首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Native (n), glycated (g), and glycoxidated (go) low-density lipoproteins (LDL) were labeled with 125I or 99mTc, and the labeling efficiency and binding were assessed for potential use of these LDL compounds in imaging analysis of atherosclerotic lesions (PPAR-gamma receptors) by determining the number of specific receptors for nLDL, gLDL or goLDL on human microvascular endothelial cells as well as the KDs using either 125I-or 99mTc-labeled LDLs. The specific activity of labeled gLDL and goLDL was much higher (for goLDL 20 times higher) than that of nLDL. Gel filtration of labeled LDLs revealed, however, that 99mTc-g/goLDL is significantly degraded by the labeling reaction. No fragmentation was observed for 99mTc-nLDL and all the 125I-labeled LDL forms. Binding studies using both 125I-and 99mTc-nLDL indicated a weak binding affinity (KD 10- 7mol/L) to human microvascular endothelial cells. The binding affinity of 125I-g/goLDL to these cells was significantly higher (KD 10- 9mol/L) and could be increased further by preactivation of the endothelial cells using TNFalpha. Incubation with 99mTc-goLDL, however, did not result in specific binding of the ligand, possibly as a consequence of the fragmentation of the lipoprotein during the labeling. Scatchard transformation of the binding data with 99mTc-gLDL revealed the presence of only a few binding sites. This was in contrast to the results obtained with 125I-labeled gLDL, which revealed a much higher membrane density of scavenger receptors for this ligand. We conclude that for in vitro binding studies as well as for potential in vivo imaging, only 125I-labeled goLDL should be used, whereas nLDL may be applied as 125I-or 99mTc-labeled ligand.  相似文献   

2.
G Sobal  H Sinzinger 《Life sciences》1999,65(12):1237-1246
Oxidation and glycation of low-density lipoprotein (LDL) has been claimed to play a central role in the pathogenesis of atherosclerosis. Therefore, the inhibition of this processes is of major therapeutic importance. In the present paper the influence of prostaglandin (PG)I2, and its stable analogues taprostene and iloprost on copper-induced oxidation of native, glycated and glycoxidated LDL was investigated. The results show, that the most pronounced effect on inhibition of native LDL-oxidation was obtained by taprostene in the whole concentration range tested (0.2 microg-10 microg/ml) reaching a maximal inhibition of 95% at 10 microg/ml. Examining glycoxidated LDL the inhibitory effect on oxidation was less pronounced reaching only about 10%. In case of glycated LDL, however, no significant inhibitory effect on oxidation was seen. Iloprost was effective as inhibitory agent against oxidation of native LDL at concentrations of 10 and 20 microg/ml, showing a maximal inhibition of 86% at a concentration of 20 microg/ml. Iloprost was ineffective on oxidation of glycated and glycoxidated LDL. Examining the extremely short-lived PGI2 itself, no significant inhibitory effect on oxidation of native, glycated or glycoxidated LDL, however, was seen. This finding might be of relevance for patients with diabetes mellitus, showing a decreased endogenous PGI2-production in particular those with bad metabolic control and high concentrations of circulating advanced glycosylation end products (AGEs).  相似文献   

3.
Troglitazone (T), an anti-diabetic drug improving insulin resistance, was studied as to its inhibition of copper ion-catalysed oxidation of native, glycated and glycoxidated low-density lipoprotein (LDL). A dose-dependent inhibition was noted in the concentration range 40-160 microg/ml. An almost complete inhibition of oxidation (2-8 h), as monitored by the formation of thiobarbituric acid-reactive substances, was observed for both native and glycated LDL at a concentration of 160 microg/ml T, while the maximal inhibition for glycoxidated LDL amounted only to 60% at this concentration of the drug. This is reflected by differences in the affinity of the drug for the different types of LDL modification: While the binding of T both to native or glycated LDL increased linearly with increasing T concentration and was not saturable in the concentration range tested (0-160 microg/ml), binding of the drug to glycoxidated LDL was already nearly saturated at 10 microg/ml. The nearly complete inhibitory action of T towards oxidation of native and glycated LDL was lost, however, upon increasing the total oxidation time to 24 h. In human umbilical vein endothelial cell-mediated oxidation of LDL, T at a concentration of 20 microg/ml significantly reduced formation of oxidation-dependent fluorescent chromophores and liberation of 8-epi-PGF2alpha. In contrast, generation of thiobarbituric acid-reactive substances was not significantly inhibited. As opposed to copper-mediated LDL-oxidation, different binding of T to LDL-modifications does not govern inhibition of human umbilical vein endothelial cell-mediated LDL-oxidation.  相似文献   

