首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recombinant hemopoietic colony-stimulating factors (CSFs), including GM-CSF, G-CSF and IL-3, have been shown to be effective stimulators of both self-renewal and terminal differentiation of blast stem cells in acute myeloblastic leukemia (AML). We have examined the activity of a fourth growth factor, recombinant CSF-1 (or M-CSF), on the growth of leukemic blasts in culture. CSF-1 was found to be active on some, but not all, blast populations. In sensitive cells, CSF-1 often stimulated the production of adherent blast cells incapable of division. This observation leads us to suggest that CSF-1 may be useful in the treatment of selected cases of AML.  相似文献   

2.
Infiltrating immune cells in 30 primary human epithelial breast tumours were studied using specific anti-CD3 (T cells), anti-CD68 (macrophages), anti-CD57 (NK cells), and an anti-pan-B cell antibody (L26). The majority of tumour infiltrating inflammatory cells are T cells (40-50%) and monocytes/macrophages (15-35%). The macrophage specific chemo-attractant and growth factor CSF-1 is detected by immunohistochemical techniques (IHC) at the level of invasive breast cancer cells in 46/50 tumours but not at the level of in-situ (pre-invasive) cancer. A mosaic staining pattern was usually observed, with a very high expression in areas of obvious stromal invasion (90% cells positive) and absent or trace staining in intraductal carcinoma. Macrophages and plasma cells are equally intensely positive. In-situ hybridisation experiments confirm the production of CSF-1 (mRNA) by tumour cells and show the same pattern of expression. Expression of the CSF-1 receptor protein (fms) was also observed by IHC in 41/48 invasive tumours, albeit at weaker intensities than in tumour infiltrating monocytes/macrophages. A concomitant expression of both CSF-1 and fms in in-situ carcinoma was never seen (n = 14). It is therefore proposed that the associated expression of CSF-1 and its receptor may be linked to the invasive potential of breast cancer, the monocytic infiltrate being an indication of the quantitative importance of CSF-1 production by the tumour.  相似文献   

3.
The receptors for colony stimulating factor-1 (CSF-1), platelet derived growth factor and the c-kit protein tyrosine kinase (PTK) contain within their catalytic domains a stretch of 60-100 residues, largely unrelated in sequence, with no counterpart in other PTKs. Of the 64 amino acids within this kinase insert, 58 were deleted from the mouse CSF-1 receptor by oligonucleotide-directed mutagenesis. The mutant CSF-1 receptor was not markedly affected in its kinase activity, post-translational processing or its ability to induce autocrine transformation of NIH 3T3 mouse fibroblasts. Similarly, retention of kinase and transforming activities were observed following deletion of part or all of the kinase insert from the v-fms oncoprotein. The c- and v-fms kinase inserts were probed using monoclonal and polyclonal antibodies and were found to be highly antigenic. Two monoclonal antibodies raised to the v-fms cytoplasmic domain both recognized epitopes within the insert, and bound enzymatically active v-fms glycoproteins. These results indicate that the fms kinase insert is located on the surface of the protein and folds separately from the rest of the catalytic domain, but is not required for the biological activity of fms PTKs ectopically expressed in mouse fibroblasts. The insert may therefore play a specific function in cells such as monocytes and trophoblasts that normally express the CSF-1 receptor.  相似文献   

