首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
L-DOPA is the most commonly used treatment for symptomatic control in patients with Parkinson's disease. Unfortunately, most patients develop severe side-effects, such as dyskinesia, upon chronic l-DOPA treatment. The patophysiology of dyskinesia is unclear; however, involvement of serotonergic nerve fibers in converting l-DOPA to dopamine has been suggested. Therefore, potassium-evoked dopamine release was studied after local application of l-DOPA in the striata of normal, dopamine- and dopamine/serotonin-lesioned l-DOPA na?ve, and dopamine-denervated chronically l-DOPA-treated dyskinetic rats using in vivo chronoamperometry. The results revealed that local l-DOPA administration into normal and intact hemisphere of dopamine-lesioned l-DOPA na?ve animals significantly increased the potassium-evoked dopamine release. l-DOPA application also increased the dopamine peak amplitude in the dopamine-depleted l-DOPA na?ve striatum, although these dopamine levels were several-folds lower than in the normal striatum, whereas no increased dopamine release was found in the dopamine/serotonin-denervated striatum. In dyskinetic animals, local l-DOPA application did not affect the dopamine release, resulting in significantly attenuated dopamine levels compared with those measured in l-DOPA na?ve dopamine-denervated striatum. To conclude, l-DOPA is most likely converted to dopamine in serotonergic nerve fibers in the dopamine-depleted striatum, but the dopamine release is several-fold lower than in normal striatum. Furthermore, l-DOPA loading does not increase the dopamine release in dyskinetic animals as found in l-DOPA na?ve animals, despite similar density of serotonergic innervation. Thus, the dopamine overflow produced from the serotonergic nerve fibers appears not to be the major cause of dyskinetic behavior.  相似文献   

2.
《Free radical research》2013,47(6):635-644
Abstract

Real time oxidative stress in the extracellular compartment of rat striatum was characterized by microdialysis with synthetic non-dialyzable marker molecules composed of linoleic acid, tyrosine and guanosine (N-linoleoyl tyrosine (LT) and N-linoleoyl tyrosine 2′-deoxyguanosyl ester (LTG)). Partial dopaminergic deafferentation was induced by injection of 6-hydroxydopamine (250 μg) to the left lateral ventricle, which depleted ipsilateral striatal dopamine by 46% and dopaminergic cells in left substantia nigra by 44%, 5 weeks after administration. Resting microdialysate dopamine levels in dopamine-depleted striatum were not different from sham-operated rats, although the ratio of oxidized metabolites of dopamine to free dopamine was significantly increased. Hydroperoxide and epoxy products of the linoleoyl portion of LT and LTG were detected in the striatal microdialysate by LC/MS/MS following initial separation by HPLC and were significantly increased in dopamine-depleted compared with control striatum without an increase in guanosine or tyrosine oxidation or nitration. Systemic administration of N-acetyl cysteine (350 mg/kg i.p.) decreased the increment in hydroperoxide and epoxy metabolites to levels not significantly different from control. Oxidation activity towards polyunsaturated fatty acids is present in the extracellular space of partially dopamine-denervated striatum, whereas oxidized glutathione and oxysterol levels in striatal tissue are decreased, possibly indicative of a compensatory response.  相似文献   

3.
Xu CM  Wang J  Wu P  Xue YX  Zhu WL  Li QQ  Zhai HF  Shi J  Lu L 《Journal of neurochemistry》2011,118(1):126-139
As a ubiquitous serine/threonine protein kinase, glycogen synthase kinase 3β (GSK-3β) has been considered to be important in the synaptic plasticity that underlies dopamine-related behaviors and diseases. We recently found that GSK-3β activity in the nucleus accumbens (NAc) core is critically involved in cocaine-induced behavioral sensitization. The present study further explored the association between the changes in GSK-3β activity in the NAc and the chronic administration of methamphetamine. We also examined whether blocking GSK-3β activity in the NAc could alter the initiation and expression of methamphetamine (1 mg/kg, i.p.)-induced locomotor sensitization in rats using systemic administration of lithium chloride (LiCl, 100 mg/kg, i.p) and brain region-specific administration of the GSK-3β inhibitor SB216763 (1 ng/side). We found that GSK-3β activity increased in the NAc core, but not NAc shell, after chronic methamphetamine administration. The initiation and expression of methamphetamine-induced locomotor sensitization was attenuated by systemic administration of LiCl and direct infusion of SB216763 into the NAc core, but not NAc shell. These results indicate that GSK-3β activity in the NAc core mediates the initiation and expression of methamphetamine-induced locomotor sensitization, suggesting that GSK-3β may be a potential target for the treatment of psychostimulant addiction.  相似文献   

