首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In adult individuals when most tissues have progressively lost the ability to regenerate, bone maintains the potential for a continuous self remodeling. The bone marrow has been so far the main recognized source of osteoprogenitor cells that contribute to the turnover of the skeletal scaffold. The possibility though exists that a pool of osteoprogenitor cells resides within other adult tissues and in particular, as reported previously, in other connective tissues such as fat and skeletal muscle. In an attempt to identify an alternative source of osteoprogenitor cells other than bone marrow we looked into the skeletal muscle. A plastic adhering cell population, from now on referred to as skeletal muscle derived cells (SMDCs), was obtained from biopsies of human skeletal muscle. SMDCs were clonogenic and displayed a fibroblast-like morphology. The isolated cell population had a mesenchymal origin as indicated by abundant expression of type I collagen, fibronectin, and vimentin and appeared heterogeneous. SMDCs were positive for alpha smooth actin, and to a lesser extent for desmin and alpha sarcomeric myosin, two specific markers of the myogenic phenotype. Surprisingly though SMDCs expressed early markers of an osteogenic commitment as indicated by positive staining for alkaline phosphatase, osteopontin, and osteonectin. Under the appropriate stimuli, these cells deposited in vitro a mineralized bone matrix and a proteoglycan rich matrix. In addition, SMDCs cultured in the presence of low serum and insulin differentiated towards adipocytes developing abundant lipid droplets in the cytoplasm. Furthermore SMDCs formed three-dimensional bone tissue in vivo when implanted in an immunodeficient mouse, and a mature cartilage rudiment when maintained as a pellet culture. In summary, we report the isolation and characterization of a cell population from the human skeletal muscle not only able to express in vitro specific markers of distinct mesenchymal lineages (adipogenic, chondrogenic, and osteogenic), but most importantly, able to complete the differentiation pathway leading to the formation of bone and cartilage. In this respect SMDCs resemble bone marrow stromal cells (BMSCs).  相似文献   

2.
A high concentration of bone morphogenetic proteins (BMPs) stimulates myogenic progenitor cells to undergo heterotopic osteogenic differentiation. However, the physiological role of the Smad signaling pathway during terminal muscle differentiation has not been resolved. We report here that Smad1/5/8 was phosphorylated and activated in undifferentiated growing mouse myogenic progenitor Ric10 cells without exposure to any exogenous BMPs. The amount of phosphorylated Smad1/5/8 was severely reduced during precocious myogenic differentiation under the high cell density culture condition even in growth medium supplemented with a high concentration of serum. Inhibition of the Smad signaling pathway by dorsomorphin, an inhibitor of Smad activation, or noggin, a specific antagonist of BMP, induced precocious terminal differentiation of myogenic progenitor cells in a cell density-dependent fashion even in growth medium. In addition, Smad1/5/8 was transiently activated in proliferating myogenic progenitor cells during muscle regeneration in rats. The present results indicate that the Smad signaling pathway is involved in a critical switch between growth and differentiation of myogenic progenitor cells both in vitro and in vivo. Furthermore, precocious cell density-dependent myogenic differentiation suggests that a community effect triggers the terminal muscle differentiation of myogenic cells by quenching the Smad signaling.  相似文献   

3.
4.
Understanding the mechanisms that control the proliferation and commitment of human stem cells into cells of the osteogenic lineage for the preservation of skeletal structure is of basic importance in bone physiology. This study examines some aspects of the differentiation in vitro of human bone marrow fibroblastic cells cultured in the absence (basal media) or presence of 1nM dexamethasone and 50 micrograms/ml ascorbate for 6, 10, 14, and 21 days. Northern blot analysis and in situ hybridisation with digoxygenin-labelled riboprobes for Type I collagen, osteocalcin, bone morphogenetic proteins 2 (BMP-2), and 4 (BMP-4) and the estrogen receptor alpha (ERalpha), together with immunocytochemical analysis of ERalpha expression and histochemical staining of alkaline phosphatase was performed. In basal media, alkaline phosphatase activity and collagen expressions were detected at day 6, ERalpha from day 10 and osteocalcin from day 10. In the presence of dexamethasone and ascorbate, cell proliferation and alkaline phosphatase were markedly stimulated over 10 to 14 days with a dramatic increase in the temporal expression of Type I collagen, ERalpha, and osteocalcin mRNAs in these cultures. Northern blot analysis showed cells cultured in basal media, expressed the highest levels of the mRNA for each marker protein at day 14, whereas in the presence of ascorbate and dexamethasone, the highest levels for alkaline phosphatase, ERalpha, osteocalcin, BMP-2, and BMP-4 were observed at day 21. ERalpha, BMP-2, and BMP-4 expression were found to correlate temporally with induction of the osteoblast phenotype as determined by alkaline phosphatase, collagen, and osteocalcin expression. These results give additional information on the development of the osteoblast phenotype from early fibroblastic stem cells and on the biological factors involved in this process. These studies suggest a role for estrogen and BMP-2 and -4 in the differentiation of osteoprogenitor cells.  相似文献   