4.
The effect of purified, recombinant murine gamma interferon (IFN-gamma) on the regulation of macrophage proliferation induced by colony-stimulating factor 1 (CSF-1) was investigated. Although both hemopoietic stem cells (GM-CFC) and tissue-derived peritoneal exudate macrophages (PEM) proliferated in response to CSF-1, the more mature PEM were much more sensitive to an antiproliferative effect of IFN-gamma. The role of IFN-gamma receptor expression and its relationship to growth inhibition was examined. Bone marrow cells as a whole did not exhibit an appreciable amount of IFN-gamma receptor binding activity. Likewise, nonadherent (NA) cells derived from CSF-1-stimulated bone marrow cultures displayed low levels of IFN-gamma receptor binding activity. On the contrary, more mature adherent (AD) cells (monocytes/macrophages) from the same culture exhibited high levels of IFN-gamma receptor binding activity, which continued to increase with culture time. The elevated IFN-gamma binding activity is due to an increase in total receptor number rather than the binding affinity as judged by Scatchard analysis. Similar to the relationship between PEM and GM-CFC, more mature AD cells were also more susceptible to the inhibitory effect of IFN-gamma on CSF-1-induced proliferation than their less mature NA counterparts. The fact that the sensitivity to IFN-gamma correlated well with the expression of existing IFN-gamma receptors strongly suggests that the inhibitory effect is mediated through IFN-gamma receptors. This study shows that the expression of IFN-gamma receptors in mononuclear phagocytes may not only represent one of the phenotypic parameters acquired by the growing macrophages during the process of differentiation, but may play some role in controlling proliferation.  相似文献   

5.
6.
We have proposed that the transmembrane receptor encoded by the c-Kit protooncogene and its ligand play an important role in regulating the proliferation of blasts cells in acute myeloblastic leukemia (AML). To test this hypothesis, immunobeads were used to separate blasts from three Kit-expression positive cell lines into strongly Kit-protein positive and weakly Kit-protein positive fractions. The strongly positive fraction had greater proliferative potential than the weakly positive fraction as assessed both by colony-formation in methylcellulose and growth of clonogenic cells in suspension. The reproducibility of the percentage of each blast population found in the strongly and weakly positive fractions provided evidence that Kit-protein expression is regulated. Kinetic experiments provided evidence for reversible transitions between strong and weak Kit protein expression. Thus regulated expression of the Kit receptor may be a mechanism for controlling blast cell growth in culture. © 1993 Wiley-Liss, Inc.  相似文献   

7.
fms genes encoding either wild-type or constitutively activated colony-stimulating factor 1 receptors (CSF-1R) were introduced by retroviral infection into long-term mouse lymphoid cultures. Four early pre-B-cell lines transformed by the feline v-fms oncogene underwent spontaneous and irreversible differentiation to macrophages when transferred from RPMI 1640 to Iscove modified Dulbecco medium. Expression of wild-type human CSF-1R in early pre-B cells conferred no proliferative advantage unless human CSF-1 was added to the culture medium. A clonal, factor-dependent early pre-B-cell line (D1F9), selected for continuous growth on NIH 3T3 cell feeder layers producing human CSF-1, could be maintained in RPMI 1640 medium containing interleukin-7 (IL-7) but also differentiated to macrophages when grown in Iscove modified Dulbecco medium containing human CSF-1. The macrophages retained parental immunoglobulin gene rearrangements and proviral insertions, lost B-cell antigens, expressed butyrate esterase and MAC-1, were actively phagocytic, and no longer survived in IL-7. Unlike factor-independent v-fms transformants, the irreversible commitment of D1F9 cells to differentiate in the macrophage lineage could be suppressed by IL-7, depended on human (but not mouse) CSF-1, and was inhibited by an antibody to human CSF-1R. Signals mediated by transduced CSF-1R can therefore play a deterministic role in cell differentiation.  相似文献   

8.
A retroviral vector encoding the receptor for human colony-stimulating factor-1 (CSF-1) was introduced into murine myeloid FDC-P1 cells which require interleukin-3 (IL-3) for their proliferation and survival in culture. Cells expressing the CSF-1 receptor (CSF-1R), selected by fluorescence-activated cell sorting in the continued presence of murine IL-3, formed colonies in semisolid medium and were able to proliferate continuously in liquid cultures containing human recombinant CSF-1. Thus, although they do not synthesize endogenous murine CSF-1R, FDC-P1 cells express the downstream components of the CSF-1 mitogenic pathway necessary for its signal-response coupling. After receptor transduction, slowly proliferating factor-independent variants that produced neither CSF-1 nor growth factors able to support the proliferation of parental FDC-P1 cells also arose. When the human CSF-1R was expressed in FDC-P1 cells under the control of an inducible metallothionein promoter, the frequencies of both CSF-1-responsive and factor-independent variants increased after heavy-metal treatment. In addition, a monoclonal antibody to human CSF-1R arrested colony formation by both the CSF-1-dependent and factor-independent cells but did not affect their growth in response to IL-3. Therefore, the induction of both the CSF-1-dependent and factor-independent phenotypes depended on expression of the transduced human CSF-1R.  相似文献   