4.
Repeated administration of methamphetamine (MAP) results in an increased behavioral response to the drug during subsequent exposure. This phenomenon is called behavioral sensitization. Sensitization is an enduring phenomenon, and suggests chronic alterations in neuronal plasticity. MAP-induced sensitization has been proposed and widely investigated as an animal model of MAP psychosis and schizophrenia. However, little is known about the molecular mechanisms underlying MAP-induced sensitization. 2-DE-based proteomics allows us to examine global changes in protein expression in complex biological systems and to propose hypotheses concerning the mechanisms underlying various pathological conditions. In the present study, we examined protein expression profiles in the striatum of MAP-sensitized rats using 2-DE-based proteomics. Repeated administration of MAP (4.0 mg/kg, once a day, intraperitoneal (i.p.)) for 10 days significantly augmented the locomotor response to an MAP challenge injection (1.0 mg/kg, i.p.) on day 11. This enhanced activity was maintained even after a week of drug abstinence. 2-DE analysis revealed 42 protein spots were differentially regulated in the striatum of MAP-sensitized rats compared to control. Thirty-one protein spots were identified using MALDI-TOF, including synapsin II, synaptosomal-associated protein 25 (SNAP-25), adenylyl cyclase-associated protein 1 (CAP1), and dihydropyrimidinase-related protein 2 (DRP2). These proteins can be related to underlying mechanisms of MAP-induced behavioral sensitization, indicating cytoskeletal modification, and altered synaptic function.  相似文献   

5.
Abstract: The effects of two new catechol- O -methyltransferase (COMT) inhibitors, OR-611 and Ro 40-7592, in combination with L-3,4-dihydroxyphenylalanine (L-dopa) with or without carbidopa on extracellular levels of dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), 3- O -methyldopa (3-OMD), and 5-hydroxyindoleacetic acid in rat striatum were studied. A dose of 10 mg/kg i.p. of Ro 40-7592 alone, in contrast to the same dose of OR-611, decreased the dialysate level of HVA and increased that of DOPAC; this dose was thus used to differentiate between the effects of central and peripheral COMT inhibition. L-Dopa (50 mg/kg i.p.) alone slightly increased extracellular levels of DA, DOPAC, and HVA. The effects of L-dopa were potentiated by carbidopa (50 mg/kg i.p.), and even 3-OMD levels in dialysate samples became detectable. Both OR-611 and Ro 40-7592 significantly further increased the DA and DOPAC efflux from striatum produced by L-dopa. This increase was more pronounced when carbidopa was added to the treatment. OR-611 did not modify the effect of L-dopa or carbidopa/L-dopa on dialysate HVA levels, whereas Ro 40-7592 markedly reduced those levels. Both OR-611 and Ro 40-7592 very clearly suppressed dialysate 3-OMD levels produced by carbidopa/L-dopa. Ro 40-7592 was more effective than OR-611 in potentiating the effects of L-dopa or carbidopa/L-dopa. These in vivo data show that the new COMT inhibitors markedly inhibit the O -methylation of L-dopa and increase its availability to brain, which is reflected as increased DA formation. A significant effect can be achieved even by inhibiting only the peripheral COMT activity. The data suggest that COMT inhibitors may be of clinical importance as adjuncts in the treatment of Parkinson's disease.  相似文献   

6.
Glycogen synthase kinase 3β (GSK‐3β) is a ubiquitous serine/threonine protein kinase involved in a number of signaling pathways. Previous studies have demonstrated a role for GSK‐3β in the synaptic plasticity underlying dopamine‐associated behaviors and diseases. Drug sensitization is produced by repeated exposure to the drug and is thought to reflect neuroadaptations that contribute to addiction. However, the role of GSK‐3β in cocaine‐induced behavior sensitization has not been examined. The present study investigated the effects of chronic cocaine exposure on GSK‐3β activity in the nucleus accumbens (NAc) and determined whether changes in GSK‐3β activity in the NAc are associated with cocaine‐induced locomotor sensitization. We also explored whether blockade of GSK‐3β activity in the NAc inhibits the initiation and expression of cocaine‐induced locomotor sensitization in rats using systemic or brain region‐specific administration of the GSK‐3β inhibitors lithium chloride (LiCl) and SB216763. GSK‐3β activity in the NAc core, but not NAc shell, increased after chronic cocaine (10 mg/kg, i.p.) administration. The initiation and expression of cocaine‐induced locomotor sensitization was attenuated by systemic administration of LiCl (100 mg/kg, i.p.) or direct infusion of SB216763 (1 ng/side) into the NAc core, but not NAc shell. Collectively, these results indicate that GSK‐3β activity in the NAc core, but not NAc shell, mediates the initiation and expression of cocaine‐induced locomotor sensitization, suggesting that GSK‐3β may be a potential target for the treatment of cocaine addiction.  相似文献   