5.
6.
Human bone marrow-derived mesenchymal stem cells have the potential to differentiate into several cell types such as osteoblasts, chondrocytes, and adipocytes. When cultured under appropriate medium conditions stem cells can be directed toward the osteoblast lineage in vitro. Progression of osteogenic differentiation is accompanied by changes in the expression pattern of several marker proteins including bone-specific alkaline phosphatase (bALP), collagen I (Col I), and osteocalcin (OC) and can be analyzed by well-established methods like immunohistochemical staining and quantitative RT-PCR. Furthermore, expression of fluorescent protein driven by an osteogenesis promoter facilitates online monitoring of proceeding osteogenic differentiation in transiently transfected human bone marrow-derived cells. In the present study we established a new double reporter gene construct comprising OC promoter-driven expression of green fluorescent protein and constitutive expression of red fluorescent protein-tagged histone H2B for transient transfection of primary human bone cells (HBCs). Osteogenic differentiation of transiently transfected cells was visualized by fluorescence microscopy. Immunohistochemical analysis and RT-PCR confirmed the progression into the osteo-specific lineage of transfected cells. Transfection efficiency was determined by fluorescence-activated cell sorting (FACS).  相似文献   

7.
The specific effects of interferon alpha (IFNalpha), on the differentiation pathways of human osteogenic cells are not known. The aim of this study was to investigate possible effects of IFNalpha on osteogenic development by investigating cell differentiation, colony formation (colony forming unit-fibroblastic, CFU-F), cell proliferation, and gene expression, in particular bone morphogenetic protein (BMP) expression, of human bone marrow osteoprogenitor cells. Human bone marrow fibroblasts were cultured with or without the addition of IFNalpha (5-1,000 IU/ml) in the presence and absence of dexamethasone (10 nM) and ascorbate (100 microM), which are agents known to affect osteogenic differentiation. IFNalpha produced a significant dose-dependent inhibition of cell proliferation and alkaline phosphatase specific activity at concentrations as low as 50 IU/ml. IFNalpha (50-1,000 IU/ml) inhibited the stimulation of alkaline phosphatase specific activity induced by ascorbate and dexamethasone. Examination of CFU-F showed dose- and time-dependent inhibitions of colony formation and reductions in both colony size and alkaline phosphatase-positive CFU-F colonies particularly at earlier times. Reactivity with an antibody specific for osteoprogenitors (HOP-26), was reduced in IFNalpha-treated cultures. Northern blot analysis showed a significant dose-dependent up-regulation of BMP-2 mRNA, estrogen receptor alpha mRNA and osteocalcin mRNA expression in ascorbate/dexamethasone cultures. In contrast, IFNalpha significantly inhibited BMP-2 mRNA expression in the absence of ascorbate and dexamethasone. In conclusion, IFNalpha inhibits human osteoprogenitor cell proliferation, CFU- F formation, HOP-26 expression, and alkaline phosphatase specific activity and modulates BMP-2 gene expression. These results suggest a role for IFNalpha in local bone turnover through the specific and direct modulation of osteoprogenitor proliferation and differentiation.  相似文献   

8.
9.
10.
Porcine mesenchymal stem cells   总被引:26,自引:0,他引:26  
The potential of mesenchymal stem and progenitor cells (MSC) to replicate undifferentiated and to mature into distinct mesenchymal tissues suggests these cells as an attractive source for tissue engineering. The objective was to establish a protocol for the isolation of porcine MSC from bone marrow and to demonstrate their ex vivo differentiation into various mesenchymal tissue cells. MSC from passage 2 were selected for differentiation analysis. Differentiation along the osteogenic lineage was documented by deposition of calcium, visualization of alkaline phosphatase activity, and by analysis of osteogenic marker genes. Adipocytes were identified morphologically and by gene-expression analysis. Deposition of type II collagen and histological staining of proteoglycan indicated chondrogenic differentiation. Therefore, porcine MSC may be introduced as a valuable model system with which to study the mesenchymal lineages for basic research and tissue engineering.  相似文献   

11.
12.