4.
Modification of low density lipoprotein (LDL) and plasma or tissue proteins by non-enzymatic glycation culminating in the formation of advanced glycation endproducts (AGEs) is one of the essential pathomechanisms leading to diabetes-associated long-term complications. We compared binding of glycated, glycoxidated and oxidated LDL by peripheral monocytes in activated and quiescent form. Interaction via specific receptors was different for glycated as compared to (glyc)oxidated LDL-modifications. In addition, binding of glycated LDL to quiescent and activated human umbilical vein endothelial cells was studied. In patients with insulin-dependent diabetes mellitus (IDDM), AGE-binding was significantly increased as compared to healthy individuals. Specific and non-specific monocyte binding mechanisms were detected, and both were significantly increased in IDDM patients. Specific and non-specific binding strategies possibly act in concert to eliminate circulating AGEs, which are instrumental in the development and progress of microangiopathic and macroangiopathic complications of diabetes mellitus.  相似文献   

5.
Native (n), glycated (g), and glycoxidated (go) low-density lipoproteins (LDL) were labeled with 125I or 99mTc, and the labeling efficiency and binding were assessed for potential use of these LDL compounds in imaging analysis of atherosclerotic lesions (PPAR-γ receptors) by determining the number of specific receptors for nLDL, gLDL or goLDL on human microvascular endothelial cells as well as the KD s using either 125I-or 99mTc-labeled LDLs. The specific activity of labeled gLDL and goLDL was much higher (for goLDL 20 times higher) than that of nLDL. Gel filtration of labeled LDLs revealed, however, that 99mTc–g/goLDL is significantly degraded by the labeling reaction. No fragmentation was observed for 99mTc-nLDL and all the 125I-labeled LDL forms. Binding studies using both 125I-and 99mTc-nLDL indicated a weak binding affinity (KD 10? 7mol/L) to human microvascular endothelial cells. The binding affinity of 125I-g/goLDL to these cells was significantly higher (KD 10? 9mol/L) and could be increased further by preactivation of the endothelial cells using TNFα. Incubation with 99mTc-goLDL, however, did not result in specific binding of the ligand, possibly as a consequence of the fragmentation of the lipoprotein during the labeling. Scatchard transformation of the binding data with 99mTc-gLDL revealed the presence of only a few binding sites. This was in contrast to the results obtained with 125I-labeled gLDL, which revealed a much higher membrane density of scavenger receptors for this ligand. We conclude that for in vitro binding studies as well as for potential in vivo imaging, only 125I-labeled goLDL should be used, whereas nLDL may be applied as 125I-or 99mTc-labeled ligand.  相似文献   

6.
It is well established that oxidative modification of low-density lipoprotein (LDL) plays a causal role in human atherogenesis and the risk of atherosclerosis is increased in patients with diabetes mellitus. To examine the influence of different agents which may influence LDL-glycation and oxidation, experiments including glycation with glucose, glucose 6-phosphate, metal chelators (EDTA) and antioxidants (BHT) were performed. The influence of time dependence on the glycation process and the alteration of the electrophoretic mobility of LDL under diverse glycation and/or oxidation conditions was also investigated. The formation of conjugated dienes and levels of lipid peroxides in these different LDL-modifications were estimated. The copper-induced oxidation of LDL in vitro was determined by measurement of thiobarbituric acid reactive substances (TBARS) and expressed as nmol MDA/mg of LDL protein. We found that glycated LDL is more prone to oxidation than native LDL. Using native LDL, the maximal oxidation effect was found to reach a value of 49.72 nmol MDA/mg protein after 8 h. The maximum oxidation of the 31 days, glycated LDL with glucose was 71.76 nmol MDA/mg protein amounting to 144.33% of the value found for native LDL. In the case of glucose 6-phosphate glycation, the maximum oxidation under the same conditions amounted to 173.77% of the value found for native LDL. To measure the extent of glycation, fluorescence of advanced glycation end products (AGEs) was determined (370 nm excitation and 440 nm emission). The most potent glycation agent was glucose 6-phosphate leading to the formation of very high amounts of AGEs. This process was promoted in the absence of EDTA, which prevents the oxidative cleavage of modified Amadori products (ketoamines) to AGEs. We therefore conclude that both processes, glycation and oxidation, result in the modification of LDL. The lower the glycation-rate (+/- EDTA) as measured by relative fluorescence units RFU (generation of AGEs), the lower the additional oxidation rate after glycation as measured by TBARS (generation of MDA equivalents). Glycation and/or oxidation change the electrophoretic mobility of LDL.  相似文献   