9.
In the presence of the hemopoietic growth factor CSF-1, the later committed cells of the macrophage lineage can be detected by their ability to form small colonies in clonal agar culture (CFCCSF-1). Synergistic factors have been described that in combination with CSF-1 stimulate developmentally early hemopoietic progenitor cells of high proliferative potential (HPP-CFC). By using a monoclonal antibody to the Qa-m7 antigenic determinant, we investigated and compared the expression of Qa-m7 on CFCCSF-1 and on HPP-CFC of two types that grow in response to either 1) CSF-1 plus synergistic factor from human placenta-conditioned medium (HPP-CFCHplac+CSF-1) or 2) CSF-1 plus synergistic factor from conditioned medium of the WEHI-3 myelomonocytic cell line (HPP-CFCW+CSF-1). We have shown that HPP-CFC of both types express relatively more Qa-m7 antigen than CFCCSF-1 and can be separated and enriched on this basis by discontinuous buoyant density centrifugation and fluorescence-activated cell sorting of normal bone marrow. Significant enrichments of HPP-CFCHPlac+CSF-1 (43.5-fold) and HPP-CFCW+CSF-1 (28.8-fold) have been achieved with cloning efficiencies of HPP-CFC in the most enriched fractions reaching 4 to 5%. These results clearly illustrate the fact that there are populations of progenitor cells from normal, unperturbed bone marrow that strictly require a combination of two hemopoietic growth factors (CSF-1 plus synergistic factor) in order to be detected.  相似文献   

10.
Monocytes and macrophages express the receptor for the hematopoietic growth factor colony-stimulating factor 1 (CSF-1) and require this factor for growth in culture. A murine monocyte tumor cell line that lacks the usual requirement for CSF-1 was isolated. On the basis of the similarity of the structures of the CSF-1 and platelet-derived growth factor (PDGF) receptors and because monocytes normally secrete PDGF, we analyzed the tumor cell line for anomalous expression of the PDGF-R beta gene. Two different cDNAs that each contain sequences corresponding to the complete coding sequence of PDGF-R beta fused (in frame) to the amino-terminal half of the CSF-1 receptor were isolated. Introduction of these PDGF-R beta-related cDNAs into two partially transformed, CSF-1-dependent monocyte cell lines resulted in autonomous growth and cell transformation. These monocyte cell lines exhibit a novel form of growth factor receptor activation that can lead to oncogenic growth in collaboration with the c-myc oncogene.  相似文献   

11.
A mouse retrovirus containing the c-myc oncogene was found to induce tumors of mononuclear phagocytic cells in vivo. All tumors expressed the c-myc retroviral gene but not the endogenous c-myc gene (with one exception), and virtually all tumors were clonal with a unique proviral integration. This observation, coupled with a lag time in tumor formation, suggests that a second event, in addition to c-myc proviral integration, is necessary for the generation of neoplastic cells in vivo. All of the tumor cells expressed high levels of mRNA for both the putative colony-stimulating factor 1 (CSF-1) receptor (c-fms proto-oncogene product), as well as the c-fos proto-oncogene. Although all of the tumor cells proliferated in culture without the addition of exogenous CSF-1, which is required for the proliferation of primary macrophages partially transformed by the same c-myc retrovirus, several phenotypes were observed with respect to the expression of CSF-1 and granulocyte-macrophage CSF and to their growth factor responsiveness. The proliferation of one tumor, which secreted high levels of CSF-1, was blocked by specific anti-CSF-1 serum. This tumor was found to express altered CSF-1 mRNA and to have a DNA rearrangement at the CSF-1 locus. In this particular case, the data indicate that a CSF-1 gene rearrangement was the secondary event in development of the tumor. The pleiotropy of phenotypes among the other tumors indicated that there are a variety of other mechanisms for such secondary events which can be investigated with this system.  相似文献   

