首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Membrane-type 1 matrix metalloproteinase (MT1-MMP) is an integral membrane proteinase that degrades the pericellular extracellular matrix (ECM) and is expressed in many migratory cells, including invasive cancer cells. MT1-MMP has been shown to localize at the migration edge and to promote cell migration; however, it is not clear how the enzyme is regulated during the migration process. Here, we report that MT1-MMP is internalized from the surface and that this event depends on the sequence of its cytoplasmic tail. Di-leucine (Leu571-572 and Leu578-579) and tyrosine573 residues are important for the internalization, and the mu2 subunit of adaptor protein 2, a component of clathrin-coated pits for membrane protein internalization, was found to bind to the LLY573 sequence. MT1-MMP was internalized predominantly at the adherent edge and was found to colocalize with clathrin-coated vesicles. The mutations that disturb internalization caused accumulation of the enzyme at the adherent edge, though the net proteolytic activity was not affected much. Interestingly, whereas expression of MT1-MMP enhances cell migration and invasion, the internalization-defective mutants failed to promote either activity. These data indicate that dynamic turnover of MT1-MMP at the migration edge by internalization is important for proper enzyme function during cell migration and invasion.  相似文献   

3.
Targeting of transforming growth factor beta (TGF-β) to the extracellular matrix (ECM) by latent TGF-β binding proteins (LTBPs) regulates the availability of TGF-β for interactions with endothelial cells during their quiescence and activation. However, the mechanisms which release TGF-β complexes from the ECM need elucidation. We find here that morphological activation of endothelial cells by phorbol 12-myristate 13-acetate (PMA) resulted in membrane-type 1 matrix metalloproteinase (MT1-MMP) -mediated solubilization of latent TGF-β complexes from the ECM by proteolytic processing of LTBP-1. These processes required the activities of PKC and ERK1/2 signaling pathways and were coupled with markedly increased MT1-MMP expression. The functional role of MT1-MMP in LTBP-1 release was demonstrated by gene silencing using lentiviral short-hairpin RNA as well as by the inhibition with tissue inhibitors of metalloproteinases, TIMP-2 and TIMP-3. Negligible effects of TIMP-1 and uPA/plasmin system inhibitors indicated that secreted MMPs or uPA/plasmin system did not contribute to the release of LTBP-1. Current results identify MT1-MMP-mediated proteolytic processing of ECM-bound LTBP-1 as a mechanism to release latent TGF-β from the subendothelial matrix.  相似文献   

4.
Matrix metalloproteinases (MMPs) degrade the extracellular matrix (ECM) and play critical roles in tissue repair, tumor invasion, and metastasis. MMPs are regulated by different cytokines, ECM proteins, and other factors. However, the molecular mechanisms by which osteopontin (OPN), an ECM protein, regulates ECM invasion and tumor growth and modulates MMP activation in B16F10 cells are not well defined. We have purified OPN from human milk and shown that OPN induces pro-MMP-2 production and activation in these cells. Moreover, our data revealed that OPN-induced membrane type 1 (MT1) MMP expression correlates with translocation of p65 (nuclear factor-kappaB (NF-kappaB)) into the nucleus. However, when the super-repressor form of IkappaBalpha (inhibitor of NF-kappaB) was transfected into cells followed by treatment with OPN, no induction of MT1-MMP expression was observed, indicating that OPN activates pro-MMP-2 via an NF-kappaB-mediated pathway. OPN also enhanced cell migration and ECM invasion by interacting with alpha(v)beta(3) integrin, but these effects were reduced drastically when the MMP-2-specific antisense S-oligonucleotide was used to suppress MMP-2 expression. Interestingly, when the OPN-treated cells were injected into nude mice, the mice developed larger tumors, and the MMP-2 levels in the tumors were significantly higher than in controls. The proliferation data indicate that OPN increases the growth rate in these cells. Both tumor size and MMP-2 expression were reduced dramatically when anti-MMP-2 antibody or antisense S-oligonucleotide-transfected cells were injected into the nude mice. To our knowledge, this is the first report that MMP-2 plays a direct role in OPN-induced cell migration, invasion, and tumor growth and that demonstrates that OPN-stimulated MMP-2 activation occurs through NF-kappaB-mediated induction of MT1-MMP.  相似文献   