7.
Lysosomal acid lipase (LAL), the only lysosomal enzyme involved in the hydrolysis of LDL-cholesteryl esters, is a key regulator of cellular cholesterol and fatty acid homeostasis and its deficiency contributes to the pathophysiology of various diseases. In this study, we questioned whether oxidized or glycated LDL, a common occurrence in atherosclerosis and diabetes, affect the activity and expression of LAL in vascular endothelial cells (EC) and smooth muscle cells (SMC). LAL activity and expression were assayed in cultured human EC and SMC exposed to oxidized LDL (oxLDL), (±)9-hydroxyoctadecadienoic acid-cholesteryl ester (HODE), glycated LDL (gLDL), or native LDL (nLDL) as control, in the presence or absence of LXR or PPAR-gamma agonists. We found that LAL activity and expression were significantly down regulated by oxLDL and HODE in EC, and by gLDL in SMC. The LXR agonist T0901317 reversed the decreased LAL expression in modified LDL- or HODE-exposed EC (P < 0.001) and in gLDL-exposed SMC, whereas PPAR-gamma agonist rosiglitazone induced a low effect only in EC. In conclusion, modified LDL down regulates LAL expression in human EC and SMC by a process involving the LXR signaling pathway. This is the first demonstration that modified LDL modulate LAL expression, in a cell specific manner.  相似文献   

8.
Patients with diabetes mellitus suffer from an increased incidence of complications including cardiovascular disease and cataracts; the mechanisms responsible for this are not fully understood. One characteristic of such complications is an accumulation of advanced glycation end-products formed by the adduction of glucose or species derived from glucose, such as low-molecular mass aldehydes, to proteins. These reactions can be nonoxidative (glycation) or oxidative (glycoxidation) and result in the conversion of low-density lipoproteins (LDL) to a form that is recognized by the scavenger receptors of macrophages. This results in the accumulation of cholesterol and cholesteryl esters within macrophages and the formation of foam cells, a hallmark of atherosclerosis. The nature of the LDL modifications required for cellular recognition and unregulated uptake are poorly understood. We have therefore examined the nature, time course, and extent of LDL modifications induced by glucose and two aldehydes, methylglyoxal and glycolaldehyde. It has been shown that these agents modify Arg, Lys and Trp residues of the apoB protein of LDL, with the extent of modification induced by the two aldehydes being more rapid than with glucose. These processes are rapid and unaffected by low concentrations of copper ions. In contrast, lipid and protein oxidation are slow processes and occur to a limited extent in the absence of added copper ions. No evidence was obtained for the stimulation of lipid or protein oxidation by glucose or methylglyoxal in the presence of copper ions, whereas glycolaldehyde stimulated such reactions to a modest extent. These results suggest that the earliest significant events in this system are metal ion-independent glycation (modification) of the protein component of LDL, whilst oxidative events (glycoxidation or direct oxidation of lipid or proteins) only occur to any significant extent at later time points. This 'carbonyl-stress' may facilitate the formation of foam cells and the vascular complications of diabetes.  相似文献   