12.
The development of macrophages from myeloid progenitor cells is primarily controlled by the growth factor colony stimulating factor-1 (CSF-1) and its cognate receptor, a transmembrane tyrosine kinase encoded by the c-Fms proto-oncogene. The CSF-1 receptor exerts its biological effects on cells via a range of signaling proteins including Erk1/2 and Akt. Here we have investigated the potential involvement of the Src-like adapter protein (SLAP-2) in signaling by the CSF-1 receptor in mouse bone marrow-derived macrophages. RT-PCR analysis revealed constitutive expression of the SLAP-2 gene in bone marrow macrophages. Surprisingly, co-immunoprecipitation and GST binding experiments demonstrated that the CSF-1 receptor could bind to SLAP-2 in a ligand-independent manner. Furthermore, the binding of SLAP-2 to the CSF-1 receptor involved multiple domains of SLAP-2. SLAP-2 also bound c-Cbl, with the interaction being mediated, at least in part, by the unique C-terminal domain of SLAP-2. Overexpression of SLAP-2 in bone marrow macrophages partially suppressed the CSF-1-induced tyrosine phosphorylation and/or expression level of a approximately 80 kDa protein without affecting CSF-1-induced global tyrosine phosphorylation, or activation of Akt or Erk1/2. Significantly, CSF-1 stimulation induced serine phosphorylation of SLAP-2. Pharmacologic inhibition of specific protein kinases revealed that CSF-1-induced phosphorylation of SLAP-2 was dependent on JNK activity. Taken together, our results suggest that SLAP-2 could potentially be involved in signaling by the CSF-1 receptor.  相似文献   

13.
NIH 3T3 cells cotransfected with the human c-fms proto-oncogene together with a 1.6-kilobase cDNA clone encoding a 256-amino-acid precursor of the human mononuclear phagocyte colony-stimulating factor CSF-1 (M-CSF) undergo transformation by an autocrine mechanism. The number of CSF-1 receptors on the surface of transformed cells was regulated by ligand-induced receptor degradation and was inversely proportional to the quantity of CSF-1 produced. A tyrosine-to-phenylalanine mutation at position 969 near the receptor carboxyl terminus potentiated its transforming efficiency in cells cotransfected by the CSF-1 gene but did not affect receptor downmodulation. CSF-1 was synthesized as an integral transmembrane glycoprotein that was rapidly dimerized through disulfide bonds. The homodimer was externalized at the cell surface, where it underwent proteolysis to yield the soluble growth factor. Trypsin treatment of viable cells cleaved the plasma membrane form of CSF-1 to molecules of a size indistinguishable from that of the extracellular growth factor, suggesting that trypsinlike proteases regulate the rate of CSF-1 release from transformed cells. The data raise the possibility that this form of membrane-bound CSF-1 might stimulate receptors on adjacent cells through direct cell-cell interactions.  相似文献   

