is functionally similar to the EBV nuclear antigen-1 (EBNA1) protein expressed during viral latency, although they have no amino acid similarities. EBNA1 escapes cytotoxic lymphocyte (CTL) antigen processing by inhibiting its own proteosomal degradation and retarding its own synthesis to reduce defective ribosomal product processing. We show here that the LANA1 QED-rich central repeat (CR) region, particularly the CR2CR3 subdomain, also retards LANA1 synthesis and markedly enhances LANA1 stability in vitro and in vivo. LANA1 isoforms have half-lives greater than 24 h, and fusion of the LANA1 CR2CR3 domain to a destabilized heterologous protein markedly decreases protein turnover. Unlike EBNA1, the LANA1 CR2CR3 subdomain retards translation regardless of whether it is fused to the 5' or 3' end of a heterologous gene construct. Manipulation of sequence order, orientation, and composition of the CR2 and CR3 subdomains suggests that specific peptide sequences rather than RNA structures are responsible for synthesis retardation. Although mechanistic differences exist between LANA1 and EBNA1, the primary structures of both proteins have evolved to minimize provoking CTL immune responses. Simple strategies to eliminate these viral inhibitory regions may markedly improve vaccine effectiveness by maximizing CTL responses. 相似文献
19.
Epstein-Barr nuclear antigen 1-specific CD4(+) Th1 cells kill Burkitt's lymphoma cells 总被引:5,自引:0,他引:5
Paludan C Bickham K Nikiforow S Tsang ML Goodman K Hanekom WA Fonteneau JF Stevanović S Münz C 《Journal of immunology (Baltimore, Md. : 1950)》2002,169(3):1593-1603
The gamma-herpesvirus, EBV, is reliably found in a latent state in endemic Burkitt's lymphoma. A single EBV gene product, Epstein-Barr nuclear Ag 1 (EBNA1), is expressed at the protein level. Several mechanisms prevent immune recognition of these tumor cells, including a block in EBNA1 presentation to CD8(+) killer T cells. Therefore, no EBV-specific immune response has yet been found to target Burkitt's lymphoma. We now find that EBNA1-specific, Th1 CD4(+) cytotoxic T cells recognize Burkitt's lymphoma lines. CD4(+) T cell epitopes of EBNA1 are predominantly found in the C-terminal, episome-binding domain of EBNA1, and approximately 0.5% of peripheral blood CD4(+) T cells are specific for EBNA1. Therefore, adaptive immunity can be directed against Burkitt's lymphoma, and perhaps this role for CD4(+) Th1 cells extends to other tumors that escape MHC class I presentation. 相似文献
20.
IL-4-secreting CD4+ T cells are crucial to the development of CD8+ T-cell responses against malaria liver stages 总被引:1,自引:0,他引:1
Carvalho LH Sano G Hafalla JC Morrot A Curotto de Lafaille MA Zavala F 《Nature medicine》2002,8(2):166-170
CD4+ T cells are crucial to the development of CD8+ T cell responses against hepatocytes infected with malaria parasites. In the absence of CD4+ T cells, CD8+ T cells initiate a seemingly normal differentiation and proliferation during the first few days after immunization. However, this response fails to develop further and is reduced by more than 90%, compared to that observed in the presence of CD4+ T cells. We report here that interleukin-4 (IL-4) secreted by CD4+ T cells is essential to the full development of this CD8+ T cell response. This is the first demonstration that IL-4 is a mediator of CD4/CD8 cross-talk leading to the development of immunity against an infectious pathogen. 相似文献