9.
Sobal G  Menzel JE  Sinzinger H 《Life sciences》2000,66(20):1987-1998
It is generally accepted that oxidation of low-density lipoproteins (LDL) is a causal factor in the development of atherosclerosis. Non-enzymatic glycosylation of LDL, i.e."glycation", plays a central role in late complications of diabetes mellitus and may initiate and/or accelerate the oxidation process. Therefore, the inhibition of this processes is of major therapeutic relevance. The influence of acetylsalicylic acid (ASA) on the oxidation of native and glycated LDL was studied in vitro. LDL (0.25 mg protein/ml ) was oxidatively modified with 5.0 microM CuSO4. Only at "supratherapeutical" ASA concentrations in the range 0.06-2.0 mg /ml we found a significant concentration-dependent inhibition of LDL oxidation both for native and glycated LDL, which was from 0.2 mg/ml upwards significantly more marked for native LDL than for glycated LDL. The maximal inhibitory effect occurred at 2.0 mg/ml with 89.6% inhibition of LDL-oxidation for native LDL and 64.4% for glycated LDL. At 0.2 mg/ml ASA the respective inhibitory values were 38.5% and 31.0%. For glycated LDL the ASA doses of maximal- and approximately 50%-inhibition, as found for native LDL, were chosen to investigate the inhibitory effect on 2,4,8 and 24 hours oxidation of glycated LDL to monitor the time-dependency of inhibition by ASA. This revealed that ASA only delayed, not permanently inhibited LDL oxidation.  相似文献   

10.
In diabetes mellitus the progression of atherosclerosis is accelerated. The interaction of glucose with athero-genic lipoproteins may be relevant to the mechanisms responsible for this vascular damage. The aim of this study was to examine the effect of glucose-modified low density lipoprotein (LDL) on human monocyte chemotaxis and to investigate the roles of oxidation and glycation in the generation of chemotactic LDL. Cu(II)-mediated LDL oxidation was potentiated by glucose in a dose-dependent manner and increased its chemotactic activity. Incubation with glucose alone, under conditions where very little oxidation was observed, also increased the chemotactic property of LDL. Neither diethylenetriamine pentaacetic acid (DETAPAC) nor aminoguanidine, which both inhibited LDL oxidation, completely inhibited the chemotactic activity of glycated oxidised LDL. The results suggest that both oxidation and glycation contribute to increased chemotactic activity.  相似文献   

11.
Oxidation of low-density lipoprotein (LDL) may be an important factor in the development of diabetic macrovascular and renal complications. The level of autoantibodies against oxidized LDL (oxLDL-Ab) can be used as an index of LDL oxidation in vivo. The purpose of this study was to investigate the association between the level of oxLDL-Ab and the presence of coronary heart disease and renal dysfunction in patients with non-insulin-dependent diabetes mellitus (NIDDM). We determined the plasma levels of oxLDL-Ab in 46 NIDDM patients and 48 well matched non-diabetic control subjects. NIDDM patients had a moderately higher level of oxLDL-Ab than control subjects (0.083 ± 0.051 vs. 0.062 ± 0.045, p = 0.04). However, there was no difference in the level of oxLDL-Ab between subjects with and without coronary heart disease, and the level of oxLDL-Ab was not associated with indices of glomerular filtration rate or urinary albumin excretion.  相似文献   

12.
Oxidative modification of human low-density lipoprotein (LDL) renders it atherogenic. Previous studies demonstrated that plasma thiols promote oxidation of LDL by free ferric iron (Fe3+). The current study investigated effects of plasma thiols on oxidation of LDL by hemin, a physiological Fe3+-protoporphyrin IX complex thought to be capable of initiating LDL oxidation in vivo. In contrast to free Fe3+ which is incapable of oxidizing LDL in the absence of an exogenous reductant, hemin readily promoted LDL oxidation. During incubation of LDL (0.2 mg of protein/ml) with hemin (10 microM) at 37 degrees C for 6 h, thiobarbituric acid-reactive substances (TBARS), a marker of lipid oxidation, increased from 0.3 (+/-0.1) nmol/mg of LDL protein to a maximal concentration of 45.8 (+/-5.2) nmol/mg of LDL protein. Under the same experimental conditions, lipid-conjugated dienes, another marker of lipid oxidation, increased from non-detectable to near-maximal levels of 78-187 nmol/mg of LDL protein, and lipoprotein polyunsaturated fatty acyl-containing cholesteryl ester content decreased to 15-36% of that present in native (i.e. unoxidized) LDL. Continued incubation of LDL with hemin for up to 24 h resulted in no further significant alterations in lipoprotein levels of TBARS, lipid-conjugated dienes, and cholesteryl esters. In addition to these chemical modifications indicative of lipoprotein oxidation, agarose gel electrophoretic analysis indicated that exposure of LDL to hemin resulted in conversion of the lipoprotein to an atherogenic form as evidenced by its increased anodic electrophoretic mobility. Addition of physiological concentrations of plasma thiols (either cysteine, homocysteine or reduced glutathione; 1-100 microM, each) inhibited hemin-mediated oxidation of LDL. Thus, whereas the maximal TBARS concentration was achieved following 6 h of incubation of LDL with hemin alone, addition of thiol extended the time required to attain maximal TBARS concentration to > or = 12 h. Similar antioxidant effects of thiols on formation of lipid-conjugated dienes, loss of cholesteryl esters, and lipoprotein anodic electrophoretic mobility were also observed. However, all thiols were not equally effective at inhibiting hemin-dependent LDL oxidation. Thus, whereas reduced glutathione was most effective at inhibiting hemin-dependent LDL oxidation, an intermediate effect was observed for homocysteine, and cysteine was least effective. The inhibition of hemin-mediated LDL oxidation by plasma thiols reported here confirms a previous observation that, under certain conditions, thiols can function as antioxidants, but contrasts with the previously documented pro-oxidant effect of the same thiols on oxidation of LDL by free Fe3+. These contrasting effects of plasma thiols on hemin- and free Fe3+-mediated LDL oxidation indicate that, in vivo, the ability of thiols to function as either anti- or pro-oxidants during LDL oxidation may, at least in part, be determined by the type of oxidant stress to which the lipoprotein is exposed.  相似文献   

