首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ultrastructure of the microsporidian parasite Nosema grylli, which parasitizes primarily fat body cells and haemocytes of the cricket Gryllus bimaculatus (Orthoptera, Gryllidae) is described. All observed stages (meront, meront/sporont transitional stage ("second meront"), sporont, sporoblast, and spore) are found in direct contact with the host cell cytoplasm. Nuclei are diplokaryotic during almost all stages of the life cycle, but a brief stage with one nucleus containing an abundance of electron-dense material is observed during a "second merogony." Sporogony is disporous. Mature spores are ovocylindrical in shape and measure 4.5+/-0.16micromx2.2+/-0.07 microm (n=10) on fresh smears and 3.3+/-0.06 micromx1.4+/-0.07 microm (n=10) on ultrathin sections. Spores contain 15-18 coils of an isofilar polar filament arranged in one or two layers. Comparative phylogenetic analysis using rDNA shows N. grylli to be closely related to another orthopteran microsporidian, Nosema locustae, and to Nosema whitei from the confused flour beetle, Tribolium confusum. Antonospora scoticae, a parasite of the communal bee Andrena scotica, is a sister taxon to these three Nosema species. The sequence divergence and morphological traits clearly separate this group of "Nosema" parasites from the "true" Nosema clade containing Nosema bombycis. We therefore propose to change the generic name of N. grylli and its close relative N. locustae to Paranosema n. comb. We leave N. whitei in former status until more data on fine morphology of the species are obtained.  相似文献   

2.
The spore polar tube is a unique organelle required for cell invasion by fungi-related microsporidian parasites. Two major polar tube proteins (PTP1 and PTP2) are encoded by two tandemly arranged genes in Encephalitozoon species. A look at Antonospora (Nosema) locustae contigs (http://jbpc.mbl.edu/Nosema/Contigs/) revealed significant conservation in the order and orientation of various genes, despite high sequence divergence features, when comparing with Encephalitozoon cuniculi complete genome. This syntenic relationship between distantly related Encephalitozoon and Antonospora genera has been successfully exploited to identify ptp1 and ptp2 genes in two insect-infecting species assigned to the Antonospora clade (A. locustae and Paranosema grylli). Targeting of respective proteins to the polar tube was demonstrated through immunolocalization experiments with antibodies raised against recombinant proteins. Both PTPs were extracted from spores with 100mM dithiothreitol. Evidence for PTP1 mannosylation was obtained in studied species, supporting a key role of PTP1 in interactions with host cell surface.  相似文献   

3.
Genome compaction and stability in microsporidian intracellular parasites   总被引:13,自引:0,他引:13  
Microsporidian genomes are extraordinary among eukaryotes for their extreme reduction: although they are similar in form to other eukaryotic genomes, they are typically smaller than many prokaryotic genomes. At the same time, their rates of sequence evolution are among the highest for eukaryotic organisms. To explore the effects of compaction on nuclear genome evolution, we sequenced 685,000 bp of the Antonospora locustae genome (formerly Nosema locustae) and compared its organization with the recently completed genome of the human parasite Encephalitozoon cuniculi. Despite being very distantly related, the genomes of these two microsporidian species have retained an unexpected degree of synteny: 13% of genes are in the same context, and 30% of the genes were separated by a small number of short rearrangements. Microsporidian genomes are, therefore, paradoxically composed of rapidly evolving sequences harbored within a slowly evolving genome, although these two processes are sometimes considered to be coupled. Microsporidian genomes show that eukaryotic genomes (like genes) do not evolve in a clock-like fashion, and genome stability may result from compaction in addition to a lack of recombination, as has been traditionally thought to occur in bacterial and organelle genomes.  相似文献   

4.
5.
We characterized a complete Sec61 complex in Nosema bombycis, which has been shown to consist of Sec61alpha, Sec61beta, and Sec61gamma genes. Comparing the genomic regions that harbor the respective subunit genes between N. bombycis, Encephalitozoon cuniculi, and Antonospora locustae, we found that microsporidian genomes have high degree of synteny in short genomic fragment, and that this gene synteny in general might exist throughout microsporidian genomes.  相似文献   

6.
【目的】研究蝗虫微孢子虫Nosema locustae对红胫戟纹蝗Dociostaurus kraussi kraussi致病性及呼吸代谢的影响,为筛选蝗虫微孢子虫适宜的新疆本地的活体增殖寄主提供实验依据。【方法】采用逐头口服法感染红胫戟纹蝗,以镜检法检测蝗虫感染情况,并用呼吸仪测量试虫的呼吸代谢。【结果】在6.5×105个孢子/头的感染剂量下,红胫戟纹蝗的感染率和死亡率分别为41.70%和72.22%。蝗虫微孢子虫的感染剂量与其毒力高度相关(r2=0.961),LD50为1.7088×104个孢子/头;随孢子浓度增加和感染时间延长,试虫的CO2释放率显著降低(P<0.05),但耗氧率没有显著变化。【结论】红胫戟纹蝗被微孢子虫感染后表现出典型症状,高剂量组感染下死亡率达到70%以上,由此推断红胫戟纹蝗可作为微孢子虫在新疆本地的潜在增殖寄主。  相似文献   

