首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Abstract

A series of antiherpetic 5-substituted 2′-deoxyuridine derivatives (i. e. BVDU) and guanine derivatives (i. e. ganciclovir) have been evaluated for their cytostatic activity against murine mammary carcinoma FM3A cell lines that are deficient in cytosol thymidine kinase, but transfected by the herpes simplex virus type 1 (HSV-1)- or type 2 (HSV-2)-specified thymidine kinase gene. Most compounds were endowed with a markedly higher cytostatic activity against the HSV TK gene-transfected tumor cells than against wild-type tumor cells. The principal target for cytostatic activity of the BVDU derivatives proved thymidylate synthase, whereas the guanine derivatives inhibited HSV TK gene-transfected tumor cell proliferation by competing with cellular DNA polymerase(s) and subsequent incorporation into the cellular genome.

  相似文献   

2.
Transformation of mouse cells (Ltk(-)) and human cells (HeLa Bu) from a thymidine kinase (TK)-minus to a TK(+) phenotype (herpes simplex virus [HSV]-transformed cells) has been induced by infection with ultraviolet-irradiated HSV type 2 (HSV-2), as well as by HSV type 1 (HSV-1). Medium containing methotrexate, thymidine, adenine, guanosine, and glycine was used to select for cells able to utilize exogenous thymidine. We have determined the kinetics of thermal inactivation of TK from cells lytically infected with HSV-1 or HSV-2 and from HSV-1- and HSV-2-transformed cells. Three hours of incubation at 41 C produces a 20-fold decrease in the TK activity of cell extracts from HSV-2-transformed cells and Ltk(-) cells lytically infected with HSV-2. The same conditions produce only a twofold decrease in the TK activities from HSV-1-transformed cells and cells lytically infected with HSV-1. This finding supports the hypothesis that an HSV structural gene coding for TK has been incorporated in the HSV-transformed cells.  相似文献   

3.
In these studies, the expression of thymidine kinase (TK) in normal and herpes simplex virus (HSV)-transformed L cells has been compared. In asynchronously dividing cultures of L cells, the TK activity rose and declined rapidly and coordinately with DNA synthesis. When net cell increase stopped, TK activity was at a minimum. In contrast, TK activity of HSV-transformed cells remained at a minimum during rapid DNA synthesis and gradually increased as the rate of DNA synthesis decreased. When net cell increase stopped, TK activity was at a maximum. In synchronous cultures of L cells, TK activity rose and fell coordinately with the rate of DNA synthesis. In synchronous cultures of HSV-transformed cells, no increase in TK activity was observed during the period of rapid DNA synthesis, i.e., the S phase. These findings indicated that the viral TK gene in HSV-transformed cells was not placed under the control of the cellular mechanisms which normally modulate the host cell TK gene. Lytic infection of HSV-transformed cells with a TK(-) mutant of HSV-1 induced a four-to fivefold increase in viral TK. The TK of HSV-1 was induced in the HSV-1-transformed cells and HSV-2 in the HSV-2-transformed cells by this TK(-) mutant. The same infection of normal L cells decreased the cellular TK activity by 80%. This stimulation, rather than inhibition, suggest that the viral gene in HSV-transformed cells retain some of its original viral characteristics.  相似文献   

4.
目的 研究单纯疱疹病毒胸苷激酶 (HSV1 TK)基因转染并联合抗病毒药更昔洛韦 (Ganciclovir ,GCV)对人胶质母细胞瘤细胞的杀伤效应。方法 采用基因工程技术构建带HSV1-TK基因的逆转录病毒重组体pLX SN TK ,采用脂质体介导入PA317包装细胞 ,建立重组逆转录病毒载体分泌细胞株PA317 TK ;用该细胞上清液转导人胶质母细胞瘤细胞 ,用不同浓度GCV作用人胶质母细胞瘤细胞SW0 38 C2 TK和野生型SW0 38 C2 ,采用噻唑蓝(MTT)比色法检测 72h后细胞存活率 ,并求出半杀伤浓度。结果 重组逆转录病毒载体pLXSN TK能有效地将TK基因导入SW0 38-C2细胞内 ,并使其获得对GCV的敏感性 ;体外细胞毒实验 :在 2 0 μmol LGCV存在的情况下 ,野生型细胞无明显改变 ,而实验组细胞明显死亡 ,半杀伤浓度IC50 为 0 8μmol L ,与SW0 38 C2相比 ,对GCV的敏感性提高了 6 0 0倍 ,旁杀效果也较明显。结论 SW0 38 C2转染TK基因后 ,能有效地被GCV杀灭。显示了其潜在的临床应用价值  相似文献   