5.
The influence of alphaVbeta3 integrin on MT1-MMP functionality was studied in human breast cancer cells of differing beta3 integrin status. Overexpression of beta3 integrin caused increased cell surface expression of alphaV integrin and increased cellular adhesion to extracellular matrix (ECM) substrates in BT-549, MDA-MB-231 and MCF-7 cells. beta3 integrin expression also enhanced the migration of breast cancer cells on ECM substrates and enhanced collagen gel contraction. In vivo, alphaVbeta3 cooperated with MT1-MMP to increase the growth of MCF-7 cells after orthotopic inoculation in immunocompromised mice, but had no influence on in vitro proliferation. Despite these stimulatory effects, overexpression of beta3 integrin suppressed the type I collagen (Col I) induced MMP-2 activation in all breast cancer cell lines analyzed. This was also evident in extracts from the MCF-7 tumors in vivo, where MMP-2 activation was stimulated by MT1-MMP transfection, but attenuated with beta3 integrin expression. Although our studies confirm important biological effects of alphaVbeta3 integrin on enhancing cell adhesion and migration, ECM remodeling and tumor growth, beta3 integrin caused reduced MMP-2 activation in response to Col I in vitro, which appears to be physiologically relevant, as it was also seen in tumor xenografts in vivo. The reduction of MMP-2 activation (and thus MT1-MMP activity) by alphaVbeta3 in response to Col I may be important in scenarios where cells which are activated for matrix degradation need to preserve some pericellular collagen, perhaps as a substrate for cell adhesion and migration, thus maintaining a balanced level of proteolysis required for efficient tumor growth.  相似文献   

6.
Activation of matrix metalloproteinase 2 (MMP-2) has been shown to play a significant role in the behavior of cancer cells, affecting both migration and invasion. The activation process requires multimolecular complex formation involving pro-MMP-2, membrane type 1-MMP (MT1-MMP), and tissue inhibitor of metalloproteinases-2 (TIMP-2). Because calcium is an important regulator of keratinocyte function, we evaluated the effect of calcium on MMP regulation in an oral squamous cell carcinoma line (SCC25). Increasing extracellular calcium (0.09-1.2 mm) resulted in a dose-dependent increase in MT1-MMP-dependent pro-MMP-2 activation. Despite the requirement for MT1-MMP in the activation process, no changes in MT1-MMP expression, cell surface localization, or endocytosis were apparent. However, increased generation of the catalytically inactive 43-kDa MT1-MMP autolysis product and decline in the TIMP-2 levels in conditioned media were observed. The decrease in TIMP-2 levels in the conditioned media was prevented by a broad spectrum MMP inhibitor, suggesting that calcium promotes recruitment of TIMP-2 to MT1-MMP on the cell surface. Despite the decline in soluble TIMP-2, no accumulation of TIMP-2 in cell lysates was seen. Blocking TIMP-2 degradation with bafilomycin A1 significantly increased cell-associated TIMP-2 levels in the presence of high calcium. These data suggest that the decline in TIMP-2 is because of increased calcium-mediated MT1-MMP-dependent degradation of TIMP-2. In functional studies, increasing calcium enhanced MMP-dependent cellular migration on laminin-5-rich matrix using an in vitro colony dispersion assay. Taken together, these results suggest that changes in extracellular calcium can regulate post-translational MMP dynamics and thus affect the cellular behavior of oral squamous cell carcinoma.  相似文献   