Introduction

Bone morphogenetic proteins (BMPs) are critical growth factors in the osteogenic differentiation of progenitor cells during development in embryos and fracture repair in adults. Although recombinant BMPs are in use clinically, their clinical efficiency needs to be improved. The biological activities of BMPs are naturally regulated by extracellular binding proteins. The specific hypotheses tested in this study were as follows: the BMP inhibitor chordin is produced endogenously during the osteogenic differentiation of human mesenchymal stem cells (MSCs); and blockade of the activity of the BMP inhibitor increases the rate of osteogenic differentiation of human MSCs in vitro.

Methods

Human MSCs were derived from bone marrow from an iliac crest aspirate and from patients undergoing hip hemiarthroplasty. The MSCs were induced down the osteogenic pathway using standard osteogenic differentiation media, and expressions of BMP-2 and chordin were determined by gene expression analysis. During osteogenic differentiation, chordin knockdown was induced using RNA interference. Osteogenic differentiation was assessed by measuring the expression of alkaline phosphatase and calcium deposition. The differences in expression of osteogenic makers between groups were compared by analysis of variance, followed by Gabriel post hoc test.

Results

We demonstrate the expression of BMP-2 and chordin in human MSCs during osteogenic differentiation. Knockdown of chordin by RNA interference in vitro resulted in a significant increase in the expression of the osteogenic marker alkaline phosphatase and the deposition of extracellular mineral, in response to osteogenic stimulation.

Conclusion

We conclude that endogenously produced chordin constrains the osteogenic differentiation of human MSCs. The targeting of BMP inhibitors, such as chordin, may provide a novel strategy for enhancing bone regeneration.  相似文献   

13.
14.
Cellular differentiation is controlled by a variety of factors including gene methylation, which represses particular genes as cell fate is determined. The incorporation of 5-azacytidine (5azaC) into DNA in vitro prevents methylation and thus can alter cellular differentiation pathways. Human bone marrow fibroblasts and MG63 cells treated with 5azaC were used as models of osteogenic progenitors and of a more mature osteoblast phenotype, respectively. The capacity for differentiation of these cells following treatment with glucocorticoids was investigated. 5azaC treatment led to significant expression of the osteoblastic marker alkaline phosphatase in MG63 osteosarcoma cells, which was further augmented by glucocorticoids; however, in human marrow fibroblasts alkaline phosphatase activity was only observed in glucocorticoid-treated cultures. MG63 cells represent a phenotype late in the osteogenic lineage in which demethylation is sufficient to induce alkaline phosphatase activity. Marrow fibroblasts are at an earlier stage of differentiation and require stimulation with glucocorticoids. In contrast, the expression of osteocalcin, an osteoblastic marker, was unaffected by 5azaC treatment, suggesting that regulation of expression of the osteocalcin gene does not involve methylation. These models provide novel approaches to the study of the control of differentiation in the marrow fibroblastic system.  相似文献   

15.
The cartilagenous tissue of mandibular condyles of newborn mice contains progenitor cells as well as young and mature chondrogenic cells. During in vitro cultivation of the tissue, progenitor cells undergo osteogenic differentiation and form new bone (Silbermann, M., D. Lewinson, H. Gonen, M. A. Lizarbe, and K. von der Mark. 1983. Anat. Rec. 206:373-383). We have studied the expression of genes that typify osteogenic differentiation in mandibular condyles during in vitro cultivation. RNAs of the genes for collagen type I, osteonectin, alkaline phosphatase, and bone gla protein were sequentially expressed in progenitor cells and hypertrophic chondrocytes during culture. Osteopontin expression peaked in both the early and the late phase of the differentiation process. The data indicate a distinct sequence of expression of osteoblast-specific genes during osteogenic differentiation and new bone formation in mandibular condyles.  相似文献   

16.
17.
18.
Here, we enriched a human cell population from adipose tissue that exhibited both mesenchymal plasticity, self-renewal capacity, and a cell-surface marker profile indistinguishable from that of bone marrow-derived mesenchymal stem cells. In addition to adipogenic and osteogenic differentiation, these adipose-derived stem cells displayed skeletal myogenic potential when co-cultured with mouse skeletal myocytes in reduced serum conditions. Physical incorporation of stem cells into multinucleated skeletal myotubes was determined by genetic lineage tracing, whereas human-specific antibody staining was employed to demonstrate functional contribution of the stem cells to a myogenic lineage. To investigate the effects of hypoxia, cells were maintained and differentiated at 2% O(2). In contrast with reports on bone marrow-derived stem cells, both osteogenic and adipogenic differentiation were significantly attenuated. In summary, the relative accessibility of adipose-derived mesenchymal stem cells from human donors provides opportunity for molecular investigation of mechanistic dysfunction in disease settings and may introduce new prospects for cell-based therapy.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号