13.
Very low-density lipoprotein (VLDL) is the main plasma carrier of triacylglycerol that is elevated in pathological conditions such as diabetes, metabolic syndrome, obesity and dyslipidemia. How variations in triacylglycerol levels influence structural stability and remodeling of VLDL and its metabolic product, low-density lipoproteins (LDL), is unknown. We applied a biochemical and biophysical approach using lipoprotein remodeling by lipoprotein lipase and cholesterol ester transfer protein, along with thermal denaturation that mimics key aspects of lipoprotein remodeling in vivo. The results revealed that increasing the triacylglycerol content in VLDL promotes changes in the lipoprotein size and release of the exchangeable apolipoproteins. Similarly, increased triacylglycerol content in LDL promotes lipoprotein remodeling and fusion. These effects were observed in single-donor lipoproteins from healthy subjects enriched in exogenous triolein, in single-donor lipoproteins from healthy subjects with naturally occurring differences in endogenous triacylglycerol, and in LDL and VLDL from pooled plasma of diabetic and normolipidemic patients. Consequently, triacylglycerol-induced destabilization is a general property of plasma lipoproteins. This destabilization reflects a direct effect of triacylglycerol on lipoproteins. Moreover, we show that TG can act indirectly by increasing lipoprotein susceptibility to oxidation and lipolysis and thereby promoting the generation of free fatty acids that augment fusion. These in vitro findings are relevant to lipoprotein remodeling and fusion in vivo. In fact, fusion of LDL and VLDL enhances their retention in the arterial wall and, according to the response-to-retention hypothesis, triggers atherosclerosis. Therefore, enhanced fusion of triacylglycerol-rich lipoproteins suggests a new causative link between elevated plasma triacylglycerol and atherosclerosis.  相似文献   

14.
Lipid glycation is a non-enzymatic reaction between glucose and the free amino group of aminophospholipids, particularly in chronic hyperglycemia. Glycated phosphatidylethanolamine have been found in plasma and atherosclerotic plaques of diabetic patients and was correlated with increased oxidative and inflammatory stress in diabetes. However, the biological roles of glycated lipids are not fully understood. In this study, we evaluated the effect of palmitoyl-oleoyl-phosphatidylethanolamine (POPE) oxidation, glycation, and glycoxidation products on monocyte and myeloid dendritic cell stimulation. Flow cytometry analysis was used to evaluate the capability of each modified PE to induce the expression of different cytokines (IL-1β, IL-6, IL-8, MIP-1β, and TNF-α) in monocytes or myeloid dendritic cells (mDC). Our results showed that PE modifications induced different effect on the stimulation of cells producing cytokines. All PE modifications induced higher frequencies of cytokine-producing cells than basal state. Higher stimulation levels were obtained with glycated POPE, followed by glycoxidized POPE. In contrast, oxidized POPE negatively regulated the frequency of monocytes and mDC producing cytokines, when compared with non-modified POPE. In conclusion, we verified that PE glycation, compared with oxidation and glycation plus oxidation, had higher ability to stimulate monocytes and mDC. Thus detection of increased levels of PE glycation in diabetes could be considered a predictor of a inflammatory state.  相似文献   