5.
The cells used in this study are sublines of a transformed mouse L cell line (designated H2) that carries the herpes simplex virus (HSV) gene for thymidine kinase (tk) as well as other viral genetic information acquired after exposure of the parental Ltk(-) cells to UV-irradiated HSV type 1. These sublines of the H2 cell line were isolated by cloning under nonselective conditions and were shown to express widely different levels of viral tk. Selective media were used to isolate phenotypically tk(-) and tk(+) variants in sequence from one of the clonal derivatives. As previously reported, superinfection of the tk(+) cell lines with tk(-) HSV type 1 resulted in enhancement of tk activity. A new finding was that viral tk activity could be induced by superinfection in at least 30% of cells from the phenotypically tk(-) sublines, indicating that a functional viral tk gene was retained in a significant proportion of the cells. Experiments were designed to test for the presence of regulatory factors that could influence tk expression in the nonsuperinfected sublines of H2. Absence of freely diffusible regulatory factors was indicated by the finding that the fusion of phenotypically tk(-) and tk(+) cells and untransformed cells in appropriate combinations did not affect the levels of tk detected. Moreover, there was no evidence for the presence in phenotypically tk(+) transformed cells of HSV-specific regulatory factors that could influence expression of tk from a superinfecting viral genome. Phenotypically tk(+) sublines of H2 were found to differ from the phenotypically tk(-) sublines and from untransformed cells in that the tk(+) cells synthesized viral proteins earlier and produced greater yields of infectious HSV progeny after superinfection with wild-type tk(+) virus. We can conclude that the absence of tk expression in the tk(-) H2 sublines cannot be accounted for by rearrangements or loss of DNA sequences encoding the enzyme itself or of sequences necessary for induction of the gene by superinfecting HSV. Moreover, it appears that the expression of tk in the tk(+) H2 sublines correlates with the presence of some factor that can enhance (or the absence of some factor that can depress) HSV replication and gene expression.  相似文献   

6.
7.
Inhibition of Herpes Simplex Virus Type 2 Replication by Thymidine   总被引:4,自引:14,他引:4       下载免费PDF全文
Replication of herpes simplex virus type 2 (HSV-2) was impeded in KB cells which were blocked in their capacity to synthesize DNA by 2 mM thymidine (TdR). The degree of inhibition was dependent upon the concentration of TdR. In marked contrast, HSV-1 is able to replicate under these conditions. The failure of HSV-2 to replicate is probably due to the inhibition of viral DNA synthesis; there was a marked reduction in the rate of DNA synthesis as well as the total amount of HSV-2 DNA made in the presence of 2 mM TdR. We postulated that the effect of TdR on viral replication occurs at the level of ribonucleotide reductase in a manner similar to KB cells. However, unlike KB cells, an altered ribonucleotide reductase activity, highly resistant to thymidine triphosphate inhibition, was found in extracts of HSV-2-infected KB cells. This activity was present in HSV-2-infected cells incubated in the presence or absence of TdR. Ribonucleotide reductase activity in extracts of HSV-1-infected KB cells showed a similar resistance to thymidine triphosphate inhibition. These results suggest that the effect of TdR on HSV-2 replication occurs at a stage of DNA synthesis other than reduction of cytidine nucleotides to deoxycytidine nucleotides.  相似文献   

8.
For injectable-sized liposome complexed with DNA (lipoplexes) with high transfection efficiency of genes, we initially prepared small-sized liposomes by addition of biosurfactant. For selectivity of gene expression, the thymidine kinase (MK-tk) gene controlled by midkine was used for herpes simplex virus thymidine kinase (HSV-tk) gene therapy. Liposomes composed of 3([N-(N′,N′–dimethylaminoethane)-carbamoyl] cholesterol (DC-Chol), L-dioleoylphosphatidylethanolamine (DOPE), and a biosurfactant, such as β-sitosterol β-D-glucoside (Sit-G) for Sit-G-liposomes and mannosylerythrytol lipid A (MEL) for MEL-liposomes, produced about 300-nm-sized lipoplexes. Sit-G- and MEL-liposomes showed higher transfection efficiency of the luciferase marker gene and thymidine kinase activity in the presence of serum in the cells. The treatment with transfection of MK-tk gene by Sit-G-liposome and injection of ganciclovir significantly reduced tumor growth in a solid tumor model, compared with that by Sit-G-liposome alone. This finding suggested that Sit-G-liposome is a potential vector for HSV-tk gene therapy.  相似文献   