7.
Photoreactivation is the repair of DNA damage induced by ultraviolet light radiation using the energy contained in visible-light photons. The process is carried out by a single enzyme, photolyase, which is part of a large and ancient photolyase/cryptochrome gene family. We have characterised a photolyase gene from the microsporidian parasite, Antonospora locustae (formerly Nosema locustae) and show that it encodes a functional photoreactivating enzyme and is expressed in the infectious spore stage of the parasite's life cycle. Sequence and phylogenetic analyses show that it belongs to the class II subfamily of cyclobutane pyrimidine dimer repair enzymes. No photolyase is present in the complete genome sequence of the distantly related microsporidian, Encephalitozoon cuniculi, and this class of photolyase has never yet been described in fungi, the closest relatives of Microsporidia, raising questions about the evolutionary origin of this enzyme. This is the second environmental stress enzyme to be found in A.locustae but absent in E.cuniculi, and in the other case (catalase), the gene is derived by lateral transfer from a bacterium. It appears that A.locustae spores deal with environmental stress differently from E.cuniculi, these results lead to the prediction that they are more robust to environmental damage.  相似文献   

8.
A new microsporidian parasite Nosema chrysorrhoeae n. sp., isolated in Bulgaria from the browntail moth (Euproctis chrysorrhoea L.), is described. Its life cycle includes two sequential developmental cycles that are similar to the general developmental cycles of the Nosema-like microsporidia and are indistinguishable from those of two Nosema spp. from Lymantria dispar. The primary cycle takes place in the midgut tissues and produces binucleate primary spores. The secondary developmental cycle takes place exclusively in the silk glands and produces binucleate environmental spores. N. chrysorrhoeae is specific to the browntail moth. Phylogenetic analysis based on the ssu rRNA gene sequence places N. chrysorrhoeae in the Nosema/Vairimorpha clade, with the microsporidia from lymantriid and hymenopteran hosts. Partial sequences of the lsu rRNA gene and ITS of related species Nosema kovacevici (Purrini K., Weiser J., 1975. Natürliche Feinde des Goldafters, Euproctis chrysorrhoea L., im Gebiet von Kosovo, FSR Jugoslawien. Anzeiger fuer Sch?dlingskunde, Pflanzen-Umweltschutz, 48, 11-12), Nosema serbica Weiser, 1963 and Nosema sp. from Lymantria monacha was obtained and compared with N. chrysorrhoeae. The molecular data indicate the necessity of future taxonomic reevaluation of the genera Nosema and Vairimorpha.  相似文献   

9.
10.
The removal of introns from pre-messenger RNA is mediated by the spliceosome, a large complex composed of many proteins and five small nuclear RNAs (snRNAs). Of the snRNAs, the U6 and U2 snRNAs are the most conserved in sequence, as they interact extensively with each other and also with the intron, in several base pairings that are necessary for splicing. We have isolated and sequenced the genes encoding both U6 and U2 snRNAs from the intracellularly parasitic microsporidian Nosema locustae . Both genes are expressed. Both RNAs can be folded into secondary structures typical of other known U6 and U2 snRNAs. In addition, the N.locustae U6 and U2 snRNAs have the potential to base pair in the functional intermolecular interactions that have been characterized by extensive analyses in yeast and mammalian systems. These results indicate that the N.locustae U6 and U2 snRNAs may be functional components of an active spliceosome, even though introns have not yet been found in microsporidian genes.  相似文献   

11.
12.
Complete sequence and gene organization of the Nosema spodopterae rRNA gene   总被引:1,自引:0,他引:1  
By sequencing the entire ribosomal RNA (rRNA) gene of Nosema spodopterae, we show here that its gene organization follows a pattern similar to the Nosema type species, Nosema bombycis, i.e. 5'-large subunit rRNA (2,497 bp)-internal transcribed spacer (185 bp)-small subunit rRNA (1,232 bp)-intergenic spacer (277 bp)-5S rRNA (114 bp)-3'. Gene sequences and the secondary structures of large subunit rRNA, small subunit rRNA, and 5S rRNA are compared with the known corresponding sequences and structures of closely related microsporidia. The results suggest that the Nosema genus may be heterogeneous and that the rRNA gene organization may be a useful characteristic for determining which species are closely related to the type species.  相似文献   