7.
Summary The effect of acute and chronic (10 days) administration of 200 mg/kg (i.p.) of valproic acid (VPA) on endogenous levels of aspartate, glutamate, alanine, glycine and taurine in the cerebral frontal cortex and corpus striatum of rats was studied. Quantification of the amino acid levels was performed by HPLC.Valproic acid (VPA) did not either induce changes on these neurotransmitters contents in corpus striatum after acute treatment. After chronic administration we found a decrease on the endogenous levels of glutamic acid (24%, p < 0.05) which was related to an increase (250%, p < 0.02) of the in vitro KCl evoked release of glutamate. We found decrements in taurine endogenous levels (22%, p < 0.05) which was not associated with an increase of its release.In cerebral frontal cortex there was not found any change neither under the acute nor under the chronic condition.Thus, it may be conclude that chronic treatment with VPA produces decreases on the endogenous levels of glutamate and taurine. However the relevance of this effect concerning it therapeutic action remains unclear.  相似文献   

8.
The effects of short and long-acting dopamine agonists on sensitized dopaminergic transmission in an animal model of Parkinson's disease were investigated. Rats with 6-hydroxydopamine (6-OHDA) lesions of the left nigrostriatal dopaminergic pathway were pre-exposed i.p. to 50 mg/kg methyl levodopa for 10 days. After a 7-day withdrawal period, these animals were treated with saline i.p., 0.05 mg/kg apomorphine s.c., or 0.5 mg/kg cabergoline i.p., once daily for 7 days. On the 8th day, rats in each treatment group received a challenge dose of 0.05 mg/kg apomorphine or saline s.c. The temporal changes in the number of rotations away from the 6-OHDA lesion side were evaluated after the challenge. The apomorphine challenge increased the number of rotations more markedly in the apomorphine pretreated rats than in the other pretreatment groups. In cabergoline pretreated rats, the number of rotations was significantly lower than that of saline-pretreated animals. Pretreatment with saline did not alter the apomorphine sensitivity of rotational behavior. These findings suggest that the repeated administration of long-acting dopamine agonists may reduce sensitized dopaminergic transmission in dopamine-depleted rats, whereas short-acting ones may further enhance sensitization of the transmission process.  相似文献   

9.
Chen JC  Su HJ  Huang LI  Hsieh MM 《Life sciences》1999,64(5):343-354
Rats receiving amphetamine (5 mg/kg, i.p. once daily) for 14 continuous days develop behavioral sensitization to a subsequent amphetamine challenge (1 mg/kg) at withdrawal days 8 to 10. The present study was aimed at investigating whether there are changes in binding or functions of striatal D2 dopamine receptors in amphetamine-sensitized rats. The results indicated that the Bmax value of D2 receptors in the ventral striatum decreased 40% and 52% 7 and 10 days after amphetamine withdrawal, respectively, without changes in their binding affinities (Kd). During this withdrawal period, the D(2/3) receptor agonist-induced (a) locomotor activation (bromocriptine, 5 mg/kg, i.p. or quinpirole, 1 mg/kg, i.p.) and (b) inhibition of forskolin-enhanced adenylyl cyclase activity (bromocriptine, 50 or 150 microM) in the ventral striatum were both suppressed as compared with saline controls. The decreases in D2 receptor function were unrelated to the coupled G-proteins, since none of the G alpha i-3, G alpha o or G alpha q in the ventral striatum exhibited quantitative differences between control and amphetamine sensitized rats. Collectively, these results demonstrate that intermittent amphetamine administration for a period of 14 days leads to diminished D2 receptor expression and functions in the ventral striatum at late withdrawal periods. The decrease of D2 receptors might reflect cellular mechanisms underlying the expression of amphetamine sensitization.  相似文献   