9.
10.
11.
Abstract

A series of 5′-substituted-deoxypyrimidine nucleosides were examined for their ability to inhibit the thymidine kinases of types 1 and 2 herpes simplex virus; structure activity relationships were determined.  相似文献   

12.
Human mesenchymal stem cells (MSCs) are multipotent stem cells that have been intensively studied as therapeutic tools for a variety of disorders. To enhance the efficacy of MSCs, therapeutic genes are introduced using retroviral and lentiviral vectors. However, serious adverse events (SAEs) such as tumorigenesis can be induced by insertional mutagenesis. We generated lentiviral vectors encoding the wild-type herpes simplex virus thymidine kinase (HSV-TK) gene and a gene containing a point mutation that results in an alanine to histidine substitution at residue 168 (TK(A168H)) and transduced expression in MSCs (MSC-TK and MSC-TK(A168H)). Transduction of lentiviral vectors encoding the TK(A168H) mutant did not alter the proliferation capacity, mesodermal differentiation potential, or surface antigenicity of MSCs. The MSC-TK(A168H) cells were genetically stable, as shown by karyotyping. MSC-TK(A168H) responded to ganciclovir (GCV) with an half maximal inhibitory concentration (IC50) value 10-fold less than that of MSC-TK. Because MSC-TK(A168H) cells were found to be non-tumorigenic, a U87-TK(A168H) subcutaneous tumor was used as a SAE-like condition and we evaluated the effect of valganciclovir (vGCV), an oral prodrug for GCV. U87-TK(A168H) tumors were more efficiently ablated by 200 mg/kg vGCV than U87-TK tumors. These results indicate that MSC-TK(A168H) cells appear to be pre-clinically safe for therapeutic use. We propose that genetic modification with HSV-TK(A168H) makes allogeneic MSC-based ex vivo therapy safer by eliminating transplanted cells during SAEs such as uncontrolled cell proliferation.  相似文献   

13.
The in vitro differentiation of human induced pluripotent stem cells (hiPSC) to generate specific types of cells is inefficient, and the remaining undifferentiated cells may form teratomas. This raises safety concerns for clinical applications of hiPSC-derived cellular products. To improve the safety of hiPSC, we attempted to site-specifically insert a herpes simplex virus 1 thymidine kinase (HSV1-TK) suicide gene at the endogenous OCT4 (POU5F1) locus of hiPSC. Since the endogenous OCT4 promoter is active in undifferentiated cells only, we speculated that the HSV1-TK suicide gene will be transcribed in undifferentiated cells only and that the remaining undifferentiated cells can be depleted by treating them with the prodrug ganciclovir (GCV) prior to transplantation. To insert the HSV1-TK gene at the OCT4 locus, we cotransfected hiPSC with a pair of plasmids encoding an OCT4-specific zinc finger nuclease (ZFN) and a donor plasmid harboring a promoter-less transgene cassette consisting of HSV1-TK and puromycin resistance gene sequences, flanked by OCT4 gene sequences. Puromycin resistant clones were established and characterized regarding their sensitivity to GCV and the site of integration of the HSV1-TK/puromycin resistance gene cassette. Of the nine puromycin-resistant iPSC clones analyzed, three contained the HSV1-TK transgene at the OCT4 locus, but they were not sensitive to GCV. The other six clones were GCV-sensitive, but the TK gene was located at off-target sites. These TK-expressing hiPSC clones remained GCV sensitive for up to 90 days, indicating that TK transgene expression was stable. Possible reasons for our failed attempt to selectively target the OCT4 locus are discussed.  相似文献   

14.
Suppression of Herpes Simplex Virus Infection by Phosphonoacetic Acid   总被引:33,自引:0,他引:33       下载免费PDF全文
Disodium phosphonoacetate when administered orally or topically to mice experimentally infected with herpes simplex virus was able to significantly reduce the mortality associated with the agent. In addition, this compound was able to reduce herpesvirus lesions on the corneas of infected rabbits.  相似文献   