14.
The interactions of the macrophage colony-stimulating factor 1 (CSF-1) receptor with potential targets were investigated after ligand stimulation either of mouse macrophages or of fibroblasts that ectopically express mouse CSF-1 receptors. In Rat-2 cells expressing the mouse CSF-1 receptor, full activation of the receptor and cellular transformation require exogenous CSF-1, whereas NIH 3T3 cells expressing mouse c-fms are transformed by autocrine stimulation. Activated CSF-1 receptors physically associate with a phosphatidylinositol (PI) 3'-kinase. A mutant CSF-1 receptor with a deletion of the kinase insert region was deficient in its ability to bind functional PI 3'-kinase and to induce PI 3'-kinase activity precipitable with antiphosphotyrosine antibodies. In fibroblasts, CSF-1 stimulation also induced the phosphorylation of the GTPase-activating protein (GAP)-associated protein p62 on tyrosine, although GAP itself was a relatively poor substrate. In contrast to PI 3'-kinase association, phosphorylation of p62 and GAP was not markedly affected by deletion of the kinase insert region. These results indicate that the kinase insert region selectively enhances the CSF-1-dependent association of the CSF-1 receptor with active PI 3'-kinase. The insert deletion mutant retains considerable transforming activity in NIH 3T3 cells (G. Taylor, M. Reedijk, V. Rothwell, L. Rohrschneider, and T. Pawson, EMBO J. 8:2029-2037, 1989). This mutant was more seriously impaired in Rat-2 cell transformation, although mutant-expressing Rat-2 cells still formed small colonies in soft agar in the presence of CSF-1. Therefore, phosphorylation of GAP and p62 through activation of the CSF-1 receptor does not result in full fibroblast transformation. The interaction between the CSF-1 receptor and PI 3'-kinase may contribute to c-fms fibroblast transformation and play a role in CSF-1-stimulated macrophages.  相似文献   

15.
16.
The hematopoietic stem cell line, Myl-D7, is maintained by a self-renewing stem cell population that spontaneously generates myeloid, lymphoid, and erythroid progeny. MS-5 stromal cells are necessary for the growth of Myl-D7 cells. One component of the Myl-D7 cells proliferation activity released by MS-5 stromal cells was enriched by Q sepharose fractionation and shown to be colony stimulating factor-1 (CSF-1) by Western blotting, BAC1.2F5 cell bioassay and inhibition of Myl-D7 proliferation by CSF-1 antibody. The requirement of Myl-D7 cells for CSF-1 was also demonstrated independently by selecting for rare, stroma-independent Myl-D7 mutant clones able to grow without stroma and additional factors. Eighty-nine stroma-independent mutant clones were obtained and belonged to two classes. The majority of mutants did not secrete any growth promoting activity. The second, rarer class of mutants releases a factor that stimulates proliferation/survival for up to several months and approximately half of the secretors express high levels of CSF-1 mRNA. Wild type Myl-D7 grown with supernatants from the secretor cells retained the stem cell phenotype. These data suggest that CSF-1 may act as a key factor in stroma-regulated hematopoiesis and cell-cell interaction.  相似文献   

17.
The McDonough strain of feline sarcoma virus contains an oncogene called v-fms whose ultimate protein product (gp140v-fms) resembles a cell surface growth factor receptor. To identify and characterize the protein product of the proto-oncogene c-fms, antisera were prepared to the viral fms sequences and used to detect specific cross-reacting sequences in human choriocarcinoma cells (BeWo) known to express c-fms mRNA. Both tumor-bearing rat sera and a rabbit antiserum prepared to a segment of v-fms expressed in Escherichia coli detected a 140-kilodalton (kDa) glycoprotein in the BeWo cells. Tryptic fingerprint analysis of [35S]methionine-labeled proteins indicated that the viral fms proteins and the 140-kDa BeWo cell protein were highly related. This 140-kDa glycoprotein contained an associated tyrosine kinase activity in vitro and was labeled principally on serine after 32Pi metabolic labeling. These results suggest that the 140-kDa protein in BeWo cells is the protein product of the human c-fms proto-oncogene. This conclusion is supported by the finding that a similar protein is detectable only in other human cells that express c-fms mRNA. These other human cells include adherent monocytes and the cell line ML-1, which can be induced to differentiate along the monocyte-macrophage pathway. This is in agreement with current thought that the c-fms proto-oncogene product functions as the CSF-1 receptor specific to this pathway.  相似文献   