10.
Behavioral sensitization to psychostimulants such as amphetamine (AMPH) is associated with synaptic modifications that are thought to underlie learning and memory. Because AMPH enhances extracellular dopamine in the striatum where dopamine and glutamate signaling are essential for learning, one might expect that the molecular and morphological changes that occur in the striatum in response to AMPH, including changes in synaptic plasticity, would affect learning. To ascertain whether AMPH sensitization affects learning, we tested wild-type mice and mice lacking NMDA receptor signaling in striatal medium spiny neurons in several different learning tests (motor learning, Pavlovian association, U-maze escape test with strategy shifting) with or without prior sensitization to AMPH. Prior sensitization had minimal effect on learning in any of these paradigms in wild-type mice and failed to restore learning in mutant mice, despite the fact that the mutant mice became sensitized by the AMPH treatment. We conclude that the changes in synaptic plasticity and many other signaling events that occur in response to AMPH sensitization are dissociable from those involved in learning the tasks used in our experiments.  相似文献   

11.
Reserpine (1 mg/kg, i.p.) induced catalepsy and blepharoptosis in mice which were readily reversed by the administration of L-dopa (300 mg/kg, i.p.). The administration of the pure narcotic antagonists naloxone (10 mg/kg, i.p.) and naltrexone (1 mg/kg, i.p.) significantly potentiated L-dopa reversal of reserpine-induced catalepsy. Lower doses of the narcotic antagonists did not significantly alter this reversal. The L-dopa reversal of blepharoptosis was not significantly altered by either naloxone or naltrexone. These results indicate that while opiate receptors may be involved in L-dopa reversal of catalepsy, they may not have a role in the alteration of blepharoptosis.  相似文献   

12.
Santini E  Valjent E  Fisone G 《The FEBS journal》2008,275(7):1392-1399
l-3,4-Dihydroxyphenylalanine (L-dopa) remains the most effective pharmacological treatment for relief of the severe motor impairments of Parkinson's disease. It is very effective in controlling parkinsonian symptoms in the initial phase of the disease, but its action wanes with time. Such 'wearing-off' imposes an escalation in the dosage of the drug, which ultimately fails to provide stable control of motor symptoms and results in the appearance of abnormal involuntary movements or dyskinesia. 'Peak-dose'l-dopa-induced dyskinesia (LID) currently represents one of the major challenges in the treatment of Parkinson's disease. Accumulating evidence suggests that LID derives from overstimulation of dopamine receptors located on the GABAergic medium spiny neurons (MSNs) of the dorsal striatum. These neurons form two distinct projection pathways, which exert opposite effects on motor activity: the direct, striatonigral pathway promotes locomotion, whereas the indirect, striatopallidal pathway depresses locomotion. In order to understand the mechanisms underlying LID, it is important to identify molecular adaptations produced by chronic administration of L-dopa, at the level of one or the other of these two neuronal populations. This review summarizes the results of recent studies indicating that LID is associated with abnormal dopamine D1 receptor signaling affecting the MSNs of the direct pathway. The role of this pathological adaptation and of the consequent changes in signaling in the development and expression of LID are discussed.  相似文献   

13.
Abstract: Administration of l -DOPA (50 mg/kg) elicits a significant increase in extracellular dopamine in striata of rats treated with the catecholaminergic neurotoxin 6-hydroxydopamine but not in striata of intact rats. To assess the role of dopaminergic nerve terminals in determining the effects of exogenous l -DOPA on extracellular dopamine levels in striatum, we examined the relative contributions of monoamine oxidase A and monoamine oxidase B to the catabolism of dopamine synthesized from exogenous l -DOPA. Extracellular concentrations of dopamine and its catabolite, 3,4-dihydroxyphenylacetic acid, were monitored with in vivo dialysis in striata of intact rats and of rats with unilateral 6-hydroxydopamine lesions of striatal dopamine. Clorgyline (2 mg/kg), an inhibitor of monoamine oxidase A, significantly increased dopamine and decreased 3,4-dihydroxyphenylacetic acid in intact but not in dopamine-depleted striata. Inhibition of monoamine oxidase B with either l -deprenyl (1 mg/kg) or Ro 19-6327 (1 mg/kg) did not significantly affect dopamine or 3,4-dihydroxyphenylacetic acid in striata of intact or dopamine-depleted rats. In intact rats, administration of clorgyline in conjunction with l -DOPA produced a >20-fold increase in dopamine and prevented the l -DOPA-induced increase in 3,4-dihydroxyphenylacetic acid. Although both l -deprenyl and Ro 19-6327 administered in combination with l -DOPA elicited a small but significant increase in dopamine, levels of 3,4-dihydroxyphenylacetic acid were not affected. In rats pretreated with 6-hydroxydopamine, clorgyline had no significant effect on the increases in dopamine and 3,4-dihydroxyphenylacetic acid elicited by l -DOPA. Furthermore, neither l -deprenyl nor Ro 19-6327 affected l -DOPA-induced increases in dopamine and 3,4-dihydroxyphenylacetic acid in dopamine-depleted striata. The present findings indicate that deamination by monoamine oxidase A is the primary mechanism for catabolism of striatal dopamine, both under basal conditions and after administration of exogenous l -DOPA. Loss of dopaminergic terminals eliminates this action of monoamine oxidase A but does not enhance deamination by monoamine oxidase B. These data support a model in which exogenous l -DOPA elicits enhanced extracellular accumulation of dopamine in the dopamine-depleted striatum because some transmitter synthesis occurs at nondopaminergic sites and the dopamine terminals that normally take up and catabolize this pool of transmitter are absent.  相似文献   