15.
The virulence of thymidine kinase-negative herpes simplex virus type 1 (HSV-1; VRTK? strain) and type 2 (HSV-2; UWTK? strain) was studied in comparison with that of their parental strains (VR-3 and UW-268, respectively) in an encephalitis model of adult (4-week-old) and newborn (3-day-old) mice. Viral thymidine kinase (TK) activity was essential for the maximum expression of virulence of HSV-1, because the 50% lethal dose (LD50) of VRTK? was 60 times higher than that of VR-3 in the brains of newborn mice expressing high levels of cellular TK activity. However, the UWTK? strain showed the same virulence as the parental strain in newborn mice, despite the lack virulence in adults, suggesting that replication of the UWTK? strain was completely supported by cellular TK activity. This difference in the role of viral and cellular TKs for virus growth between HSV-1 and HSV-2 was confirmed with the one-step growth of virus strains in L-M and L-M(TK?) cells.  相似文献   

16.
17.
18.
Abstract

Knowledge-based homology modelling together with site-directed mutagenesis, epitope and conformational mapping is an approach to predict the structures of proteins and for the rational design of new drugs. In this study we present how this procedure has been applied to model the structure of herpes simplex virus type 1 thymidine kinase (HSV1 TK, HSV1 ATP-thymidine-5′-phosphotransferase, EC 2.7.1.21). We have used, and evaluated, several secondary structure prediction methods, such as the classical one based on Chou and Fastman algorithm, neural networks using the Kabsch and Sander classification, and the PRISM method. We have validated the algorithms by applying them to the porcine adenylate kinase (ADK), whose three-dimensional structure is known and that has been used for the alignment of the TKs as well. The resulting first model of HSV1-TK consisted of the first β-strand connected to the phosphate binding loop and its subsequent α-helix, the fourth β-strand connected to the conserved FDRH sequence and two α-helix with basic amino acids. The 3D structure was built using the X-ray structure of ADK as template and following the general procedure for homology modelling. We extended the model by means of COMPOSER, an automatic process for protein modelling. Site-directed mutagenesis was used to experimentally verify the predicted active-site model of HSV1-TK. The data measured in our lab and by others support the suggestion that the FDRH motif is part of the active site and plays an important role in the phosphorylation of substrates. The structure of HSV1 TK, recently solved in collaboration with Prof. G. Schulz at 2.7 Å resolution, includes 284 of 343 residues of the N-terminal truncated TK. The secondary structures could be clearly assigned and fitted to the density. The comparison between crystallographically determined structure and the model shows that nearly 70% of the HSV1 TK structure has been correctly modelled by the described integrated approach to knowledge based ligand protein complex structure prediction. This indicate that computer assisted methods, combined with manual” correction both for alignment and 3D construction are useful and can be successful.  相似文献   

19.
Klimova  R. R.  Demidova  N. A.  Masalova  O. V.  Kushch  A. A. 《Molecular Biology》2021,55(3):413-423
Molecular Biology - Herpes simplex viruses 1 and 2 (HSV-1 and HSV-2) infect almost all organs and tissues, cause genital herpes—the most common sexually transmitted disease—disorders of...  相似文献   

20.
Herpes simplex virus type 1 thymidine kinase exhibits a strikingly broad substrate specificity. It is capable of phosphorylating deoxythymidine and deoxyuridine as does human thymidine kinase, deoxycytidine as does human deoxycytidine kinase, the cytosolic kinase whose amino acid sequence it most closely resembles, and thymidylate as does human thymidylate kinase. Following peripheral inoculation of mice, viral thymidine kinase is ordinarily required for viral replication in ganglia and for reactivation from latency following ganglionic explant. To determine which activity of the viral kinase is important for replication and reactivation in mouse ganglia, recombinant viruses lacking viral thymidine kinase but expressing individual human kinases were constructed. Each recombinant virus expressed the appropriate kinase activity with early kinetics following infection of cultured cells. The virus expressing human thymidine kinase exhibited thymidine phosphorylation activity equivalent to ~5% of that of wild-type virus in a quantitative plaque autoradiography assay. Nevertheless, it was competent for ganglionic replication and reactivation following corneal inoculation of mice. The virus expressing human thymidylate kinase was partially competent for these activities despite failing to express detectable thymidine kinase activity. The virus expressing human deoxycytidine kinase failed to replicate acutely in neurons or to reactivate from latency. Therefore, it appears that low levels of thymidine phosphorylation suffice to fulfill the role of the viral enzyme in ganglia and that this role can be partially fulfilled by thymidylate kinase activity alone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号