7.
Proteolysis of the basement membrane and interstitial matrix occurs early in the angiogenic process and requires matrix metalloproteinase (MMP) activity. Skeletal muscle microvascular endothelial cells exhibit robust actin stress fibers, low levels of membrane type 1 (MT1)-MMP expression, and minimal MMP-2 activation. Depolymerization of the actin cytoskeleton increases MT1-MMP expression and MMP-2 activation. Rho family GTPases are regulators of actin cytoskeleton dynamics, and their activity can be modulated in response to angiogenic stimuli such as vascular endothelial growth factor (VEGF). Therefore, we investigated their roles in MMP-2 and MT1-MMP production. Endothelial cells treated with H1152 [an inhibitor of Rho kinase (ROCK)] induced stress fiber depolymerization and an increase in cortical actin. Both MMP-2 and MT1-MMP mRNA increased, which translated into greater MMP-2 protein production and activation. ROCK inhibition rapidly increased cell surface localization of MT1-MMP and increased PI3K activity, which was required for MMP-2 activation. Constitutively active Cdc42 increased cortical actin polymerization, phosphatidylinositol 3-kinase activity, MT1-MMP cell surface localization, and MMP-2 activation similarly to inhibition of ROCK. Activation of Cdc42 was sufficient to decrease RhoA activity. Capillary sprout formation in a three-dimensional collagen matrix was increased in cultures treated with RhoAN19 or Cdc42QL and, conversely, decreased in cultures treated with dominant negative Cdc42N17. VEGF stimulation also induced activation of Cdc42 while inhibiting RhoA activity. Furthermore, VEGF-dependent activation of MMP-2 was reduced by inhibition of Cdc42. These results suggest that Cdc42 and RhoA have opposing roles in regulating cell surface localization of MT1-MMP and MMP-2 activation.  相似文献   

8.
Increased production and activation of matrix metalloproteinase-2 (MMP-2) are critical events in skeletal muscle angiogenesis and are known to occur in response to mechanical stresses. We hypothesized that reorganization of the actin cytoskeleton would increase endothelial cell production and activation of MMP-2 and that this increase would require a MAPK-dependent signaling pathway in endothelial cells. The pharmacological actin depolymerization agent cytochalasin D increased expression of MMP-2 and membrane type 1-matrix metalloproteinase (MT1-MMP) mRNA, and this was reduced significantly in the presence of the JNK inhibitor SP600125. Activation of JNK by anisomycin was sufficient to induce expression of both MMP-2 and MT1-MMP mRNA in quiescent cells. Downregulation of c-Jun, a downstream target of JNK, with small interference (si)RNA inhibited MMP-2 expression in response to anisomycin. Inhibition of phosphoinositide 3-kinase (PI3K), but not JNK, significantly decreased the amount of active MMP-2 following cytochalasin D stimulation with a concurrent decrease in MT1-MMP protein. Physiological reorganization of actin occurs during VEGF stimulation. VEGF-induced MMP-2 protein production and activation, as well as MT1-MMP protein production, depended on PI3K activity. VEGF-induced MMP-2 mRNA expression was reduced by inhibition of JNK or by treatment with c-Jun siRNA. In summary, our results provide novel insight into the signaling cascades initiated in the early stages of angiogenesis through the reorganization of the actin cytoskeleton and demonstrate a critical role for JNK in regulating MMP-2 and MT1-MMP mRNA expression, whereas PI3K regulates protein levels of both MMP-2 and MT1-MMP. angiogenesis; mechanotransduction; vascular endothelial growth factor; c-Jun; phosphoinositide 3-kinase; membrane type 1-matrix metalloproteinase  相似文献   