13.
Microsporida are potentially useful as biological control agents for insects of economic and medical importance. Prior to their responsible use, however, an accurate and reliable means of identification to the species and subspecies level is required. Current methods used for identification are not adequate, due to variability of identifiable characters and to the occurrence of dimorphism. Recently, progress has been made in the use of biochemical characteristics to support the more traditional methods of distinguishing between morphologically similar species. We report on an improved method of characterization of microsporidan spore proteins, using 2-dimensional polyacrylamide gel electrophoresis (2D-PAGE). This method increased the number of spore polypeptides resolved from Nosema locustae spore protein extracts 2-3-fold over 1-dimensional PAGE. Also, each of the 2D-PAGE spore protein fingerprints of the species examined, namely Nosema locustae, Nosema bombycis, and Vairimorpha necatrix, were unique and differences in their spore protein composition were easily determined. The major structural proteins of Nosema locustae spores co-electrophoresed with alpha and beta tubulin from calf brain and had similar pI and molecular weight values as reported for tubulin in other species. Each species' 2D-PAGE fingerprint contained a few polypeptides that were present in relatively high concentration and these polypeptides may represent the major proteins of the structural components of the spore.  相似文献   

14.
ABSTRACT. Nosema isolates from five lepidopteran forest defoliators, Nosema fumiferanae from spruce budworm, Choristoneura fumiferana ; a Nosema sp. from jack pine budworm, Choristoneura pinus pinus and western spruce budworm, Choristoneura occidentalis ( Nosema sp. CPP and Nosema sp. CO, respectively); Nosema thomsoni from large aspen tortrix, Choristoneura conflictana ; and Nosema disstriae , from the forest tent caterpillar, Malacosoma disstria were compared based on their small subunit (SSU) ribosomal RNA (rRNA) gene sequences. Four of the species sequenced, N. fumiferanae , Nosema sp. CPP, Nosema sp. CO, and N . disstriae have a high SSU rDNA sequence identity (0.6%–1.5%) and are members of the "true Nosema " clade. They all showed the reverse arrangement of the (large subunit [LSU]–internal transcribed spacer [ITS]–SSU) of the rRNA gene. The fifth species, N. thomsoni has the usual (SSU–ITS–LSU) arrangement and is not a member of this clade showing only an 82% sequence similarity. We speculate, therefore, that a genetic reversal may have occurred in the common ancestor to the "true Nosema " clade. Although, the mechanism for rearrangement of the rRNA gene subunits is not known we provide a possible explanation for the localization. N. fumiferanae , Nosema sp. CPP, and Nosema sp. CO clustered together on the inferred phylogenetic tree. The high sequence similarities, the reverse arrangement in the rRNA gene subunits, and the phylogenetic clustering suggest that these three species are closely related but separate species.  相似文献   

15.
A new species of microsporidia from Drosophila melanogaster was investigated by light and electron microscopy and by ribosomal RNA (rRNA) sequencing. This microsporidium and the previously described Nosema kingi and Nosema acridophagus have been transferred to the new genus Tubulinosema gen. nov. with the following characters: nuclei are in diplokaryotic arrangement during the life cycle. All stages are in direct contact with the host cell cytoplasm, slightly anisofilar polar tube with the last coils being smaller in diameter arranged in one or two rows on both sides of the diplokaryon and small tubuli on the surface of late meronts. Spores are oval or slightly pyriform. Thick endospore wall, thinner over anchoring disc. This new genus and the genus Brachiola have been placed in a new family Tubulinosematidae fam. nov. Phylogenetic analysis of small subunit rRNA sequences by different methods placed Tubulinosema spp. in one clade with the genus Brachiola forming its sister clade, which is distant from the clade containing the true Nosema spp. including Nosema bombycis.  相似文献   

16.
Microsporidia are a group of fungus-related intracellular parasites with severely reduced metabolic machinery. They lack canonical mitochondria, a Krebs cycle, and a respiratory chain but possess genes encoding glycolysis enzymes, a glycerol phosphate shuttle, and ATP/ADP carriers to import host ATP. The recent finding of alternative oxidase genes in two clades suggests that microsporidial mitosomes may retain an alternative respiratory pathway. We expressed the fragments of mitochondrial chaperone Hsp70 (mitHsp70), mitochondrial glycerol-3-phosphate dehydrogenase (mitG3PDH), and alternative oxidase (AOX) from the microsporidium Antonospora (Paranosema) locustae in Escherichia coli. Immunoblotting with antibodies against recombinant polypeptides demonstrated specific accumulation of both metabolic enzymes in A. locustae spores. At the same time comparable amounts of mitochondrial Hsp70 were found in spores and in stages of intracellular development as well. Immunoelectron microscopy of ultrathin cryosections of spores confirmed mitosomal localization of the studied proteins. Small amounts of enzymes of an alternative respiratory chain in merogonial and early sporogonial stages, alongside their accumulation in mature spores, suggest conspicuous changes in components and functions of mitosomes during the life cycle of microsporidia and the important role of these organelles in parasite energy metabolism, at least at the final stages of sporogenesis.  相似文献   