14.

Background

Dyskinesias associated with involuntary movements and painful muscle contractions are a common and severe complication of standard levodopa (L-DOPA, L-3,4-dihydroxyphenylalanine) therapy for Parkinson''s disease. Pathologic neuroplasticity leading to hyper-responsive dopamine receptor signaling in the sensorimotor striatum is thought to underlie this currently untreatable condition.

Methodology/Principal Findings

Quantitative real-time polymerase chain reaction (PCR) was employed to evaluate the molecular changes associated with L-DOPA-induced dyskinesias in Parkinson''s disease. With this technique, we determined that thyrotropin releasing hormone (TRH) was greatly increased in the dopamine-depleted striatum of hemi-parkinsonian rats that developed abnormal movements in response to L-DOPA therapy, relative to the levels measured in the contralateral non-dopamine-depleted striatum, and in the striatum of non-dyskinetic control rats. ProTRH immunostaining suggested that TRH peptide levels were almost absent in the dopamine-depleted striatum of control rats that did not develop dyskinesias, but in the dyskinetic rats, proTRH immunostaining was dramatically up-regulated in the striatum, particularly in the sensorimotor striatum. This up-regulation of TRH peptide affected striatal medium spiny neurons of both the direct and indirect pathways, as well as neurons in striosomes.

Conclusions/Significance

TRH is not known to be a key striatal neuromodulator, but intrastriatal injection of TRH in experimental animals can induce abnormal movements, apparently through increasing dopamine release. Our finding of a dramatic and selective up-regulation of TRH expression in the sensorimotor striatum of dyskinetic rat models suggests a TRH-mediated regulatory mechanism that may underlie the pathologic neuroplasticity driving dopamine hyper-responsivity in Parkinson''s disease.  相似文献   

15.
Polydrug abuse has become a significant problem worldwide, and the combined use of methamphetamine (MA) and morphine (M) is now highly prevalent among addicts. In the present study, we investigated the neurobehavioral effects of repeated treatment regimens of these drugs (i.p. administration of 0.75 mg/kg/day MA, 5 mg/kg/day M, and their combination for five consecutive days followed by once weekly for five consecutive weeks) in mice. In addition, we used an in vivo microdialysis technique to study the changes in extracellular concentrations of dopamine (DA) and its metabolites in the mouse striatum after challenge administration of these drugs. The results showed that systemic M increased MA-induced conditioned place preference (CPP), as revealed by higher CPP values which were also maintained for a longer duration compared with those induced by an identical dose of MA or M alone. Subsequent to challenge with combined MA and M, mice exhibited an increase in stereotyped behavior, which appeared to be associated with an elevation of extracellular concentration of DA in the striatum. Our findings suggest that M not only produces synergistic effects on MA-induced CPP, but also interacts with MA to induce stereotyped behavioral sensitization which is mediated by an increase in DA outflow in the striatum. These findings provide insight into the behavioral and neurochemical basis responsible for the combined abuse liability of MA and M.  相似文献   