9.
10.
Cell migration and proteolysis are two essential processes during tumor invasion and metastasis. Matrix metalloproteinase (MMP)-2 (type IV collagenase; gelatinase A), is implicated in tumor metastasis as well as in primary tumor growth. The Rho family of small GTPases regulates the dynamics of actin cytoskeleton associated with cell motility. In this report, we provide evidence that Rac1, one member of Rho-related small GTPases, is a mediator of MMP-2 activation in HT1080 fibrosarcoma cells cultured in three-dimensional collagen gel (3D-col) and that MMP-2 activation is required for Rac1-promoted cell invasion through collagen barrier. Stable expression of dominant negative (Rac1V12N17) and constitutively active Rac1 (Rac1V12), respectively, in HT1080 cells demonstrates that Rac1 promoted cell invasiveness across type I collagen and collagen-dependent MMP-2 activation. Active Rac1 is sufficient to induce MMP-2 activation in cells cultured in fibrin gel, an extracellular matrix component that does not support MMP-2 activation. The Rac1-dependent MMP-2 activation occurred in a cell-associated fashion and required MMP activities. Because the cell membrane-mediated MMP-2 activation requires MT1-MMP and low amount of issue inhibitor of matrix metalloproteinase-2 (TIMP-2), their expression was examined. Rac1 modulated MT1-MMP mRNA level and the accumulation of a 43-kDa form of MT1-MMP protein, in correlation with MMP-2 activation profile. However, TIMP-2 expression was independent of Rac1 activity. The coordinate modulation of MMP-2 activity and MT1-MMP expression/processing by Rac1 is consistent with cell collagenolytic activity. The C-terminal hemopexin-like domain of MMP-2, which interferes with the cell membrane activation of MMP-2, reduced Rac1-promoted cell invasiveness as monitored by collagen invasion assay. These results suggest that collagen-dependent MMP-2 activation and MT1-MMP expression/processing contribute to Rac-promoted tumor cell invasion through interstitial collagen barrier.  相似文献   

11.
12.
13.
Membrane-type 1 matrix metalloproteinase (MT1-MMP) is the most ubiquitous and widely studied of the membrane-type metalloproteinases (MT-MMPs). It was thus surprising to find no published data on chicken MT1-MMP. We report here the characterization of the chicken gene. Its low sequence identity with the MT1-MMP genes of other species, high GC content, and divergent catalytic domain explains the absence of data and our difficulties in characterizing the gene. The absence of structural features in the chicken gene that have been suggested to be critical for the activation of MMP-2 by MT1-MMP; for the effect of MT1-MMP on cell migration and for the recycling of MT1-MMP suggest these features are either not essential or that MT1-MMP does not perform these functions in chickens. Comparison of the expression of chicken MT1-MMP with MT3-MMP and with MMP-2 and MMP-13 has confirmed the previously recognized co-expression of MT1-MMP with MMP-2 and MMP-13 in fibrous and vascular tissues, particularly those surrounding the developing long bones in other species. By contrast, MT3-MMP expression differs markedly from that of MT1-MMP and of both MMP-2 and MMP-13. MT3-MMP is expressed by chondrocytes of the developing articular surface. Similar expression patterns of this group of MT-MMPs and MMPs have been observed in mouse embryos and suggest distinct and specific functions for MT1-MMP and MT3-MMP in skeletal development.  相似文献   

14.
Invasive cell migration through tissue barriers requires pericellular remodelling of extracellular matrix (ECM) executed by cell-surface proteases, particularly membrane-type-1 matrix metalloproteinase (MT1-MMP/MMP-14). Using time-resolved multimodal microscopy, we show how invasive HT-1080 fibrosarcoma and MDA-MB-231 breast cancer cells coordinate mechanotransduction and fibrillar collagen remodelling by segregating the anterior force-generating leading edge containing beta1 integrin, MT1-MMP and F-actin from a posterior proteolytic zone executing fibre breakdown. During forward movement, sterically impeding fibres are selectively realigned into microtracks of single-cell calibre. Microtracks become expanded by multiple following cells by means of the large-scale degradation of lateral ECM interfaces, ultimately prompting transition towards collective invasion similar to that in vivo. Both ECM track widening and transition to multicellular invasion are dependent on MT1-MMP-mediated collagenolysis, shown by broad-spectrum protease inhibition and RNA interference. Thus, invasive migration and proteolytic ECM remodelling are interdependent processes that control tissue micropatterning and macropatterning and, consequently, individual and collective cell migration.  相似文献   