15.
Recent evidence suggests that lipoprotein oxidation is increased in diabetes, however, the mechanism(s) for such observations are not clear. We examined the effect of glucose on low-density lipoprotein (LDL) oxidation using metal ion-dependent and -independent oxidation systems. Pathophysiological concentrations of glucose (25 mM) enhanced copper-induced LDL oxidation as determined by conjugated diene formation or relative electrophoretic mobility (REM) on agarose gels. Similarly, iron-induced LDL oxidation was stimulated by glucose resulting in 4- to 6-fold greater REM than control incubations without glucose. In contrast, glucose had no effect on metal ion-independent LDL oxidation by aqueous peroxyl radicals. The effect of glucose on metal ion-dependent LDL oxidation was associated with enhanced reduction of metal ions, and in the case of iron-induced LDL oxidation, was completely inhibited by superoxide dismutase. The effect of glucose was mimicked by other reducing sugars, such as fructose and mannose, and the extent to which each sugar enhanced LDL oxidation was closely linked to its metal ion-reducing activity. Thus, promotion of LDL oxidation by glucose is specific for metal ion-dependent oxidation and involves increased metal ion reduction. These results provide one potential mechanism for enhanced LDL oxidation in diabetes.  相似文献   

16.
Japanese-Americans have an increased prevalence of non-insulin-dependent diabetes mellitus and coronary heart disease when compared to native Japanese. This increase has been associated with fasting hyperinsulinemia, hypertriglyceridemia, and low plasma levels of high-density lipoprotein (HDL) cholesterol. The purpose of this study was to examine the relationship of both visceral adiposity and insulin resistance to this metabolic syndrome and to the presence of a predominance of small, dense low-density lipoprotein (LDL) particles (LDL subclass phenotype B) that has been associated with increased atherogenic risk. Six Japanese-American men with non-insulin-dependent diabetes, each receiving an oral sulfonylurea, were selected. One or 2 nondiabetic Japanese-American men, matched by age and body mass index, were selected for each diabetic subject, giving a total of 9 nondiabetic men. Diabetic subjects had significantly higher fasting plasma glucose (p=0.0007) and lower insulin sensitivity (SI, p=0.018) using the minimal model technique than nondiabetic subjects matched for body mass index. Six men (2 with diabetes) had LDL phenotype A and 8 (4 with diabetes) had phenotype B. One nondiabetic subject had an intermediate low-density lipoprotein pattern. Significantly greater amounts of intra-abdominal fat (p=0.045) measured by computed tomography were found in the men with phenotype B while fasting insulin (p=0.070) and triglycerides (p=0.051) tended to be higher. Intra-abdominal fat was significantly correlated with SI (r=-0.559), plasma triglycerides (r=0.541), plasma free fatty acids (r=0.677), LDL density (relative flotation rate, r=-0.803), and plasma HDL-cholesterol (r=-0.717). SI was significantly correlated only with plasma free fatty acids (r=-0.546) and tended to be correlated with hepatic lipase activity (r=-0.512, p=0.061). In conclusion, these observations indicate that in non-obese Japanese-American men, the metabolic features of the so-called insulin resistance syndrome, including LDL phenotype B, are more strongly correlated with visceral adiposity than with SI. It may therefore be more appropriate to call this the visceral adiposity syndrome. Although questions concerning mechanisms still remain, we postulate that visceral adiposity plays a central role in the development of many of the metabolic abnormalities, including LDL subclass phenotype B, that occur in this metabolic syndrome.  相似文献   

17.
Sphingosine 1-phosphate (S1P) concentration in plasma and serum has been estimated to be within 200-900 nM. Among plasma and serum components, S1P is concentrated in lipoprotein fractions with a rank order of high-density lipoprotein (HDL)>low-density lipoprotein (LDL)>very low-density lipoprotein (VLDL)>lipoprotein-deficient plasma (LPDP) when expressed as the per unit amount of protein. It is well known that LDL, especially oxidized LDL, is closely correlated and HDL is inversely correlated, with the risk of cardiovascular disease, such as atherosclerosis. Evidence was presented that a part of HDL-induced actions previously reported are mediated by the lipoprotein-associated S1P. Furthermore, S1P content in LDL was markedly decreased during its oxidation. This paper will discuss whether S1P is an atherogenic mediator or an anti-atherogenic mediator.  相似文献   