17.
Microsporidia are obligate intracellular parasites, phylogenetically allied to the fungi. Once considered amitochondriate, now a number of mitochondrion-derived genes have been described from various species, and the relict organelle was recently identified in Trachipleistophora hominis. We have investigated the expression of potential mitochondrial targeted proteins in the spore stage to determine whether the organelle is likely to have a role in the spore or early infection stage. To investigate whether the Antonospora locustae genome codes for a different complement of mitochondrial proteins than Encephalitozoon cuniculi an EST library was searched for putative mitochondrial genes that have not been identified in the E. cuniculi genome project. The spore is the infectious stage of microsporidia, but is generally considered to be metabolically dormant. Fourteen genes for putatively mitochondrion-targeted proteins were shown to be present in purified spore mRNA by 3'-rapid amplification of cDNA ends and EST sequencing. Pyruvate dehydrogenase E1alpha and mitochondrial glycerol-3-phosphate dehydrogenase proteins were also shown to be present in A. locustae and E. cuniculi spores, respectively, suggesting a role for these proteins in the early stages of infection, or within the spore itself. EST sequencing also revealed two mitochondrial protein-encoding genes in A. locustae that are not found in the genome of E. cuniculi. One encodes a possible pyruvate transporter, the other a subunit of the mitochondrial inner membrane peptidase. In yeast mitochondria, this protein is part of a trimeric complex that processes proteins targeted to the inner membrane and the intermembrane space, and its substrate in A. locustae is presently unknown.  相似文献   

18.
Nosema locustae, a microsporidian parasite of locusts and grasshoppers, was successfully propagated in a fat body cell line from Mythimna convecta (BPMNU-MyCo-1). The fat body cells were grown in MGM-448 medium supplemented with 5% fetal bovine serum and 3% Bombyx mori serum at 25 degrees C. Cultures were inoculated with Nosema spores and agitated for 2 min. Infection appeared 3 days post-inoculation and by 7th day, some cells were filled with spores. At the 15th day post-inoculation, 32% of the fat body cells were infected. After isolation, the spore yield ranged from 1.4 x 10(6) spores/ml. Infected cells were subcultured and by the 4th passage spore production decreased. Harvested spores were found infectious to Locusta migratoria.  相似文献   

19.
Abstract:  The effect of Nosema locustae infection on the aggregation behaviour of the oriental migratory locust, Locusta migratoria manilensis , was studied using a two-choice arena olfactometer and electroantennography (EAG). Infected locusts had low antennal sensitivity and aggregation responses to faecal extracts and to locust body volatiles. Infected fifth instar nymphs had significantly lower aggregation index than the uninfected nymphs, although with fourth instars the effect on aggregation behaviour only occurred in infected females. With regard to antennal receptor sensitivity, infected adult locusts had significantly lower EAG amplitudes in response to extracts from faeces of the adult males. The effect was most pronounced in female locusts. In contrast, there was no significant difference in the EAG responses between the fifth instar male and female nymphs. Further analysis revealed that EAG responses of fifth instar nymphs and adults infected with N. locustae to the faecal extract and volatiles from fifth instar solitary-reared nymphs were not significantly affected. In contrast, infected nymphs and adults had remarkably low EAG amplitudes for the remaining stimuli.  相似文献   

20.
ABSTRACT. Nosema ceranae, a microsporidian parasite originally described from Apis cerana, has been found to infect Apis melllifera and is highly pathogenic to its new host. In the present study, data on the ultrastructure of N. ceranae, presence of N. ceranae-specific nucleic acid in host tissues, and phylogenetic relationships with other microsporidia species are described. The ultrastructural features indicate that N. ceranae possesses all of the characteristics of the genus Nosema. Spores of N. ceranae measured approximately 4.4 × 2.2 μm on fresh smears. The number of coils of the polar filament inside spores was 18–21. Polymerase chain reaction (PCR) signals specific for N. ceranae were detected not only in the primary infection site, the midgut, but also in the tissues of hypopharyngeal glands, salivary glands, Malpighian tubules, and fat body. The detection rate and intensity of PCR signals in the fat body were relatively low compared with other examined tissues. Maximum parsimony analysis of the small subunit rRNA gene sequences showed that N. ceranae appeared to be more closely related to the wasp parasite, Nosema vespula, than to N. apis, a parasite infecting the same host.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号