15.
Takino T  Nagao R  Manabe R  Domoto T  Sekiguchi K  Sato H 《FEBS letters》2011,585(21):3378-3384
Fibronectin (FN) matrix assembly is an essential process in normal vertebrate development, which is frequently lost in tumor cells. Here we show that membrane-type 1 matrix metalloproteinase (MT1-MMP) regulates FN matrix assembly. MT1-MMP knockdown induced FN assembly in breast carcinoma cells. Ectopic expression of MT1-MMP reduced specifically the assembled FN matrix level without affecting whole FN production in fibroblasts. Treatment of fibrosarcoma HT1080 cells with dexamethasone (DEX) enhanced FN synthesis, resulting in short fibrils but not dense matrix formation. Combined treatment of DEX and MT1-MMP inhibitor accelerated FN matrix assembly, which mediated cellular adhesion and reduced cell migration and invasion. These results indicate that MT1-MMP stimulates cell migration and invasion by negatively regulating FN assembly.  相似文献   

16.
Migratory cells including invasive tumor cells frequently express CD44, a major receptor for hyaluronan and membrane-type 1 matrix metalloproteinase (MT1-MMP) that degrades extracellular matrix at the pericellular region. In this study, we demonstrate that MT1-MMP acts as a processing enzyme for CD44H, releasing it into the medium as a soluble 70-kD fragment. Furthermore, this processing event stimulates cell motility; however, expression of either CD44H or MT1-MMP alone did not stimulate cell motility. Coexpression of MT1-MMP and mutant CD44H lacking the MT1-MMP-processing site did not result in shedding and did not promote cell migration, suggesting that the processing of CD44H by MT1-MMP is critical in the migratory stimulation. Moreover, expression of the mutant CD44H inhibited the cell migration promoted by CD44H and MT1-MMP in a dominant-negative manner. The pancreatic tumor cell line, MIA PaCa-2, was found to shed the 70-kD CD44H fragment in a MT1-MMP-dependent manner. Expression of the mutant CD44H in the cells as well as MMP inhibitor treatment effectively inhibited the migration, suggesting that MIA PaCa-2 cells indeed use the CD44H and MT1-MMP as migratory devices. These findings revealed a novel interaction of the two molecules that have each been implicated in tumor cell migration and invasion.  相似文献   

17.
Itoh Y 《IUBMB life》2006,58(10):589-596
Controlled cell migration is a fundamental and critical event in many physiological processes. However once control is lost, cell migration facilitates disease progression such as seen in cancer metastasis, atherosclerosis, and rheumatoid arthritis. One of the critical proteinases involved in cell migration is membrane-type 1 matrix metalloproteinase (MT1-MMP/MMP-14). MT1-MMP degrades extracellular matrix to make a path for cells to migrate, sheds cell surface molecules to give migratory signals, and activates ERK (extracellular signal-regulated protein kinase) enhancing cell migration. For MT1-MMP to promote cell migration, it needs to act in co-ordination with other cell migration machinery. Understanding such regulatory links may provide insights into the development of novel disease therapies.  相似文献   