18.
Nonenzymatic covalent binding (glycation) of reactive aldehydes (from glucose or metabolic processes) to low-density lipoproteins has been previously shown to result in lipid accumulation in a murine macrophage cell line. The formation of such lipid-laden cells is a hallmark of atherosclerosis. In this study, we characterize lipid accumulation in primary human monocyte-derived macrophages, which are cells of immediate relevance to human atherosclerosis, on exposure to low-density lipoprotein glycated using methylglyoxal or glycolaldehyde. The time course of cellular uptake of low-density lipoprotein-derived lipids and protein has been characterized, together with the subsequent turnover of the modified apolipoprotein B-100 (apoB) protein. Cholesterol and cholesteryl ester accumulation occurs within 24 h of exposure to glycated low-density lipoprotein, and increases in a time-dependent manner. Higher cellular cholesteryl ester levels were detected with glycolaldehyde-modified low-density lipoprotein than with methylglyoxal-modified low-density lipoprotein. Uptake was significantly decreased by fucoidin (an inhibitor of scavenger receptor SR-A) and a mAb to CD36. Human monocyte-derived macrophages endocytosed and degraded significantly more (125)I-labeled apoB from glycolaldehyde-modified than from methylglyoxal-modified, or control, low-density lipoprotein. Differences in the endocytic and degradation rates resulted in net intracellular accumulation of modified apoB from glycolaldehyde-modified low-density lipoprotein. Accumulation of lipid therefore parallels increased endocytosis and, to a lesser extent, degradation of apoB in human macrophages exposed to glycolaldehyde-modified low-density lipoprotein. This accumulation of cholesteryl esters and modified protein from glycated low-density lipoprotein may contribute to cellular dysfunction and the increased atherosclerosis observed in people with diabetes, and other pathologies linked to exposure to reactive carbonyls.  相似文献   

19.
Previous studies have demonstrated increased plasma levels of oxidised low-density lipoprotein (oxLDL) in chronic smokers, which has been associated with the extent of endothelial dysfunction. In this study we examine the relationship between the amino acid composition of apolipoprotein B100 (apo B) of low-density lipoprotein (LDL), by reverse phase HPLC after precolumn derivatisation, between smokers (> or =40 cigarettes/day) and nonsmokers in relation to their plasma and LDL antioxidant status. While there was a significant difference in the levels of plasma vitamin C and alpha-tocopherol between female smokers and nonsmokers, as well as in the levels of LDL alpha-tocopherol, there was no significant difference in the amino acid composition of apo B between the two groups.  相似文献   

20.
Carotenoids are dietary antioxidants transported with plasma lipoproteins, primarily low-density lipoprotein (LDL). In this study in vitro methods were used to increase the amounts of specific, individual carotenoids in LDL. By addition of carotenoid to isolated LDL or to serum, followed by (re)isolation of the lipoproteins, samples of LDL were enriched 4- to 150-fold with lutein, 2- to 15-fold with lycopene, or 3- to 25-fold with β-carotene. Enrichment with specific carotenoids was achieved without affecting the electrophoretic mobility of the lipoprotein, its cholesterol to protein ratio, or the levels of other cartenoids or -tocopherol. The distributions among lipoproteins of carotenoid added to serum were similar, but not identical, to the distributions of the endogenous carotenoids. In particular, for added lutein, a greater proportion was found in HDL, and for added β-carotene, more was found in very low-density lipoprotein (VLDL). We then studied the effect of enriching LDL with specific carotenoids on its susceptibility to oxidation by copper ions. Lutein, β-cryptoxanthin, lycopene, and β-carotene, the four major plasma carotenoids, and -tocopherol were destroyed before the formation of lipid peroxidation products. The rates of destruction of the individual carotenoids differed; lycopene was destroyed most rapidly and lutein most slowly. Upon oxidation of β-carotene-enriched LDL, the rates of destruction of β-carotene, lycopene, and lutein were slowed and the lag times before the initiation of lipid peroxidation increased from 19 to 65 min. Neither effect was observed in LDL enriched with lutein or lycopene. Thus, β-carotene was unique among the carotenoids studied in having a small, but significant effect on LDL oxidation in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号