16.
17.
The effect of chronic administration of sulpiride on serum human growth hormone (hGH), prolactin and thyroid stimulating hormone (TSH) was examined in 6 normal subjects. Sulpiride was given orally at a dose of 300 mg (t.i.d.) for 30 days. Sulpiride raised serum prolactin levels in all subjects examined. In addition, sulpiride suppressed hGH release induced by L-dopa, although the basal hGH level was not changed. Sulpiride treatment appeared to antagonize partially the inhibitory effect of L-dopa on prolactin release. Following thyrotropin-releasing hormone (TRH) injection, the percent increment in prolactin levels from the baseline in sulpiride-treated subjects was less than in controls without sulpiride. In contrast, both the basal and TRH-stimulated TSH levels were not influenced by sulpiride. These observations suggest that sulpiride suppresses L-dopa-induced hGH release and stimulates prolactin release, presumably by acting against the dopaminergic mechanism either on the hypothalamus or on the pituitary. The decreased prolactin response to TRH after sulpiride treatment may indicate a diminished reserve capacity in pituitary prolactin release.  相似文献   

18.
In the dopamine-depleted striatum, extracellular signal-regulated kinase (ERK) signaling is implicated in the development of l -DOPA-induced dyskinesia. To gain insights on its role in this disorder, we examined the effects of l -DOPA on the state of phosphorylation of ERK and downstream target proteins in striatopallidal and striatonigral medium spiny neurons (MSNs). For this purpose, we employed mice expressing enhanced green fluorescent protein (EGFP) under the control of the promoters for the dopamine D2 receptor ( Drd2 -EGFP mice) or the dopamine D1 receptor ( Drd1a -EGFP mice), which are expressed in striatopallidal and striatonigral MSNs, respectively. In 6-hydroxydopamine-lesioned Drd2 -EGFP mice, l -DOPA increased the phosphorylation of ERK, mitogen- and stress-activated kinase 1 and histone H3, selectively in EGFP-negative MSNs. Conversely, a complete co-localization between EGFP and these phosphoproteins was observed in Drd1a -EGFP mice. The effect of l -DOPA was prevented by blockade of dopamine D1 receptors. The same pattern of activation of ERK signaling was observed in dyskinetic mice, after repeated administration of l -DOPA. Our results demonstrate that in the dopamine-depleted striatum, l -DOPA activates ERK signaling specifically in striatonigral MSNs. This regulation may result in ERK-dependent changes in striatal plasticity leading to dyskinesia.  相似文献   

19.
The delta opioid receptor (DOPr), whilst not the primary target of clinically used opioids, is involved in development of opioid tolerance and addiction. There is growing evidence that DOPr trafficking is involved in drug addiction, e.g., a range of studies have shown increased plasma membrane DOPr insertion during chronic treatment with opioids. The present study used a transgenic mouse model in which the C-terminal of the DOPr is tagged with enhanced-green fluorescence protein to examine the effects of chronic morphine treatment on surface membrane expression in striatal cholinergic interneurons that are implicated in motivated learning following both chronic morphine and morphine sensitization treatment schedules in male mice. A sex difference was noted throughout the anterior striatum, which was most prominent in the nucleus accumbens core region. Incontrast with previous studies in other neurons, chronic exposure to a high dose of morphine for 6 days had no effect, or slightly decreased (anterior dorsolateral striatum) surface DOPr expression. A morphine sensitization schedule produced similar results with a significant decrease in surface DOPr expression in nucleus accumbens shell. These results suggest that chronic morphine and morphine sensitisation treatment may have effects on instrumental reward-seeking behaviours and learning processes related to drug addiction, via effects on striatal DOPr function.  相似文献   

20.

Background

In rodents, the development of dyskinesia produced by L-DOPA in the dopamine-depleted striatum occurs in response to increased dopamine D1 receptor-mediated activation of the cAMP - protein kinase A and of the Ras-extracellular signal-regulated kinase (ERK) signalling pathways. However, very little is known, in non-human primates, about the regulation of these signalling cascades and their association with the induction, manifestation and/or maintenance of dyskinesia.

Methodology/Results

We here studied, in the gold-standard non-human primate model of Parkinson''s disease, the changes in PKA-dependent phosphorylation of DARPP-32 and GluR1 AMPA receptor, as well as in ERK and ribosomal protein S6 (S6) phosphorylation, associated to acute and chronic administration of L-DOPA. Increased phosphorylation of DARPP-32 and GluR1 was observed in both L-DOPA first-ever exposed and chronically-treated dyskinetic parkinsonian monkeys. In contrast, phosphorylation of ERK and S6 was enhanced preferentially after acute L-DOPA administration and decreased during the course of chronic treatment.

Conclusion

Dysregulation of cAMP signalling is maintained during the course of chronic L-DOPA administration, while abnormal ERK signalling peaks during the initial phase of L-DOPA treatment and decreases following prolonged exposure. While cAMP signalling enhancement is associated with dyskinesia, abnormal ERK signalling is associated with priming.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号