18.
Curcumin (Cur), a component of turmeric (Curcuma longa), has been reported to exhibit antimetastatic activities, but the mechanisms remain unclear. Other curcuminoids present in turmeric, demethoxycurcumin (DMC) and bisdemethoxycurcumin (BDMC) have not been investigated whether they exhibit antimetastatic activity to the same extent as curcumin. The regulation of matrix metalloproteinases (MMPs) and urokinase plasminogen activator (uPA) play important role in cancer cell invasion by cleavage of extracellular matrix (ECM). In this line, we comparatively examined the influence of Cur, DMC and BDMC on the expressions of uPA, MMP-2, MMP-9, membrane Type 1 MMP (MT1-MMP), tissue inhibitor of metalloproteinases (TIMP-2), and in vitro invasiveness of human fibrosarcoma cells. The results indicate that the differential potency for inhibition of cancer cell invasion was BDMC> or =DMC>Cur, whereas the cell migration was not affected. Zymography analysis exhibited that curcumin, DMC and BDMC significantly decreased uPA, active-MMP-2 and MMP-9 but not pro-MMP-2 secretion from the cells in a dose-dependent manner, in which BDMC and DMC show higher potency than curcumin. The suppression of active MMP-2 level correlated with inhibition of MT1-MMP and TIMP-2 protein levels involved in pro-MMP-2 activation. Importantly, BDMC and DMC at 10 microM reduced MT1-MMP and TIMP-2 protein expression, but curcumin slightly reduced only MT1-MMP but not TIMP-2. In addition, three forms of curcuminoids significantly inhibited collagenase, MMP-2, and MMP-9 but not uPA activity. In summary, these data demonstrated that DMC and BDMC show higher antimetastasis potency than curcumin by the differentially down-regulation of ECM degradation enzymes.  相似文献   

19.
Membrane-type 1 matrix metalloproteinase (MT1-MMP) has been implicated as a physiological activator of progelatinase A (MMP-2). We previously reported that plasmin treatment of cells results in proMMP-2 activation and increased type IV collagen degradation. Here, we analyzed the role of MT1-MMP in plasmin activation of MMP-2 using HT-1080 cells transfected with MT1-MMP sense or antisense cDNA. Control, vector-transfected cells that expressed endogenous MT1-MMP, and antisense cDNA transfectants with very low levels of MT1-MMP did not activate proMMP-2. Conversely, cells transfected with sense MT1-MMP cDNA expressed high MT1-MMP levels and processed proMMP-2 to 68/66-kDa intermediate activation products. Control cells and MT1-MMP transfectants had much higher levels of cell-associated MMP-2 than antisense cDNA transfectants. Addition of plasmin(ogen) to control or MT1-MMP-transfected cells generated active, 62-kDa MMP-2, but was ineffective with antisense cDNA transfectants. The effect of plasmin(ogen) was prevented by inhibitors of plasmin, but not by metalloproteinase inhibitors, implicating plasmin as a mechanism for proMMP-2 activation independent of the activity of MT1-MMP or other MMPs. Plasmin-mediated activation of proMMP-2 did not result from processing of proMT1-MMP and did not correlate with alpha(v)beta(3) integrin or TIMP-2 levels. Thus, plasmin can activate proMMP-2 only in the presence of MT1-MMP; however, this process does not require the catalytic activity of MT1-MMP.  相似文献   

20.
Membrane-type 1 matrix metalloproteinase (MT1-MMP) plays an important role in extracellular matrix-induced cell migration and the activation of extracellular signal-regulated kinase (ERK). We showed here that transfection of the MT1-MMP gene into HeLa cells promoted fibronectin-induced cell migration, which was accompanied by fibronectin degradation and reduction of stable focal adhesions, which function as anchors for actin-stress fibers. MT1-MMP expression attenuated integrin clustering that was induced by adhesion of cells to fibronectin. The attenuation of integrin clustering was abrogated by MT1-MMP inhibition with a synthetic MMP inhibitor, BB94. When cultured on fibronectin, HT1080 cells, which endogenously express MT1-MMP, showed so-called motile morphology with well-organized focal adhesion formation, well-oriented actin-stress fiber formation, and the lysis of fibronectin through trails of cell migration. Inhibition of endogenous MT1-MMP by BB94 treatment or expression of the MT1-MMP carboxyl-terminal domain, which negatively regulates MT1-MMP activity, resulted in the suppression of fibronectin lysis and cell migration. BB94 treatment promoted stable focal adhesion formation concomitant with enhanced phosphorylation of tyrosine 397 of focal adhesion kinase (FAK) and reduced ERK activation. These results suggest that lysis of the extracellular matrix by MT1-MMP promotes focal adhesion turnover and subsequent ERK activation, which in turn stimulates cell migration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号