18.
Src-like adaptor protein 2 (SLAP-2) is a hematopoietic adaptor protein previously implicated as a negative regulator of T-cell antigen receptor (TCR)-mediated signaling. SLAP-2 contains an SH3 and an SH2 domain, followed by a unique carboxyl-terminal tail, which is important for c-Cbl binding. Here we describe a novel role for SLAP-2 in regulation of the colony-stimulating factor 1 receptor (CSF-1R), a receptor tyrosine kinase important for growth and differentiation of myeloid cells. SLAP-2 co-immunoprecipitates with c-Cbl and CSF-1R in primary bone marrow-derived macrophages. Using murine myeloid cells expressing CSF-1R (FD-Fms cells), we show that SLAP-2 is tyrosine-phosphorylated upon stimulation with CSF-1 and associates constitutively with both c-Cbl and CSF-1R. In addition, we show that expression of a dominant negative form of SLAP-2 impairs c-Cbl association with the CSF-1R and receptor ubiquitination. Impaired c-Cbl recruitment also correlated with changes in the kinetics of CSF-1R down-regulation and trafficking. CSF-1-mediated differentiation of FD-Fms cells and activation of downstream signaling events was also enhanced in cells stably expressing dominant negative SLAP-2. Together, these results demonstrate that SLAP-2 plays a role in c-Cbl-dependent down-regulation of CSF-1R signaling.  相似文献   

19.
The colony-stimulating factor 1 receptor (CSF-1R), immunoprecipitated with either anti-phosphotyrosine or anti-receptor antibodies from lysates of ligand-stimulated cells, is associated with a phosphatidylinositol (PtdIns) 3-kinase activity. The ligand-independent transforming efficiencies of human CSF-1R mutants containing certain amino acid substitutions at codon 301 in their extracellular domains correlated directly with their levels of associated lipid kinase activity. A tyrosine kinase defective CSF-1R mutant (CSF-1R[met616]), containing a mutated ATP binding site, lacked associated PtdIns 3-kinase activity in immune complexes recovered from CSF-1-stimulated cells. However, CSF-1R[met616] associated with PtdIns 3-kinase when phosphorylated in trans in CSF-1-stimulated cells coexpressing an enzymatically competent CSF-1R tyrosine kinase. Another CSF-1R mutant, (CSF-1R[delta KI]), lacking 67 amino acids from its intracellular 'kinase insert' domain, exhibited a partially impaired ligand-dependent mitogenic response and a significant reduction in its associated PtdIns 3-kinase activity. Ligand-stimulated CSF-1R[delta KI] molecules contained levels of phosphotyrosine almost equivalent to wild-type receptors, but were phosphorylated at different sites in vitro. Therefore, the association of CSF-1R with active PtdIns 3-kinase required the receptor tyrosine kinase activity, was triggered by receptor phosphorylation on tyrosine and, in this series of mutants, correlated with their mitogenic potential. Although the receptor KI domain strongly contributes to the association with PtdIns 3-kinase, this region is not strictly essential for the interaction.  相似文献   

20.
Multimeric protein complexes are important for cell function and are being identified by proteomics approaches. Enrichment strategies, such as those employing affinity matrices, are required for the characterization of such complexes, for example, those containing growth factor receptors. The receptor for the macrophage lineage growth factor, macrophage-colony stimulating factor (M-CSF or CSF-1), is the tyrosine kinase, c-Fms. There is evidence that the CSF-1 receptor (CSF-1R) forms distinct multimeric complexes involving autophosphorylated tyrosines in its cytoplasmic region; however, these complexes are difficult to identify by immunoprecipitation, making enrichment necessary. We report here the use of a tyrosine-phosphorylated, GST-fusion construct of the entire CSF-1R cytoplasmic region to characterize proteins putatively associating with the activated CSF-1R. Besides signalling molecules known to associate with the receptor or be involved in CSF-1R-dependent signalling, mass spectrometry identified a number of other molecules binding to the construct. So far among these candidate proteins, dynein, claudin and silencer of death domains co-immunoprecipitated with the CSF-1R, suggesting association. This affinity matrix method, using an entire cytoplasmic region, may have relevance for other growth factor receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号